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D-BAR METHOD AND EXCEPTIONAL POINTS AT POSITIVE ENERGY: A
COMPUTATIONAL STUDY

JANNE P. TAMMINEN⇤, MAARTEN V. DE HOOP† , MATTI LASSAS‡ , AND SAMULI SILTANEN§

Abstract. A new computational method for reconstructing a potential at positive energy is developed. The
method is based on the D-bar method which has no exceptional points if the potential is small enough compared to
the energy. Numerical tests show exceptional points for perturbed, radial potentials. Reconstructions for radial and
non-radial potentials are computed using simulated Dirichlet-to-Neumann maps with and without added noise.

1. Introduction. Let ⌦ ⇢ R2 be the unit disk. Let q = q
0

� E be the potential with the
energy E 2 R, q

0

real-valued and supp(q
0

) ⇢ ⌦. Consider the Schrödinger equation

(1.1) (��+ q)u = 0 in ⌦

with the boundary condition u = f on @⌦. This boundary-value-problem might be well-posed; then
for any f 2 H1/2(@⌦) it has a unique weak solution u 2 H1(⌦). For well-posed problems we define
the Dirichlet-to-Neumann map (DN-map)

(1.2) ⇤
q

: H1/2(@⌦) ! H�1/2(@⌦), f 7! @u

@⌫
|
@⌦

,

where ⌫ is the unit outer normal to the boundary. More precisely for f, g 2 H1/2(@⌦),

(1.3) (⇤
q

f, g)
@⌦

=

Z

⌦

(ru ·rv + quv)dx,

where u is the unique weak solution for the boundary value f , and v 2 H1(⌦) with v|
@⌦

= g. The
inverse problem of our interest is then the following; given ⇤

q

and the energy E, reconstruct the
potential q

0

. This is called the Gel’fand-Dirichlet problem first posed by Gel’fand [11].
The three novelties of this paper are:
1. We create a numerical algorithm for Faddeev Green’s function for positive energy E > 0, a

significant extension of the zero-energy case introduced in [30].
2. We propose a new numerical algorithm for reconstructing q

0

via the D-bar method when
E > 0, it is then tested with radial and non-radial potentials using simulated data with
noise.

3. We investigate numerically the exceptional points in which cases the aforementioned method
fails, complementing the earlier work [23] focusing on the zero-energy case.

The D-bar method consists of exponentially behaving Complex Geometrics Optics (CGO) so-
lutions first introduced by Faddeev [10], the boundary integral equation proved by R. G. Novikov
[27], the D-bar equation discovered by Beals and Coifman [6], and finally the relation of the CGO
solution and the potential by R. G. Novikov [26].

Electrical Impedance Tomography (EIT) and Acoustic Tomography (AT) are related to the
Gel’fand-Dirichlet problem by a transformation resulting in di↵erent energies. We will see that EIT
is a zero-energy problem with E = 0 and AT is a positive energy problem with E > 0.

We will identify the plane R2 as the complex plane by writing

z = [x
1

x
2

]T 2 R2, z = x
1

+ ix
2
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1.1. Electrical Impedance Tomography. The inverse conductivity problem of Calderón [8]
is the mathematical model of EIT. Let � : ⌦ ! (0,1) be a bounded function satisfying �(z) � c > 0.
Let v 2 H1(⌦) be the unique solution to

(1.4) r · �rv = 0 in ⌦, v
��
@⌦

= �.

Calderón’s problem is to recover the electric conductivity distribution � from the DN-map, or
voltage-to-current map,

(1.5) ⇤
�

: � 7! �
@v

@⌫

���
@⌦

.

In EIT one attaches electrodes to the skin of a patient, feeds electric currents into the body and
measures the resulting voltages at the electrodes. Repeating the measurement with several current
patterns yields a current-to-voltage data matrix that can be used to compute an approximation to
⇤
�

. Since di↵erent organs and tissues have di↵erent conductivities, recovering � amounts to creating
an image of the inner structure of the patient. This technique has commercial realizations, including
breast cancer detection [1] and monitoring lung function1. See [22, 9] for more information on EIT
and its applications.

Using the transformation u = �1/2v we arrive at (1.1) with

q
0

= ��1/2��1/2, E = 0.

Nachman gave a detailed proof of the D-bar method in [25] for solving � in this EIT setting. The
method was implemented numerically and tested with in vivo human data in [31, 21, 15, 16, 18, 22].
Furthermore, there are two similar EIT methods based on nonlinear frequency-domain techniques:
[7], implemented in [17, 20, 14], and [4], implemented in [5, 3, 2, 22].

A crucial point of [25] is to prove that there are no exceptional points for potentials of conduc-
tivity type, defined as follows:

Definition 1.1. A compactly supported real-valued potential q
0

2 C1
0

(R2) is of conductivity
type if q

0

= ��1�� for some real-valued � 2 C1(R2) satisfying �(z) � c > 0 for all z in a bounded
set ⌦ ⇢ R2 and �(z) = 1 for all z 2 R2 \ ⌦.

1.2. Acoustic Tomography. We call the bounded function ⇢ : ⌦ ! (0,1) the density
satisfying ⇢(x) � c > 0. The pressure p satisfies the reduced acoustic equation for time-harmonic
waves with frequency !,

(1.6) r ·
✓
1

⇢
rp

◆
+ !2p = 0 in ⌦,

where (z) is the compressibility and the speed of sound is given by c(z) = ((z)⇢(z))�1/2. Given
the boundary condition p = f on @⌦, the inverse problem of AT is to recover ⇢ and  from the
DN-map

(1.7) ⇤
!,,⇢

: f ! 1

⇢

@p

@⌫
|
@⌦

.

Assuming ⇢|
@⌦

= |
@⌦

= 1 and using the transformation u = ⇢�1/2p we arrive at (1.1) with

(1.8) q
0

= ⇢1/2�⇢�1/2 � (!2⇢� E), E = !2 > 0.

As mentioned in [24] we have

⇤
q

= ⇢1/2⇤
!,,⇢

⇢1/2 � 1

2
⇢�1

@⇢

@⌫
,

so our assumptions imply ⇤
q

= ⇤
!,,⇢

.
As in the zero energy case of EIT, we have no exceptional points, as long as the potential q

0

is
small enough compared to the energy. This notion will become clearer in the following sections.

1http://campaigns.draeger.com/pulmovista500/en/
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1.3. Complex Geometrics Optics solutions and exceptional points. Rewrite (1.1) and
consider special exponentially growing solutions  (z, ⇣) of

(1.9) (��+ q
0

) ( · , ⇣) = E ( · , ⇣) in R2,

where q
0

is extended to the plane by zero and ⇣ = [⇣
1

⇣
2

]T 2 C2 is a spectral parameter with
=(⇣) 6= 0. The exponential behaviour is then included in the requirement

(1.10) e�i⇣·z (z, ⇣)� 1 2 X,

where X is some Banach space and ⇣ · z = x
1

⇣
1

+ x
2

⇣
2

.
If ⇣ 2 R2, we have a setting of a physical scattering of a particle with momentum ⇣. If =(⇣) 6= 0,

we call the solutions  (x, ⇣) Complex Geometrics Optics (CGO) solutions. For a given potential q
0

and parameter ⇣ there might not exist a unique CGO solution, then we call ⇣ an exceptional point.
A more detailed definition is given later, based on the invertibility of the corresponding integral
operator.

For large |z| we can write exp(i⇣ · z) in place of  (z, ⇣), and the equation (1.9) still has to hold,
giving us

(1.11) ��ei⇣·z = Eei⇣·z ) ⇣ · ⇣ = E.

We can parametrize the subset of parameters ⇣ satisfying (1.11) by

(1.12) � =
⇣
1

+ i⇣
2p

E
, ⇣ =

"
(�+ 1

�

)
p
E

2

( 1
�

� �) i
p
E

2

#
.

We call the parameter � also the spectral parameter. Let � = r exp(i✓). Rewriting (1.12) gives

(1.13) ⇣ =

p
E

2

✓
(r +

1

r
)


cos(✓)
sin(✓)

�
+ i(r � 1

r
)


sin(✓)
� cos(✓)

�◆
.

Assuming E > 0, it is easy to see that r ! 1 implies =(⇣) ! 0, meaning that the CGO solution
goes to the limit of physical scattering. As the spectral parameter � changes over the unit circle, the
CGO solutions will have a jump. This leads to an additional term in the D-bar equation compared
to the zero energy case.

We write

µ(z, ⇣) = e�i⇣·z (z, ⇣)

and call it a CGO solution as well. Depending on whether we use ⇣- or �-notation, in place of
 (z, ⇣) and µ(z, ⇣) we write  (z,�) and µ(z,�) respectively, even if the energy is then omitted; in
the numerical part we only investigate the case E = 1.

The CGO solution µ(z, ⇣) satisfies another di↵erential equation; starting from (1.9) we get

(��+ q
0

� E)ei⇣·zµ(z, ⇣) = 0
ei⇣·z(��� 2i⇣ ·r+ ⇣ · ⇣ + q

0

� E)µ(z, ⇣) = 0
(L

⇣

+ q
0

)µ(z, ⇣) = 0,

where

L
⇣

:= ��� 2i⇣ ·r.

The corresponding Faddeev Green’s function g
⇣

(z) satisfies

(1.14) L
⇣

g
⇣

(z) = �
0

.
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In �-notation we have

(1.15) (L
�

+ q
0

)µ(z,�) = 0,

where

L
�

= �4@
z

@̄
z

� 2i
p
E(�@

z

+
1

�
@̄
z

).(1.16)

The Green’s function of L
�

is denoted as g
�

(z). Define the Lippman-Schwinger equation

(1.17) µ(z,�) = 1� g
�

(z) ⇤ (q
0

(z)µ(z,�)).

If µ solves (1.17), then by applying the operator L
�

we see it also solves (1.15), so it is the CGO
solution of our interest. Define the operators between suitable Banach-spaces X and Y ,

Q : X ! Y, G
�

: Y ! X,

by the equations

(Qf)(z) = q
0

(z)f(z),(1.18)

(G
�

f)(z) = g
�

(z) ⇤ f(z) =
Z

C
g
�

(z � z0)f(z0)dz0.(1.19)

Definition 1.2. Let � 2 C \ {0} and |�| 6= 1. The spectral parameter � is an exceptional
point, if I + G

�

Q is not invertible. If kG
�

QkL(X)

< 1, the operator I + G
�

Q is invertible using the
Neumann series and from (1.17) we can solve µ.

In future studies it would be preferable to define the spaces X and Y as Sobolev spaces in the
spirit of Nachman’s paper [25]. In the zero energy case, assuming the conductivity � 2 W 2,p(R2), 1 <
p < 2 in (1.4), we have X = W 1,p̃(R2), 1/p̃ = 1/p � 1/2 and Y = Lp(R2). In the positive energy
case the same approach to proving these inclusions does not work because of the extra term in
the operator (1.16). Hopefully the computational study presented in this paper paves the way for
further theoretical advances in this regard.

1.3.1. Absence of exceptional points for small potentials. We describe the proof of
Proposition 4.1 in [28]. Let E 2 C, � 2 C \ {0}, then proposition 3.1 in [28] states

(1.20) |g
�

(z)|  ĉ
p|z| |E|1/4 p|�|+ 1/ |�|

,

where

ĉ =
1

4
max

0<r<1

��prY
0

(r)
��+ 1

4⇡
max

0<r<1,0�0⇡

�����
p
r

Z
�0+⇡

�0

eir sin�d�

����� .

We assume q
0

(z) is smooth, real valued, and satisfies

(1.21)
��@m

z

@̄n

z

q
0

(z)
�� < C

mn

(1 + |z|)2+"

, m, n � 0,

where C
mn

and " are positive constants. Related to this, we write

D
✏

=

Z

R2

1

(1 + |x|)2+✏

dx
1

dx
2

= 2⇡
1

1 + ✏

1

✏
.

Consider the operators Q and G
�

from (1.18) and (1.19) as

Q : C(R2) ! C(R2) \ L1(R2)
G
�

: C(R2) \ L1(R2) ! C(R2).
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We have

kQ(f)k
L

1
(R2

)

= kq
0

(z)f(z)k
L

1
(R2

)

 C
00

kfk
L

1
(R2

)

,

and using (1.20)

(1.22) kG
�

(f)k
L

1
(R2

)

 ĉ

|E|1/4p|�|+ 1/ |�|


kfk

L

1 +
4⇡

3
kfk

L

1
(R2

)

�
.

We have

kq
0

fk
L

1
(R2

)

=

Z

C
|q

0

(z)f(z)| dz 
Z

C

C
00

|f(z)|
(1 + |z|)2+✏

dz


Z

C

C
00

kfk
L

1
(R2

)

(1 + |z|)2+✏

dz = D
✏

C
00

kfk
L

1
(R2

)

.

Thus

kG
�

(Qf)kL1
(R2

)

 ĉ

|E|1/4p|�|+ 1/ |�|


kQfk

L

1
(R2

)

+
4⇡

3
kQfk

L

1
(R2

)

�

 ĉ

|E|1/4

D

✏

C
00

kfk
L

1
(R2

)

+
4⇡

3
C

00

kfk
L

1
(R2

)

�

=
C

00

|E|1/4
ĉ(D

✏

+
4⇡

3
) kfk

L

1
(R2

)

.

Using the Neumann series this leads to the norm smallness condition

(1.23) C
00

<
|E|1/4

ĉ(4⇡/3 +D
✏

)
,

giving us kG
�

QkL(X)

< 1 and unique solvability for µ. In other words, if the potential is small
enough compared to the energy according to (1.23), there are no exceptional points. Also if the
term (|�| + 1/ |�|)�1/2 is included, we have no exceptional points if |�| is large enough or close
enough to zero.

1.4. The D-bar equation and the boundary integral equation. In this section we de-
scribe the D-bar method in more detail, all of the following is included in the survey [13] with
di↵erent notation.

Define the di↵erential operators

@
w

=
1

2
(@

w1 � i@
w2)

@̄
w

=
1

2
(@

w1 + i@
w2),

where w = w
1

+ iw
2

. Define the exponential functions

e��

(z) := exp

 
� i

p
E

2
(1 + sgn(E)

1

��
)(sgn(E)z�+ z�)

!
,(1.24)

e
�

(z) := exp

 
i
p
E

2
(1 + sgn(E)

1

��
)(sgn(E)z�+ z�)

!
.(1.25)

Define the non-physical scattering transform by

(1.26) t(�) =

Z

C
e
�

(z)q
0

(z)µ(z,�)dz,
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Assume |�| 6= 1. Then the following D-bar equation holds [12]:

(1.27) @̄
�

µ(z,�) = sgn(|�|2 � 1)
t(�)

4⇡�
e��

(z)µ(z,�).

Define the operators

C : Cf(z,�) = 1

⇡

Z

C

f(z, w)

w � �
dw,(1.28)

T : T f(z,�) = sgn(|�|2 � 1)
t(�)

4⇡�
e��

(z)f(z,�),(1.29)

M : Mf(z,�) =
1

2⇡i

Z

|w|=1

f
+

(z, w)� f�(z, w)

�� w
|dw| ,(1.30)

where f±(z,�) is the limit of f(z,�) when |�| ! 1±.
By applying the Cauchy-Green formula to (1.27) the CGO solution µ satisfies the integral

equation

(1.31) µ(z,�) = 1� (CT �M)µ(z,�).

In the zero energy case we get similar integral equation where the operator M is absent.
Define the operator

(1.32) (S
�

�)(z) :=

Z

@⌦

G
�

(z � y)�(y)ds(y),

where

G
�

(z) = e
i
p

E

2 (�z+

z

�

)g
�

(z).

The CGO solution  (z,�) satisfies the boundary integral equation [27]

(1.33) (I + S
�

(⇤
q

� ⇤�E

)) (·,�)|
@⌦

= e
i
p

E

2 (�z+

1
�

z)|
@⌦

,

where the DN-map ⇤�E

corresponds to the potential q
0

= 0. In conjunction we have

(1.34) t(�) =

Z

@⌦

e
i
p

E

2 (�z+z/�)(⇤
q

� ⇤�E

) (z,�)dz.

The potential can be reconstructed by [26]

(1.35) µ(z,�) = 1 +
µ1
�1

(z)

�
+O(

1

�
)

and

(1.36) q
0

(z) = 2i
p
E@

z

µ1
�1

(z).

Thus we have the necessary steps to reconstruct the potential q
0

from the DN-map ⇤
q

, namely:
1. Solve  (·,�)|

@⌦

from the boundary integral equation (1.33).
2. Compute the scattering transform using (1.34).
3. Choose a reconstruction point z0 and solve µ(z0,�) from (1.31).
4. Compute q

0

(z0) from (1.36).
In section 3 we give a more detailed numerical algorithm for this reconstruction procedure.
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2. Simulation of measurement data. In this section we describe our method for simulating
the measurement ⇤

q

on the unit disk. Choose an integer N > 0 and define a matrix L
q

: C2N+1 !
C2N+1 as follows. Use a truncated orthonormal trigonometric basis for representing functions defined
at the boundary @⌦:

(2.1) �(n)(✓) =
1p
2⇡

ein✓, n = �N, ..., N.

Solve the problem

(2.2) (��+ q)u(n) = 0 in ⌦, u(n) = �(n) on @⌦

for u(n) using Finite Element Method. Define L
q

= [bu(`, n)] by

(2.3) bu(`, n) =
Z

@⌦

@u(n)

@⌫
�(`)ds.

Here ` is the row index and n is the column index. The integration can be computed when the set
[0, 2⇡) is divided into discrete points. The matrix L

q

represents the operator ⇤
q

of (1.2) approxi-
mately.

We add simulated measurement noise by defining

(2.4) L✏

q

:= L
q

+ cG,

where G is a (2N + 1)⇥ (2N + 1) matrix with random entries independently distributed according
to the Gaussian normal density N (0, 1). The constant c > 0 can be adjusted for di↵erent relative
errors kL✏

q

� L
q

k/ kL
q

k, where k·k is the standard matrix norm.
The DN-map ⇤�E

is represented by the matrix L�E

in a similar way, in the boundary value
problem (2.2) we then have q = �E.

3. Numerical implementation of the D-bar method. Choose an integer N
�

> 0 and radii
1 < R

1

< R
2

. For spectral parameters R
1

< |�| < R
2

define a N
�

⇥ N
�

grid. The radius R
1

> 1
is taking out values of � close to the unit circle, since we have problems in computing the Faddeev
Green’s function for these values, as will be seen. The radius R

2

is analog to the truncation radius
of the zero-energy case acting as a regulation parameter. The larger |�| will result in computational
problems, which can be seen from the computed scattering transform.

It turns out we might have a non-symmetric area of usable scattering data in the spectral
parameter space, in contrast to the zero energy case. We put the scattering transform to zero
outside of an ellipse, whose radius in polar coordinates is

(3.1) r(✓) =

p
2abp

(b2 � a2) cos(2✓ � 2�) + a2 + b2
,

where a and b are the semidiameters and the ellipse is rotated by �.

3.1. Solving the boundary integral equation. Fix N
�

= 256, R
1

= 1.01 and R
2

= 15.
For any � in the grid we compute the matrix representation S

�

= [bs(`, n)] of the operator S
�

(1.32)
defined by

(3.2) bs(`, n) =
Z

@⌦

s(n)�(`)ds, s(n) =

Z

@⌦

G
�

(z � y)�(n)(y)ds(y).

Again ` is the row index and n is the column index, and the set [0, 2⇡) is divided into discrete
points. The functions  (z,�)|

@⌦

and exp(i
p
E/2(�z + z/�))|

@⌦

can be expressed as vectors  vec

�

and evec
�

, respectively, using the basis functions �(n). Then, the boundary integral equation (1.33)
is approximated by the equation

(3.3) (I + S
�

(L
q

� L�E

)) vec

�

= evec
�

,
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where I is the correct sized unit matrix. This is easily solved for the vector  vec

�

by inverting the
matrix I + S

�

(L
q

� L�E

).
In computing the matrix S

�

we need a computational method for the Faddeev Green’s function
g
�

(z). This non-trivial method is described in detail in section 4.

3.2. Computing the truncated scattering transform. We use the basis functions to
change the vector (L

q

�L�E

) vec

�

into its function representation, after which we simply use (1.34)
to get t(�) for any � in the grid.

For any potential (small enough so that there are no exceptional points) we have the symmetry

t(1/�) = t(�).

Using this symmetry we can construct the scattering transform inside the unit circle. Depending
on the scattering transform, choose the parameters a, b,� for the ellipse (3.1) inside of which the
numerical computation is usable. Use the truncated scattering transform

t
R

(�) =

8
>>>><

>>>>:

0, |�|  1/r(✓)
t(1/�), 1/r(✓)  |�| < 1/R

1

0, 1/R
1

 |�|  R
1

t(�), R
1

< |�| < r(✓)
0, |�| � r(✓).

3.3. Solving the integral equation. We can solve the periodic version of the integral equa-
tion (1.31) using t

R

and the analog of the solver fully detailed in [19]. The di↵erence to the
traditional method is the operator M which is implemented the following way. We approximate M
by the operator M

✏

defined by

(3.4) M
✏

f(z,�) =
1

2i⇡

Z

|w|=1

f
✏

(z, w)� f�✏

(z, w)

�� w
|dw| ,

where f
✏

(z, w) = f(z, w)||z|=1+✏

. For the integration we divide the set [0, 2⇡) into 128 discrete
points. During the iteration for solving the periodic solution µ

R

(z,�) we interpolate the intermediate
solution µ0

R

(z,�) at the points (1 + ✏) exp(i✓) and (1� ✏) exp(i✓) to get the functions µ0
R,✏

(z,�) and
µ0
R,�✏

(z,�) respectively. Thus the integration in (3.4) can be done and the e↵ect of the operator
M

✏

is added to the process.
Note that at the moment we do not have an analytical proof for the existence of the periodic

solution µ
R

(z,�), nor that it converges to the original CGO solution µ(z,�), nor any error estimates;
however the results of the numerical tests of section 5 suggest that we can prove these things after
suitable Sobolev spaces X,Y of section 1.3 have been established; the solution µ

R

is always found
and it seems to be correct as the reconstructions are correct.

3.4. Reconstructing the potential. Let z
r

be the reconstruction point of our choosing. Let
dz be the finite di↵erence and define the points z

1

= z
r

+dz, z
2

= z
r

�dz, z
3

= z
r

+i·dz, z
4

= z
r

�i·dz.
Using the earlier described methods we can solve the corresponding CGO solutions µi

R

= µ
R

(z
i

,�),
i = 1, 2, 3, 4. We combine the equations (1.35) and (1.36), omit the term O(1/�), use a finite � and
finite di↵erence method for the di↵erentiation to get the approximate reconstruction equation

(3.5) q
0

(z
r

) ⇡ �

✓
µ2

R

� µ1

R

2dz
+ i

µ3

R

� µ4

R

2dz

◆
.

Note that the result is computed in a grid of parameters �; we take the average value over the
indices for which |�| ⇡ a, since these are largest available.
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4. Computation of the Faddeev Green’s function for positive energy. We need a
numerical algorithm for g

�

(z) for any �, |�| > 1 and any point z 2 D(0, 1). We look at the Faddeev
Green’s function with regards to the parameter ⇣ to see useful relations. In the case ⇣ · ⇣ = E = 0
and ⇣I 6= 0 the numerical computation of g

⇣

(z) is presented in [30]. We extend the method for
⇣ · ⇣ = E > 0.

Using the Fourier transform, starting from (1.14), we have

(�4� 2i⇣ ·r)g
⇣

= �
0

F((� @

2

@x1
2 � @

2

@x2
2 � 2i⇣

1

@

@x1
� 2i⇣

2

@

@x2
)g

⇣

) = F(�)

(�(iy
1

)2 � (iy
2

)2 � 2i⇣
1

(iy
1

)� 2i⇣
2

(iy
2

))ĝ
⇣

(y) = 1/(2⇡)

(y · y + 2⇣ · y)ĝ
⇣

(y) = 1/(2⇡)

Using the inverse Fourier transform we get

(4.1) g
⇣

(z) =
1

(2⇡)2

Z

R2

eiy·z

y · y + 2⇣ · y dy.

The following relations can be seen from (4.1).
Lemma 4.1. Let ↵ 2 R \ {0}, R a rotational matrix with det(R) = 1 and R⇣ = R⇣R + iR⇣I .

Then the Faddeev Green’s function g
⇣

(z) satisfies

g
⇣

(↵z) = g
↵⇣

(z)(4.2)

g
⇣

(Rz) = g
R

�1
⇣

(z)(4.3)

g
⇣

✓ �x
1

x
2

�◆
= g2

4 �⇣
1

⇣
2

3

5
(z)(4.4)

g
⇣

✓
x
1

�x
2

�◆
= g2

4 ⇣
1

�⇣
2

3

5
(z)(4.5)

g
⇣

(z) = g
⇣

(�z).(4.6)

Using relations (4.6) and (4.5) we have

g
⇣

(�z) = g
⇣

(z) = g
⇣

✓
x
1

�x
2

�◆
,

which results to a switching relation

(4.7) g
⇣

✓ �x
1

x
2

�◆
= g

⇣

✓
x
1

x
2

�◆

We can use the rotation relation (4.3) to reduce ⇣ to the form

(4.8) ⇣ =


k
1

0

�
+ i


0
k
2

�
, |k

1

| > k
2

> 0.

The strategy for computing g
�

(z) is now the following:
1. Use (1.12) to compute ⇣ from �.
2. Find the rotational matrix R that satisfies R⇣

I

= [0, k
2

]T for some k
2

> 0; then write

g
⇣

(z) = g
R

�1
R⇣

(z) = g
R⇣

(Rz),

where R⇣ is in the reduced form (4.8).
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3. For very small |z| use a method of single layer potential described in section 4.4.
4. Use relation (4.2) to scale points outwards (since small |z| are a problem as will be seen

later) and relation (4.7) to switch from x
1

< 0 to x
1

� 0.
5. Use computational domains to compute g

⇣

(z) for reduced ⇣ and z with x
1

� 0.
It takes some analysis to find suitable computational domains for the last step.

4.1. Analytical integration, part one. Assume we have the reduced ⇣ of (4.8) and the
switched z = x

1

+ ix
2

with x
1

� 0. Write t = y
1

+ k
1

, a = (y
2

+ k
2

i)2 � E and subsequently the
denominator of the integrand in (4.1) as

y · y + 2y · ⇣ = y2
1

+ y2
2

+ 2y
1

k
1

+ 2y
2

k
2

i

= (y
1

+ k
1

)2 + (y
2

+ k
2

i)2 � E

= t2 + a

= (t+ i
p
a)(t� i

p
a)

We define the square root in the same way MATLAB calculates it by default, that is for a complex
number z = r exp(i✓), 0  ✓ < 2⇡, r � 0 the square root is

p
z =

⇢ p
rei✓/2 , 0  ✓  ⇡,p

re�i(2⇡�✓)/2 , ⇡ < ✓ < 2⇡.

This way the square root has the following properties: for any z 2 C we have

<(pz) � 0(4.9) p
z =

p
z.(4.10)

The numerator of the integrand in (4.1) numerator becomes

eiz·y = ei(x1(t�k1)+x2y2)

= ei(x2y2�x1k1)eix1t.

The integral in (4.1) is thus transformed into

Z

R2

eiy·z

y · y + 2⇣ · y dy =

Z 1

�1
ei(x2y2�x1k1)

✓Z 1

�1

eix1t

(t+ i
p
a)(t� i

p
a)

dt

◆
dy

2

.

The integral over the real parameter t is complexified with w = w
R

+ iw
I

2 C and we write

f(w) =
eix1w

(w + i
p
a)(w � i

p
a)

=
eix1wRe�x1wI

(w + i
p
a)(w � i

p
a)

,(4.11)

The poles of the function f(w) are ±i
p
a, where

a = (y
2

+ k
2

i)2 � E = y2
2

� E � k2
2

+ 2y
2

k
2

i.

It follows from our definition of
p· that

• when y
2

> 0, a is in the upper half plane, so i
p
a is in quadrant 2 and �i

p
a in quadrant 4

(note, that k
2

> 0), and
• when y

2

< 0, a is in the lower half plane, so i
p
a is in quadrant 1 and �i

p
a in quadrant 3.

When w
I

, x
1

� 0 we have

|f(w)| ! 0, as |w| ! 1.

We choose the integration path

� = [�R,R] [ {w|w = R exp(i✓), 0  ✓  ⇡},
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so when R ! 1 the pole w = i
p
a is inside the path. Using Residue calculus we get

Z

R⇢C
f(w)dw =

Z

�

f(w)dw = 2⇡i Res
w=i

p
a

f(w)

= 2⇡i lim
w!i

p
a

(w � i
p
a)f(w) = 2⇡i

eix1(i
p
a)

i
p
a+ i

p
a

= ⇡
e�x1

p
a

p
a

Thus

g
⇣

(z) =
1

(2⇡)2

 Z
0

�1
ei(x2y2�x1k1)⇡

e�x1
p
a

p
a

dy
2

+

Z 1

0

ei(x2y2�x1k1)⇡
e�x1

p
a

p
a

dy
2

!

=
1

4⇡
e�ix1k1

 Z 1

0

e�ix2y2
e�x1

p
a

p
a

dy
2

+

Z 1

0

eix2y2
e�x1

p
a

p
a

dy
2

!
.

Because of (4.9) we have

e�ix2y2
e�x1

p
a

p
a

= eix2y2
e�x1

p
a

p
a

,

and so

(4.12) g
⇣

(z) =
1

2⇡
e�ix1k1<

 Z 1

0

eix2t
e�x1

p
a

p
a

dt

!
, x

1

� 0,

where a = (t+ k
2

i)2 � E and we have changed the symbol y
2

to t.

4.1.1. Observations. The starting point in our numerical experiments is the parameter �
with |�| > 1. Using (1.12) we can see, that as |�| ! 1 we have k

2

! 0. When |�| ! 1, we have
|k

1

| , k
2

! 1.
We want to numerically compute the integral of (4.12). We can only compute up to a finite

limit, say from 0 to N . Two problems might occur, the integrand either converges slowly, meaning
we have to take N very large, or the integrand might oscillate fast, meaning we have to take a great
number of integration points in [0, N ].

Taking these considerations into account, we see that problematic situations in using (4.12) arise
when x

2

is large (oscillation), x
1

is small (convergence) and when k
2

is large (oscillation). When x
1

is large we have oscillation, but also better convergence. When � is close to one, then k
2

is close to
zero and the poles ±i

p
a are close to the integration path � causing numerical problems.

This leads to the following enhancements. The di↵erent computational domains will use di↵erent
versions of (4.12).

4.2. Analytical integration, part two. Write

g(w) = eix2w
e�x1

p
a

p
a

, a = (w + k
2

i)2 � E, w = w
1

+ iw
2

2 C,

and consider the complexified integral
R
R+ g(w)dw of (4.12). We have

eix2w = eix2w1e�x2w2 ,

so when x
2

, w
2

� 0 or x
2

, w
2

< 0 we have

(4.13) |g(w)| ! 0 as |w| ! 1.

Note that the numerator exp(�x
1

p
a) converges, since x

1

� 0 and (4.9) holds. The branch points
of g(w) are ±p

E � k
2

i.
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4.2.1. The case x
2

� 0. We choose the integration path

�
1

= [0, R] [ {w|w = R exp(i✓), 0  ✓  ⇡/2} [ {iR(1� t), 0  t  1}.

We have
R
�1

g(w)dw = 0, since g(w) is analytic in the first quadrant. Because of (4.13) we then
have

Z

R+

g(w)dw = �
Z

0

1
g(it)idt =

Z 1

0

e�x2t
e�x1i

p
(t+k2)

2
+E

p
(t+ k

2

)2 + E
dt,

and so

=
1

2⇡
e�ix1k1<

 Z 1

0

e�x2t
e�x1i

p
t

2
+k

2
1+2tk2

p
t2 + k2

1

+ 2tk
2

dt

!
.(4.14)

The integrand in (4.14) converges quickly for large x
2

and has high oscillation for large x
1

.

4.2.2. The case x
2

< 0. The branch point
p
E � k

2

i is avoided by integrating along

�
2

= [0,
p
E + 1] [ ({�iRt : 0  t  1} [ {w = R exp(i✓) :

3

2
⇡  ✓  2⇡}

[{(
p
E + 1)t+ (1� t)R : 0  t  1})

:= P
1

[ (L
1

[ L
2

[ L
3

),

where g(w) is analytical inside the loop L
1

[ L
2

[ L
3

, and |g(w)| ! 0 on the circle L
2

as R ! 1.
Thus

Z

R+

g(w)dw = I
1

+

Z 1

0

g(
p
E + 1� it)(�i)dt,

where

I
1

=
Rp

E+1

0

g(t)dt
R1
0

g(
p
E + 1� it)(�i)dt =

R1
0

ei(
p
E+1)x2ex2t e

�x1
p

b

p
b

(�i)dt,

and b = (
p
E + 1 + (k

2

� t)i)2 � E. In total

g
⇣

(z) =
1

2⇡
e�ix1k1<

 
I
1

� iei(
p
E+1)x2

Z 1

0

ex2t
e�x1

p
b

p
b

dt

!
(4.15)

The integrand in (4.15) converges quickly for large |x
2

| and has high oscillation for large x
1

.

4.3. Choosing upper limits for the integrals. Write gT1
⇣

,gT2
⇣

and gT3
⇣

for the finite integrals
for (4.12),(4.14) and (4.15) respectively. We need to choose the upper limits T

i

, i = 1, 2, 3. There
will be numerical error caused by the neglected part of the integral and the numerical integration
method used. It is decided to simply require

(4.16)
���g

⇣

� gTx

i

⇣

��� < 1E � 8.

The error caused by the numerical integration method is assumed to be not dependant on � or z.
For gTi

⇣

, the integration range [0, T
i

] is divided into M
i

points (with gT3
⇣

there is also the additional
integral I

1

) and the Gaussian quadrature is used. The integers M
i

are chosen large enough so that
for any integer M > M

i

the first 8 digits are not changing in the numerical value of gTi

⇣

(z). In this
test the choice of z has only a minor e↵ect, it is done by choosing the “worst” possible point for
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any given computational domain; for example, for gT1
⇣

(z) using z = [1, 1] the integrand has more
oscillation than with the point z = [1, 0], and thus needs a larger parameter M

1

.
Finding T

i

is a bit cumbersome and is explained in the following. In (4.12) we have the term a
and

��pa
�� =

����
q

(t2 � k2
2

� E) + 2k
2

ti

���� = ((t2 � k2
1

)2 + 4k2
2

t2)1/4

= (t4 � 2t2k2
1

+ k4
1

+ 4k2
2

t2)1/4

� (t4 � 2k2
1

t2)1/4 � (t4 � 1/2t4)1/4

=
t

21/4
,(4.17)

when t � 2 |k
1

|. Then, writing ✓ for the angle
p
a = r exp(i✓),

�����
e�x1

p
a

p
a

����� 
e�x1<(

p
a)

t/21/4
=

e�x1 cos(✓)|pa|
t/21/4

 e�x1 cos(✓)t/2

1/4

t/21/4
.

The angle goes to zero as t ! 1, so cos(✓) ! 1�. Since t � 2 |k
1

| we write c
1

= cos(✓
1

), where the
angle of

p
a|

t=2k1 is ✓
1

, and so we have for the integral

�����

Z 1

T

eix2t
e�x1

p
a

p
a

dt

����� 
Z 1

T

e�x1c1t/2
1/4

t/21/4
dt

= 21/4
Z 1

x1c1T/2

1/4

e�s

s
ds = 21/4E

i

(x
1

c
1

T/21/4).(4.18)

The exponential integral function E
i

can be computed in MATLAB with expint.m. Because of
(4.16) we require that the remainder (4.18) is of the order 2⇡/21/4 · 1E � 8 ⇡ 7.47E � 8. We can
test with MATLAB that E

i

(14) < 6E � 8, so we get

x
1

c
1

T/21/4 = 14

T = 14·21/4
x1c1

.

Finally,

(4.19) T
1

= max{14 · 2
1/4

x
1

c
1

, 2k
1

}.

From (4.14) we easily get

�����

Z 1

T2

e�x2t
e�x1i

p
t

2
+k

2
1+2tk2

p
t2 + k2

1

+ 2tk
2

dt

����� 
Z 1

T2

e�x2t

t
dt

= E
i

(x
2

T
2

).

Thus the upper limit can be computed, as before, from

x
2

T
2

= 14

T
2

=
14

x
2

.(4.20)
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Starting from (4.15) we have
���
p
b
��� = ((k

2

� t)4 + 2(2
p
E + 1)(k

2

� t)2 + (2
p
E + 1)2

+4(
p
E + 1)2(k

2

� t)2)1/4

� ((k
2

� t)4)1/4 = |t� k
2

| .
Using the same argument as preceding (4.18), we write c

2

= cos(✓
2

), where the angle of
p
b|

t=k2 is
✓
2

. Then for T
2

> k
2

we have
�����

Z 1

T3

ex2t
e�x1

p
b

p
b

dt

����� 
Z 1

T3

ex2t�x1c2(t�k2)

t� k
2

dt

= ex2k2

Z 1

(c2x1�x2)(T3�k2)

e�s

s
ds

= ex2k2E
i

((c
2

x
1

� x
2

)(T
3

� k
2

))

 E
i

((c
2

x
1

� x
2

)(T
3

� k
2

)).

As before,

(c
2

x
1

� x
2

)(T
3

� k
2

) = 14

T
3

=
14

c
2

x
1

� x
2

+ k
2

.(4.21)

The use of these choices of upper limits guarantees us
���g

⇣

(z)� gTi

⇣

(z)
��� < 1E � 8, i = 1, 2, 3.

4.4. Use of single-layer potential for small z. For small values of z there is a problem of
slow convergence. We will evade this problem by the use of the single-layer potential for a function
that satisfies the Helmholtz equation.

Write

E = k2, G
⇣

(z) = exp(i⇣ · z)g
⇣

(z), G(z) = iH1

0

(k |z|)/4,
where H1

0

is Hankel’s function of the first type. We have

(�4� k2)G
⇣

(z) = �
z

(�4� k2)G(z) = �
z

,

so

(�4� k2)(G
⇣

�G) = 0.

Write H
⇣

:= G
⇣

� G. For any radius R there exists a single-layer potential p(z), which gives the
value of H

⇣

by the integral

(4.22) H
⇣

(z) =

Z

@D(0,R)

i

4
H1

0

(k |z � y|)p(y)dµ(y) := S(p(·))(z).

Assume we know H
⇣

(z) on the circle @D(0, R), where R is large enough so that we don’t have
the problems of slow convergence. The potential can be recovered by the inverse of the integral
operator, p = S�1(H

⇣

(z)). Then H
⇣

(z) can be calculated using (4.22) for any |x| < R. Finally we
have

(4.23) g
⇣

(z) = e�i⇣·z(H
⇣

(z) +G(z)).

More detailed description of this submethod is given in section 4.5.1
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4.5. Computational domains and the computation of g
⇣

(z). The plane R2 is divided into
computational domains as shown in Figure 1. The disks shown are D

1

= D(0, 0.2), D
2

= D(0, 0.5),
D

3

= D(0, 1), and not in scale is pictured D
4

= D(0, 2.5). Domain 1a is the disk D
1

, domain 1b is
the annulus D

2

\D
1

, domain 1c is the annulus D
3

\D
2

. Domains 2,3,4,5,6 and 7 form the annulus
D

4

\D
3

.
Domains 2 and 3 are divided by the line x

2

= 0.5x
1

, domains 3 and 4 by x
1

= 0, domains 4 and
5 by x

2

= �0.5x
1

, domains 5 and 6 by x
2

= 0.5x
1

, domains 6 and 7 by x
1

= 0 and finally domains
7 and 2 by x

2

= �0.5x
1

.

Fig. 1. Computational domains

For the reduced ⇣ we now have the equations

(4.24) gT1
⇣

(z) =
1

2⇡
e�ix1k1<

 Z
T1

0

eix2t
e�x1

p
t

2
+2tk2i�k

2
1

p
t2 + 2tk

2

i� k2
1

dt

!
,

(4.25) gT2
⇣

(z) =
1

2⇡
e�ix1k1<

 Z
T2

0

e�x2t
e�x1i

p
t

2
+2tk2+k

2
1

p
t2 + 2tk

2

+ k2
1

dt

!
, x

2

� 0,

gT3
⇣

(z) =
1

2⇡
e�ix1k1<

 Z p
E+1

0

eix2t
e�x1

p
t

2
+2tk2i�k

2
1

p
t2 + 2tk

2

i� k2
1

dt(4.26)

�iei(
p
E+1)x2

Z
T3

0

ex2t
e�x1

p
b

p
b

dt

!
, x

2

< 0,
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Fig. 2. The real and imaginary parts of g�(z) in 400⇥ 400 grid of points z, � = 1 + i, E = 1.

where b = (
p
E+1+(k

2

� t)i)2�E. In general the point z lies in one of the computational domains;
• In domain 1a, we use the single-layer potential and the equation (4.23).
• In domain 1b, we scale the point z to the annulus D

4

\D
3

using (4.2),

g
⇣

(z) = g
⇣

(1/5 · 5x) = g
⇣/5

(5x)

(note that the energy E changes via this scaling transformation).
• In domain 1c we do the same as above with the scaling factor 2.
• In domain 2 we use (4.24), since |x

2

| is small and x
1

is large. The upper limit T
1

is computed
from (4.19).

• In domain 3 we use (4.25), since x
1

is small and x
2

> 0 is large. The upper limit T
2

is
computed from (4.20).

• In domain 7 we use (4.26), since x
1

is small, x
2

< 0 and |x
2

| is large. The upper limit T
3

is computed from (4.21).
• In domains 4,5,6 we use (4.7) to switch them to domains 3,2,7 respectively.

A sample of the function g
�

(z) is pictured in Figure 2, in 400 ⇥ 400 -grid of points z, � = 1 + i,
E = 1.

4.5.1. Domain 1a and the single-layer method explained in more detail. We take two
radii R = 1.6 and ✏ = 0.1, and divide [0, 2⇡) into 256 equally distanced points forming the vector
✓ 2 R256. We write

y
1

= Rei✓ 2 C256

y
2

= (R+ ✏)ei✓ 2 C256,

where any complex element y
i

refers to the point [<(y
i

) =(y
i

)]T . Using the computational method
for domains 2,3,4,5,6,7 we calculate g

⇣

(y
1

), and subsequently H
⇣

(y
1

) = G
⇣

(y
1

) � G(y
1

). In order
to avoid singularities in the integral operator (4.22) we aim to calculate the single-layer potential
p(z) on the circle @D(0, R+ ✏). The integral operator can be written as a matrix,

S
p

= d✓(R+ ✏)
i

4

2

6664

H1

0

(
p
E
��y

1

1T � y
2

T

��)
H1

0

(
p
E
��y

2

1T � y
2

T

��)
...
H1

0

(
p
E
��y

256

1T � y
2

T

��)

3

7775
,

where d✓(R+ ✏) comes from the numerical integration on the circle @D(0, R+ ✏), d✓ = 2⇡/256, y
i

is
the i:th component of y

1

and 1 2 R256 is a vector of ones. Now, the equation (4.22) in vector-form
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is

H
⇣

(y
1

) = S
p

p(y
2

).

We use GMRES to compute

p(y
2

) = S�1

p

H
⇣

(y
1

).

Let us be given points z
j

, 1  j  n, in domain 1a. Using the complex form z
j

2 C the matrix form
of the integral operator of (4.22) is

S = d✓(R+ ✏)
i

4

2

6664

H1

0

(
p
E
��z

1

1T � y
2

T

��)
H1

0

(
p
E
��z

2

1T � y
2

T

��)
...
H1

0

(
p
E
��z

n

1T � y
2

T

��)

3

7775
,

and so for the complex vector z = [z
1

z
2

· · · z
n

]T we have

H
⇣

(z) = Sp(y
2

)

and finally

(4.27) g
⇣

(z
j

) = e�i⇣·z
j (H

⇣

(z
j

) +G(z
j

)), 1  j  n.

5. Numerical results. We now fix E = 1 and assume q
0

to be real valued. This section
divides into three parts.

1. We test the algorithm for computing g
�

(z) by computing the CGO solutions via the forward
problem. For any |�| > 1 the corresponding CGO solution µ(z,�) can be computed from
the Lippman-Schwinger equation (1.17) using periodic Sobolev spaces wrapped in a torus
[32]. The numerical solver uses 2M ⇥ 2M grid points of z in which the CGO solution is
presented. By applying a discrete version of the @̄ -equation (1.27) we can validate the
computed CGO solutions.

2. We test the suggested numerical algorithm for computing the potential q
0

for several test
potentials.

3. Using the forward problem, we compute the scattering transform for various radially sym-
metric potentials in search for exceptional points.

5.1. Validation of the numerical Faddeev Green’s function.

5.1.1. Definition of potentials. We use exactly the same potentials as in the numerical part
of [29]. Take radii 0 < r

1

< r
2

< 1 and a polynomial p̃(t) = 1�10t3+15t4�6t5. Set for r
1

 t  r
2

p(t) = p̃(
t� r

1

r
2

� r
1

).

Then, the approximate test function

(5.1) '(|z|) =
8
<

:

1 for 0  |z|  r
1

p(|z|) for r
1

< |z| < r
2

0 for r
2

 |z|  1,

is in C2. The values r
1

= 0.8 and r
2

= 0.9 were used. We consider the potentials

q
(1)

↵

= ↵', ↵ 2 R,
q
(2)

↵

= �

p
�p
�

+ ↵', ↵ 2 R, ,
(5.2)
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Fig. 3. Mesh plot and profile plot of the rotationally symmetric conductivity �(z) = �(|z|).

Fig. 4. Mesh plot and profile plot of the conductivity-type potential q(2)0 (z) = q(2)0 (|z|).

where � 2 C2(⌦),� � c > 0. The mesh plot and the profile plot of the conductivity � are pictured

in Figure 3. The conductivity-type potential q(2)
0

and the approximate test function ' are pictured
similarily in Figures 4 and 5 respectively.

Since k'k
L

1
(R2

)

= 1, using the norm-smallness condition (1.23) to q
(1)

↵

from (5.2), we have no
exceptional points when

|↵| < 1

ĉ(4⇡/3 +D
✏

)
.
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Fig. 5. Mesh plot and profile plot of the test function '(z) = '(|z|).

5.1.2. Verification of the computed CGO solutions. To verify that the CGO solutions
(and subsequently the Faddeev Green’s function) are correct, we test the @̄ -equation (1.27) using
the five-point stencil method with the finite di↵erence d� = 0.0001. Take parameters � from 1.01

to 4.5. Choose the potentials q(2)
0

and q
(2)

35

. For each � = �
1

+ �
2

i, compute
1. The CGO solution µ

0

in the z-grid, corresponding to the parameter �.
2. The CGO solutions µ

1

, µ
2

, µ
3

, µ
4

, µ
5

, µ
6

, µ
7

and µ
8

using �+ d�, �+ 2d�, �� d�, �� 2d�,
�+ d�i, �+ 2d�i, �� d�i and �� 2d�i respectively.

3. The functions e
�

(z) and e��

(z).
4. The potential q

0

(z) and the scattering transform t(�) with µ
0

using (1.26).
5. The derivatives and the @̄ -operation by

@
�1µ =

�µ
2

+ 8µ
1

� 8µ
3

+ µ
4

12d�

@
�2µ =

�µ
6

+ 8µ
5

� 8µ
7

+ µ
8

12d�

@̄µ =
1

2
(@

�1 + i@
�2)µ.

6. The error

(5.3)

����@̄µ� 1

4⇡�
t(�)e��

(z)µ
0

����
L

2
(D(0,1))

.

In Figure 6 we see the error (5.3) as a function of � using q
(2)

0

on the left, q(2)
35

on the right. The
parameter M is increased from 7 to 9. As expected, the error decreases as M increases as it increases
the accuracy of the LS -solver. The smallest values of � were omitted in the pictures, for � = 1.01
the magnitude of the error was between 3 and 13, for the second smallest � it was between 0.003
and 0.02. For values of � near |�| = 1 the numerical method of g

�

(z) has great error due to very
small value of k

2

, see section 4.1.1.
In the reconstruction of the potential we use values as large as |�| ⇡ 30. Not pictured here,

this test was done also for larger values of �, the error seems to be of similar magnitude for any
1.01 < |�| < 30.
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Fig. 6. Errors in the @̄ -equation for two di↵erent potentials and di↵erent accuracies of the LS -solver; horizontal

axis is the spectral parameter �, vertical axis is the norm
���@̄µ� 1

4⇡�
t(�)e

��(z)µ0

���
L2

. On the left we used q(2)0 and

on the right q(2)35 . In red using circles is M = 7, in black using crosses M = 8 and in blue using squares is M = 9.
Two smallest values for � were omitted, for � = 1.01 the magnitude of the error was between 3 and 13, for the
second smallest it was between 0.003 and 0.02.

Fig. 7. Mesh plot and profile plot of the case 1 radial potential q0(z) = q0(|z|).

5.2. Reconstructions of q
0

. We test two radially symmetric potentials (case 1 and case 2)
and one non-symmetric potential (case 3). The mesh plot and the profile plot of the former are
pictured in Figures 7 and 8. The non-symmetric potential is pictured in Figure 9.

For the DN- and S
�

-matrices we use N = 16, see (2.3) and (3.2). We add gaussian noise to
each element with (2.4) so that the relative matrix norm between the original DN-matrix and the
noisy DN-matrix is 0.001%. In the mesh for the FEM we have 1048576 triangles.

For radially symmetric potentials we have t(�) = t(|�|) and =(t(�)) = 0. In Figure 10 we
have the radially symmetric scattering transform computed in three ways; black solid line indicates
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Fig. 8. Mesh plot and profile plot of the case 2 radial potential q0(z) = q0(|z|).

Fig. 9. Mesh plot and 2D plot of the case 3 non-symmetric potential q0(z).

computation directly from (1.17) using the knowledge of q
0

, blue dashed line indicates computation
using the DN-matrices L

q

and L�E

and using (3.3) and (1.34), red dashed line indicates the same
but with noisy DN -matrix L✏

q

. On the left we used case 1 potential of Figure 7 and on the right
we used case 2 potential of Figure 8.

In Figure 11 we have the real and imaginary parts of the scattering transform of case 3 non-
symmetric potential (see Figure 9) computed using the non-noisy DN-matrix L

q

and the noisy
DN-matrix L✏

q

. In the white areas the computation breaks down. The black line indicates the
ellipse used for the truncation t

R

.

We choose R
1

= 1.01 to take care of problems with |�| close to 1. In the operator M
✏

(3.4) we
choose ✏ = 0.011. We solve the periodized version of the integral equation (1.31) in a 2Md ⇥ 2Md

-sized �-grid. In the radial cases we use M
d

= 10, in the non-symmetric case we use M
d

= 9. Recall
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Fig. 10. The radial scattering transform t(|�|) computed in three ways; black solid line indicates computation
directly from (1.17) using the knowledge of q0, blue dashed line indicates computation using the DN-matrices Lq,
L
�E and using equations (3.3) and (1.34), red dashed line indicates the same but with noisy DN-matrix L✏

q.

the formula for an ellipse (3.1). Based on Figures 10 and 11 we choose
• for cases 1 and 2 using the scattering transform computed directly from the potentials,
a = b = 30, � = 0,

• for cases 1 and 2 using the DN-maps without noise a = b = 15, � = 0,
• for cases 1 and 2 using the DN-maps with noise a = b = 8, � = 0,
• for case 3 using the DN-map without noise we choose a = 16, b = 12,� = ⇡/4,
• for case 3 using the DN-map with noise we choose a = 11, b = 11,� = 0.

In Figure 12 we plot the reconstructions of cases 1 and 2 using the three di↵erent scattering
transforms. Black solid line indicates the original potential, black dashed line indicates the recon-
struction using the knowledge of the potential via the scattering transform (1.26), blue dashed line
indicates reconstruction using (3.5) without noise, and red dashed line indicates reconstruction using
(3.5) with added noise.

In Figure 13 we picture the original case 3 potential on the left, the reconstruction using (3.5)
without noise in the middle and the reconstruction using (3.5) with added noise on the right.
Relative errors kq

0

� q
rec

k
L

2
(⌦)

/ kq
0

k
L

2
(⌦)

, where q
rec

is the reconstruction, are given.

5.3. Numerical investigation of exceptional points. Recall the potentials q
(1)

↵

and q
(2)

↵

from (5.2), see Figures 3, 4 and 5. We use 250 discrete points of � and 701 discrete points of ↵,

� = 1.01, .., 4.5, ↵ = �35, ..., 35.

We use M = 8 for the LS -solver leading to 2M ⇥ 2M sized z-grid. In Figure 14 we plot the

radially symmetric and real-valued scattering transform t(�) for the potential q(1)
↵

= ↵'; the x-axis
is the parameter ↵ and the y-axis is the spectral parameter �. In Figure 15 we have the same for

q
(2)

↵

= q
�

+ ↵'. Black color represents very small negative values, and white very large positive
values of t(�). The lines where it abruptly changes between these colors are exceptional circles that
move as the parameter ↵ changes.

In Figure 16 we plot the profile of the scattering transform t(�) as a function of �, using the

potential q(1)
↵

= ↵ , with the values ↵ = �5,�15,�30. The exceptional circles can be seen as
singularities in the profiles.
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Fig. 11. The scattering transform t(�) of case 3, the non-symmetric potential of Figure 9. Real part on the
left, imaginary part on the right, in a � -grid [�15, 15] ⇥ [�15, 15]i. On the top row: the non-noisy DN-matrix Lq

was used. On the bottom row: the noisy DN-matrix L✏
q was used. In the white areas the computation breaks down.

The black line indicates the ellipse used for the truncation tR(�).

Fig. 12. Reconstruction of the potentials q0(|z|). Black solid line: the original potential. Black dashed line:
reconstruction using the knowledge of the potential via the scattering transform (1.26). Blue dashed line: reconstruc-
tion using the new computational method without noise. Red dashed line: reconstruction using the new computational
method with added noise.
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Fig. 13. On the left: the original case 3 potential, see Figure 9. In the middle: reconstruction using
the non-noisy DN-matrix Lq. On the right: reconstruction using the noisy DN-matrix L✏

q. Relative errors
kq0 � qreckL2(⌦) / kq0kL2(⌦) are given.

Fig. 14. Scattering transform for the potential q(1)↵ = ↵'; x-axis is ↵ = �35..35, y-axis is � = 1.01..4.5
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Fig. 15. Scattering transform for the potential q(2)↵ = q� + ↵'; x-axis is ↵ = �35..35, y-axis is � = 1.01..4.5

6. Conclusions. We developed a new numerical method for reconstructing the potential from
boundary measurements in the Gel’fand-Dirichlet problem. The method seems to work as evidenced
by the reconstructions, even if the theory is still missing details. The use of an ellipse as a truncation
shape is obvious from the scattering images, but this unsymmetry in the scattering transform is a
new phenomenon compared to the zero-energy case. During the numerical testing it was also noted
that the operator M

✏

had only minor e↵ect in the reconstructions in the test potentials used.
The numerical method for g

�

is not accurate near |�| = 1 which resulted in high errors in the
verification test of Figure 6 using the @̄ -equation.

The numerical evidence show no exceptional points for small ↵ nor for large �, which was
expected from the result of section 1.3.1. Also according to our tests there are no exceptional
points for positive ↵. For negative ↵, there are either one or two exceptional circles in the range

of parameters investigated. The two types of potentials q
(1)

↵

and q
(2)

↵

have little di↵erence in their
exceptional points, mainly in the second exceptional circle forming at ↵ = �20 as ↵ is decreased
from zero.
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