
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2013) pp. 139-156.

SUPERFAST STRUCTURED SELECTED INVERSION FOR LARGE SPARSE
MATRICES

JIANLIN XIA⇤, YUANZHE XI† , STEPHEN CAULEY‡ , AND VENKATARAMANAN BALAKRISHNAN§

Abstract. We propose a structured selected inversion method for extracting the diagonal (and certain o↵-
diagonal) blocks of the inverse of a sparse symmetric matrix A, using the multifrontal method and rank structures. A
structured multifrontal LDL factorization is computed for A with a forward traversal of the assembly tree, which yields
a sequence of data-sparse factors. The factors are used in a backward traversal of the tree for the structured inversion.
We show that, when A arises from the discretization of certain PDEs, the intermediate matrices in the inversion can
be approximated by hierarchically semiseparable (HSS) or low-rank matrices. Due to the data sparsity, the inversion
has nearly O(n) complexity for some 2D and 3D discretized matrices (and is thus said to be superfast), after about
O(n) and O(n4/3) flops, respectively, for the structured factorization, where n is the size of the matrix. The memory
requirement is also about O(n). In comparison, existing inversion methods cost O(n1.5) in 2D and O(n2) in 3D for
both the factorization and the selected inversion of the matrix, with O(n logn) and O(n4/3) memory, respectively.
Numerical tests on various PDEs and sparse matrices from a sparse matrix collection are done to demonstrate the
performance.

Key words. Structured selected inversion, structured multifrontal method, data sparsity, low-rank property,
linear complexity, reduced matrix

AMS subject classifications. 15A23, 65F05, 65F30, 65F50

1. Introduction. Extracting selected entries of the inverse of a sparse matrix, often called
selected inversion, is critical in many scientific computing problems. Examples include uncertainty
quantification in risk analysis [2], electronic structure calculations within the density functional
theory framework [14], and the quantum mechanical modeling of nanotransistors and the atomistic
level simulation of silicon nanowires [4]. In these examples, the diagonal entries of the matrix inverse
are needed. In some other applications such as condition estimations [3], certain o↵-diagonal entries
are also desired. The aim of this paper is to present an e�cient method for computing the diagonal
(denoted diag(A�1)) as well as the diagonal blocks of A�1 for an n⇥n large sparse symmetric matrix
A. The method also produces some o↵-diagonal blocks of A�1, and can be modified to compute the
o↵-diagonal entries. For convenience, we usually just mention diag(A�1).

If A is also diagonally dominant and/or positive definite, A�1 may have many small entries.
Based on this property, a probing method is proposed in [18]. It exploits the pattern of the sparsified
matrix inverse together with some standard graph theories, and computes diag(A�1) by solving
a sequence of linear systems with a preconditioned Krylov subspace algorithm. Later, several
approaches are proposed for more general matrices. The fast inverse with nested dissection (FIND)
method in [11] and the selected inversion method in [13] use domain decomposition and compute
some hierarchical Schur complements of the interior points for each subdomain. This is followed
by the extraction of the diagonal entries in a top-down pass. The Selinv method in [14, 15] uses a
supernode left-looking LDL factorization of A to improve the e�ciency. The method in [1] focuses
on the computation of a subset of A�1 by accessing only part of the factors where the LU or LDL
factorization of A is held in out-of-core storage. The methods in [1, 11, 13, 15] all belong to the class
of direct methods. For iterative methods, a Lanczos type algorithm is first used in [20]. Later, a
divide-and-conquer (DC) method and a domain decomposition (DD) method are presented in [19].
The DC method assumes that the matrix can be decomposed into a 2 ⇥ 2 block-diagonal matrix
and a low-rank matrix recursively, where the decomposed problem is solved and corrected by the

⇤Department of Mathematics, Purdue University, West Lafayette, IN 47907, xiaj@math.purdue.edu. The research
of Jianlin Xia was supported in part by NSF grants DMS-1115572 and CHE-0957024.

†Department of Mathematics, Purdue University, West Lafayette, IN 47907, yxi@math.purdue.edu.
‡Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital,

Harvard University, Charlestown, MA 02129, stcauley@nmr.mgh.harvard.edu.
§School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907,

ragu@ecn.purdue.edu.

139

140 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

Sherman-Morrison-Woodbury formula at each recursion level. The DD method solves each local
subdomain problem and then modifies the result by a global Schur complement. Both methods use
iterative solvers and sparse approximation techniques to speed up the computations.

Just like Selinv in [14, 15], our approach is also a direct method. We incorporate various
sparse and structured matrix techniques, especially the multifrontal method and a rank-structured
inversion to gain significant e�ciency and storage benefits, as outlined below.

(1) General sparse matrices. Our method is applicable to symmetric discretized matrices on
both 2D and 3D domains, as well as general symmetric sparse matrices. As in [22], the nested
dissection ordering [8] is applied to the mesh or adjacency graph by calling some graph partitioning
tools [9, 16]. Thus, our method does not rely on the special shape of the computational domain,
and is more applicable than the methods in [13, 19].

(2) Structured multifrontal method. The multifrontal method [7] converts the overall sparse
matrix factorization into a sequence of operations on some intermediate dense matrices, called frontal
matrices. Its benefits includes a hierarchical tree structure (called assembly tree), nice data locality,
and good parallelism. Here, we perform the LDL factorization stage of A with the structured
multifrontal method in [22], which further approximates the frontal matrices in the multifrontal
method by hierarchically semiseparable (HSS) forms. This converts the local dense operations into
a series of structured or data-sparse matrix operations. For the convenience of our later inversion,
we prove a fast Schur complement computation formula in Theorem 3.1 based on an HSS inversion
procedure in [10], using a concept similar to the reduced HSS matrix in [22] and the idea that certain
common basis matrices are shared between some diagonal and o↵-diagonal blocks.

(3) Nearly linear complexity structured selected inversion. After the structured multifrontal
factorization, our factors are represented by a sequence of HSS or low-rank forms. The inversion
procedure is performed with these data-sparse forms instead of dense ones. This significantly im-
proves the e�ciency and storage. We also derive a formula to quickly apply the inverses of the
diagonal blocks to some o↵-diagonal blocks. See Theorem 3.2. The cost of the inversion algorithm
is analyzed with a complexity optimization strategy in [22, 24] and a rank relaxation idea in [22].
That is, for certain 2D and 3D discretized problems where the frontal matrices satisfy certain rank
patterns [21], we can optimize the total inversion complexity by choosing a switching level in the
assembly tree (to shift from dense local factorizations to HSS ones). For these 2D and 3D matrices
of order n, the inversion costs only about O(n) flops, after the LDL factorization costs of about
O(n) and O(n4/3), respectively. On the contrary, the methods in [11, 13, 14, 15] need O(n1.5) and
O(n2) flops for 2D and 3D, respectively, for both the LDL factorization and the selected inversion.
Due to this reason, we say our method is superfast, following the terminology in [24] and in Toeplitz
solutions. Similarly, our storage requirement is only about O(n) for these problems. The methods
in [11, 13, 14, 15] need O(n4/3) storage. Due to the data sparsity, our method has the potential to
be extended to the extraction of the o↵-diagonal entries of A�1.

The outline of the presentation is as follows. Section 2 briefly reviews the structured multifrontal
factorization with HSS techniques. Section 3 describes the structured selected inversion algorithm
in detail. We provide the complexity optimization in Section 4. The numerical results for various
test problems are shown in Section 5. The following notation is used:

• F |I⇥J represents a submatrix of F specified by the row index set I and the column index
set J, and F |I consists of a subset of the rows of F specified by the row index set I;

• T (or T) denotes a full binary tree with its root root(T) (or root(T)), and sib(i) and par(i)
denote the sibling and parent of a node i in T , respectively.

2. Structured sparse block LDL factorization. We first briefly review the structured
multifrontal methods in [22, 24] and also a block LDL variation.

2.1. HSS matrix and algorithms. The structured multifrontal methods incorporates HSS
structures into the multifrontal method. An N ⇥ N HSS matrix F with a corresponding HSS
tree T looks like the following [5, 21, 25]. Let each node i of a full binary tree T be associated
with a consecutive index set t

i

⇢ I ⌘ {1 : N}, which satisfies t
i

[t
j

= t
p

, t
i

\ t
j

= ; for

SUPERFAST STRUCTUERD SELECTED INVERSION 141

j = sib(i), p = par(i), and t
root(T)

= I. An HSS matrix F is recursively defined by

F ⌘ D
root(T)

, D
i

= F |
ti⇥ti =

✓
D

c

1

U
c

1

B
c

1

V T

c

2

U
c

2

B
c

2

V T

c

1

D
c

2

◆
,

where c
1

and c
2

are the children of a non-leaf node i, and

(2.1) U
i

=

✓
U

c

1

U
c

2

◆✓
R

c

1

R
c

2

◆
, V

i

=

✓
V

c

1

V
c

2

◆✓
W

c

1

W
c

2

◆
.

Here, D
i

, U
i

, R
i

, etc. are called the (HSS) generators associated with node i. The HSS rank of F is
defined to be

r = max
i: node of T

(max(rank F |
ti⇥(I\ti)

, rank F |
(I\ti)⇥ti

)),

where F |
ti⇥(I\ti)

and F |
(I\ti)⇥ti

are called the ith HSS block row and column, respectively. An
illustration can be found in Figure 1 later.

If r is small, we can quickly perform various HSS operations. For example, the ULV-type
algorithms [5, 25] can factorize F in O(r2N) flops, so that the solution of the linear system costs
only O(rN) flops. Similarly, the multiplication and the explicit inversion of HSS matrices [5, 10]
can also be done in O(r2N) flops. Recently, HSS techniques are embedded into sparse matrix
computations and lead to some superfast linear solvers and e�cient preconditioners [23, 22, 24].
The sparse factorization algorithm described in the next subsection is an example.

2.2. Structured multifrontal block LDL factorization. The method in [22, 24] can be
immediately modified to compute an approximate multifrontal LDL factorization for a symmetric
sparse matrix A

A ⇡ LDLT ,

which is used in our selected inversion algorithm later. This is briefly described as follows. For
simplicity, we write such approximations as equalities and do not distinguish between a matrix and
its structured approximation.

A is first reordered with nested dissection to reduce fill-in [8]. The variables or mesh points
are grouped into subgroups, called separators. That is, the separators recursively divide the mesh
or adjacency graph into smaller ones. As in [22], we use some graph partitioning tools [9, 16] to
partition the graph, so that our method is not restricted to any particular shape of the domain or
structure of the mesh.

The multifrontal method [7] performs the sparse factorization via some local factorizations on
a series of dense matrices called frontal matrices and update matrices. A tree structured called
assembly tree is then formed to organize the elimination of the separators. Label the nodes of the
assembly tree T (and the separators) with i = 1, 2, . . . , root(T). Let Ni be the set of ancestors
of a node i which are connected to i (via the separators), and ti be the index set of mesh points
corresponding to i.

If i is a leaf of T , define a frontal matrix

Fi ⌘ F0

i =

✓
A|

ti⇥ti (A|ti⇥ti)
T

A|ti⇥ti 0

◆
,

If i is a non-leaf node with children c
1

and c
2

, then the frontal matrix Fi is formed by an assembly
operation called extend-add [7]:

(2.2) Fi = F0

i $l Uc
1

$l Uc
2

,

where the operator $l means that the matrices are permuted and extended to match the overall
index set.

SUPERFAST STRUCTUERD SELECTED INVERSION 143

Algorithm 1 Structured multifrontal LDL factorization for A (a variation of the method in [22])

1: procedure SMF

2: for node/separator i from 1 to root (T) � 1 do
3: if i is a leaf of T then
4: Fi = F0

i . Initial frontal matrix
5: end if
6: if i is at level l > l

s

of T then . Exact factorization below l
s

7: Compute F�1

i,i . Exact Inversion

8: LNi,i = FNi,iF
�1

i,i

9: Ui = FNi,Ni � LNi,iF
T

Ni,i
. Exact update matrix

10: else . Structured factorization above l
s

11: Compute an HSS approximation to Fi

12: Compute the HSS generators for F�1

i,i
13: Compute Ui with (2.5) and Theorem 3.1
14: end if
15: if i is a left node then
16: Push Ui onto a stack . For later extend-add operation
17: else . Assembly of Fp

18: Pop Uj from the stack for j = sib (i)
19: Fp = F0

p$l Uj$l Ui . Exact extend-add operation
20: end if
21: end for
22: Compute an HSS approximation to F

root(T)

23: end procedure

Otherwise, let

(3.2) D̄
i

=

✓
D̂

c

1

B
c

1

BT

c

1

D̂
c

2

◆
, Ū

i

=

✓
R

c

1

R
c

2

◆
,

where c
1

and c
2

are the children of i. Then compute (3.1) and

✓
R̃

c

1

R̃
c

2

◆
= D̄�1

i

✓
R

c

1

R
c

2

◆
D̂

i

.

For the node k = root(T), only compute

G
k

⌘ D̄�1

k

.

In a top-down traversal of T , if i is a non-leaf node with children c
1

and c
2

, let Ĝ
i

⌘ G
i

.
Partition Ĝ

i

conformably following (3.2) as

Ĝ
i

=

✓
Ĝ

i;1,1

Ĝ
i;1,2

Ĝ
i;2,1

Ĝ
i;2,2

◆
.

Then let

B̃
c

1

= Ĝ
i;1,2

.

Also, if par(i) 6= k, let

Ĝ
i

= G
i

+

✓
R̃

c

1

R̃
c

2

◆
Ĝ

par(i);1,1

�
R̃T

c

1

R̃T

c

2

�
.

144 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

Repeat these steps until all non-leaf nodes are visited. Then for each leaf i, set

D̃
i

⌘ Ĝ
i

.

Then it can be verified that D̃
i

, Ũ
i

, R̃
i

, B̃
i

are the HSS generators of F�1. This HSS inversion
method is used when we computed the diagonal blocks of the inverse of A.

In addition, the information computed in this inversion process can also benefit the computation
of the update matrix Ui in (2.5), as well as some additional computations later in the selected
inversion. In fact, to compute Ui, instead of using the HSS form of F�1

i,i directly, we can use an fast
way similar to the idea of reduced matrices in [22]. See Theorem 3.1.

Theorem 3.1. Let the HSS generators of Fi be D
i

, U
i

, etc. Then

UT

k

F�1

i,i U
k

= ŪT

k

D̄�1

k

Ū
k

,

where D̄
k

is given in (3.2) with i = k.
Proof. We prove this theorem by induction on the height h of the HSS tree T associated with

Fi. If h = 3, then

F�1

i,i = diag(G
1

, G
2

) + diag(Ũ
1

, Ũ
2

)G
3

diag(ŨT

1

, ŨT

2

).

It is obvious that

UT

3

F�1

i,i U
3

=
�

RT

1

RT

2

�
diag(UT

1

G
1

U
1

, UT

2

G
2

U
2

)

✓
R

1

R
2

◆

+
�

RT

1

RT

2

�
diag(UT

1

Ũ
1

, UT

2

Ũ
2

)G
3

diag(ŨT

1

U
1

, ŨT

2

U
2

)

✓
R

1

R
2

◆

=
�

RT

1

RT

2

�
G

3

✓
R

1

R
2

◆

=ŪT

3

D̄�1

3

Ū
3

.

Then assume that the theorem is true for any HSS tree with height 3, 4, . . . , h � 1. Consider

Fi,i = diag(D
k

1

, D
k

2

) + diag(U
k

1

, U
k

2

)

✓
B

k

1

BT

k

1

◆
diag(UT

k

1

, UT

k

2

),

where k
1

and k
2

are the children of k = root(T). According to a variation of the Sherman-Morrison-
Woodbury formula in [10], we obtain

F�1

i,i = diag(D�1

k

1

, D�1

k

2

) � diag(D�1

k

1

, D�1

k

2

) diag(U
k

1

, U
k

2

)D�1

k

⇥ diag(UT

k

1

, UT

k

2

) diag(D�1

k

1

, D�1

k

2

)

+ diag(D�1

k

1

, D�1

k

2

) diag(U
k

1

, U
k

2

)D�1

k

✓
B

k

1

BT

k

1

◆
+ D�1

k

��1

D�1

k

⇥ diag(UT

k

1

, UT

k

2

) diag(D�1

k

1

, D�1

k

2

),

where

D
k

= diag(UT

k

1

D�1

k

1

U
k

1

, UT

k

2

D�1

k

2

U
k

2

).

Clearly,

UT

k

F�1

i,i U
k

=
�

RT

k

1

RT

k

2

�
D

k

✓
R

k

1

R
k

2

◆
�

�
RT

k

1

RT

k

2

�
D

k

D�1

k

D
k

✓
R

k

1

R
k

2

◆

+
�

RT

k

1

RT

k

2

�
D

k

D�1

k

✓
B

k

1

BT

k

1

◆
+ D�1

k

��1

D�1

k

D
k

✓
R

k

1

R
k

2

◆

=
�

RT

k

1

RT

k

2

� ✓
(UT

k

1

D�1

k

1

U
k

1

)�1 B
k

1

BT

k

1

(UT

k

2

D�1

k

2

U
k

2

)�1

◆�1

✓
R

k

1

R
k

2

◆
.

146 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

Then

C =

0

@
I �LT

31

I �LT

32

I

1

A

0

@
A�1

11

A�1

22

F�1

3

1

A

0

@
I

I
�L

31

�L
32

I

1

A

=

0

@

✓
A�1

11

A�1

22

◆
+

✓
�LT

31

�LT

32

◆
F�1

3

�
�L

31

�L
32

� ✓
�LT

31

F�1

3

�LT

32

F�1

3

◆

�
�F�1

3

L
31

�F�1

3

L
32

�
F�1

3

1

A .

Thus,

diag (C) =
�

A�1

11

+ LT

31

F�1

3

L
31

A�1

22

+ LT

32

F�1

3

L
32

D�1

33

�
(3.3)

=
�

A�1

11

+ LT

31

C
31

A�1

22

+ LT

32

C
32

D�1

33

�
.

This means that diag (C) is determined by the nonzero structure of the L factor from the LDL
factorization [13]. The idea can then be recursively applied.

In our proposed new method, both the factorization and the inversion stages are performed in
structured forms, so that the appropriate blocks are approximated by either HSS or low-rank forms.

3.3. General scheme. Our method for the sparse selected inversion includes two stages, a
structured multifrontal LDL factorization stage as in Section 2.2, and a structured inversion stage.
In the first stage, we traverse the assembly tree T in a postorder, and in the second stage, we
traverse T in a reverse postorder. Let

C ⌘ A�1.

If i = k ⌘ root (T), let

Ck,k = F�1

k .

The diagonal entries of Ck,k can be obtained directly from the D̃
i

generators of the HSS form of
F�1

k .
If i < k, first update LNi,i to obtain CNi,i, which is lower triangular part in C. According to

(2.3), LNi,i is approximated by a low-rank form:

(3.4) LNi,i = FNi,iF
�1

i,i = U
k+1

BT

k

UT

k

F�1

i,i ,

where U
k

as in (2.1) is recursively available. Here, we need to compute UT

k

F�1

i,i , which can be quickly
obtained like in Theorem 3.1.

Theorem 3.2. With the same notation as in Theorem 3.1, we have

PT

k

⌘ UT

k

F�1

i,i = Ū
k

D̄�1

k

diag(ŨT

k

1

, ŨT

k

2

) =
�

RT

k

2

B̃T

k

1

ŨT

k

1

RT

k

1

B̃
k

1

ŨT

k

2

�
.

Proof. We still prove this corollary by induction on the height h of the HSS tree T for Fi. It is
clear that the claim is true when h = 3. Suppose it is also true for all the HSS trees with heights
3, 4, . . . , h � 1.

Based on the results in the proof of Theorem 3.1, it can be verified that

UT

k

F�1

i,i = ŪT

k

D̄�1

k

diag(D̂
k

1

UT

k

1

D�1

k

1

, D̂
k

2

UT

k

2

D�1

k

2

).

By induction, we know

UT

ki
D�1

ki
= ŪT

ki
D̄�1

ki
diag(ŨT

ki,1
, ŨT

ki,2
),

where k
i,1

and k
i,2

are the children of k
i

for i = 1, 2.

SUPERFAST STRUCTUERD SELECTED INVERSION 149

Algorithm 2 Compute CNi,i in Step 5 and 8 of Algorithm 3

1: procedure
2: if node/separator i is at level l < l

s

of T then . low rank form of CNi,i

3: Partition U
k+1

into |Ni| pieces
4: for s from 1 to |Ni| do
5: Compute P

k+1

= C̃Ni,NiUk+1

as in (3.6) to (3.8)
6: Store CNi,i in the form of P

k+1

BT

k

PT

k

7: end for
8: else . dense block CNi,i

9: Partition LNi,i into |Ni| pieces
10: for s from 1 to |Ni| do
11: if node/separator js in Ni is at level l < l

s

of T then
12: Treat LNi,i as U

k+1

and compute (3.6) to (3.8)
13: else . dense matrix operation
14: Treat C̃js,js and C̃Njs ,jsas dense block and compute (3.6) to (3.8)
15: end if
16: end for
17: store CNi,i ⌘ P

k+1

18: end if
19: end procedure

Clearly, CNi,i is still in a low-rank form

(3.9) CNi,i = P
k+1

BT

k

PT

k

.

Finally, we compute

(3.10) Ci,i = F�1

i,i � LT

Ni,iCNi,i.

According to (3.4) and (3.9),

Ci,i = F�1

i,i � P
k

(B
k

UT

k+1

P
k+1

BT

k

)PT

k

.

Here, we simply compute the matrix multiplication inside the parenthesis

(3.11) ⇥ = B
k

UT

k+1

P
k+1

BT

k

,

and store Ci,i in the form of

(3.12) Ci,i = F�1

i,i � P
k

⇥PT

k

.

Since F�1

i,i is an HSS matrix, the diagonal entries of Ci,i can be obtained by subtracting the diagonal

entries of P
k

⇥PT

k

from those of the generators D̃ associated with F�1

i,i .

150 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

Algorithm 3 Structured inversion for extracting the diagonal blocks of A�1

1: procedure SINV

2: Compute Ck,k = F�1

k for k ⌘ root (T)
3: for node/separator i from root (T) � 1 to 1 do
4: if i is at level l < l

s

of T then . Low-rank form of LNi,i above l
s

5: Compute CNi,i with (3.9) and Corollary 3.2 . Low-rank CNi,i and Ci,i

6: Compute Ci,i with (3.12)
7: else . Dense matrix LNi,i below l

s

8: Compute CNi,i = C̃Ni,NiLNi,i . Dense matrix CNi,i and Ci,i

9: Compute Ci,i = F�1

i,i � LT

Ni,i
CNi,i

10: end if
11: end for
12: end procedure

4. Complexity optimization for the structured inversion. For the purpose of our later
comparison, we restate the complexity and memory usage for algorithms in [11, 13, 14, 15] as well
the inversion algorithm based on the multifrontal method (without structured operations). Assume
A is discretized one a 2D N ⇥ N mesh (n = N2) or a 3D N ⇥ N ⇥ N mesh (n = N3). Then the
factorization cost ⇠

fact

, selected inversion cost ⇠
inv

, and storage �
mem

are reported in Table 4.1.
Then we turn to the analysis for our structured method, which is similar to the one for the

structured linear solvers in [22, 24]. We first present the case when the HSS rank in the frontal
matrices is bounded by a constant r, and then show some similar results by letting r grow under
some assumptions.

Lemma 4.1. Suppose our algorithm is applied to an order n matrix A discretized on a 2D N ⇥N
mesh (n = N2) or a 3D N ⇥ N ⇥ N mesh (n = N3), and the HSS ranks of the frontal matrices in
the multifrontal method are bounded by a constant r. If we choose the switching level ls = O(log N)
so that the inversion costs before and after ls are the same, then after about O(n) flops in 2D and
about O(n4/3) flops in 3D for the structured factorization, the minimum structured inversion cost
is about O(n), and the memory requirement is about O(n). The details are given in Table 4.2.

Proof. The proof is similar to those in [22, 24], except that here we optimize the inversion costs.
The total number of levels in T is l

max

= O(log N). For the 2D case, the factorization and inverse

Table 4.1
Factorization cost ⇠

fact

, inverse cost ⇠
inv

and storage �
mem

of the exact method for extracting the diagonal
entries of a discretized matrix A on a regular mesh, as in [11, 13, 14, 15].

⇠
fact

⇠
inv

�
mem

2D O(n1.5) O(n1.5) O(n log n)
3D O(n2) O(n2) O(n4/3)

Table 4.2
Factorization cost ⇠

fact

, inverse cost ⇠
inv

and storage �
mem

of the structured method for extracting the diagonal
entries of a discretized matrix A on a regular mesh, r is the maximal HSS rank in all frontal matrices.

⇠
fact

⇠
inv

�
mem

2D O(rn log n) O(rn) O(n log r) + O(n log log n)
3D O(rn4/3) O(r3/2n) O(r1/2n)

SUPERFAST STRUCTUERD SELECTED INVERSION 151

costs satisfy the following estimations, respectively:

⇠
fact

=
l
maxX

l=ls+1

4lO

 ✓
N

2l

◆
3

!

| {z }
before the switching level

+
lsX

l=0

4lO

r

✓
N

2l

◆
2

!

| {z }
after the switching level

= O

✓
N3

2ls

◆
+ O(rN2ls),(4.1)

⇠
inv

=
l
maxX

l=ls+1

4lO

 ✓
N

2l

◆
3

!

| {z }
before the switching level

+
lsX

l=0

4lO

✓
r2

✓
N

2l

◆◆

| {z }
after the switching level

= O

✓
N3

2ls

◆
+ O(r2N2ls).(4.2)

We minimize the inverse cost by letting

O

✓
N3

2ls

◆
= O(r2N2ls),

and obtain the optimal condition

2ls = O

✓
N

r

◆
, or l

s

= l
max

� O(log r).

Thus, the minimal inverse cost is ⇠
inv

= O(rn) and factorization cost is ⇠
fact

= O(rn log n) for the
2D case.

Similarly, the estimated costs for 3D problems are

⇠
fact

=
l
maxX

l=ls+1

8lO

 ✓
N

2l

◆
6

!
+

lsX

l=0

8lO

r

✓
N

2l

◆
4

!
= O

✓
N6

8ls

◆
+ O(rN4),(4.3)

⇠
inv

=
l
maxX

l=ls+1

8lO

 ✓
N

2l

◆
6

!
+

lsX

l=0

8lO

✓
r2(

N

2l
)2
◆

= O

✓
N6

8ls

◆
+ O(r2N22ls).(4.4)

Here, the optimality condition is still obtained by minimizing ⇠
inv

:

2ls = O(N/r1/2).

The storage requirement is the same as that in [22] and the results are summarized in the fourth
column of Table 4.2.

According to Lemma 4.1, if the HSS rank r for each frontal matrix is small, our inversion
algorithm is much faster than the exact method (as in Table 4.1), and has nearly linear complexity
for both 2D and 3D cases. However, in practice, the HSS ranks of the frontal matrices are not
bounded by a small constant, or depend on the mesh size N in the discretized PDE problems. For
example, researchers have observed that the HSS rank in the 3D Helmholtz equation is bounded
by O(N) [6]. Recently, a rank relaxation idea in [21] studies the o↵-diagonal ranks at each level
l of the HSS tree T , called rank pattern r

l

, and shows that even though r
l

varies for di↵erent l,
the total complexity can still be satisfactory. This idea is then further extended to a sparse rank
relaxation idea in [22]. Based on these, we have the performance results of our method for more
general problems.

Theorem 4.2. Use the same notation as in Lemma 4.1, and assume the maximum rank at
level l of the HSS tree for any frontal matrix follows the rank pattern r

l

in the first column of Table
4.4. If we choose the switching level ls = O(log N) such that the inversion costs before and after
ls are equal, then after about O(n) flops in 2D and about O(n4/3) flops in 3D for the structured
factorization, the minimum structured inversion cost is about O(n), and the memory requirement is
about O(n). The details are given in Tables 4.3 and 4.4.

Note that our selected inversion costs about O(n) flops for all these cases. On the other hand,
the counts in Table 4.1 for [11, 13, 14, 15] are significantly higher, which are O(n1.5) in 2D and
O(n2) in 3D.

152 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

Table 4.3
Cost ⇠

inv

and storage �
mem

of the structured method for extracting the diagonal entries of a discretized matrix
A of order n on a 2D n1/2 ⇥ n1/2 mesh, where p 2 N, ↵ > 0, and r

l

is the rank pattern for the frontal matrices as
in [22].

r
l

r = max r
l

⇠
inv

�
mem

O(1) O(1)
O(n)

O(n log log n)

O((log N
l

)p) O((log N)p)

O(N1/p

l

)
p > 3 O(N1/p)
p = 3 O(N1/3) O(n log n)
p = 2 O(N1/2)

O(n)

O(↵l

max

�lr
0

)

↵<↵<21/3 < O(N1/3)
↵ = 21/3 O(N1/3) O(n log n)
21/3 <↵<21/2 < O(N1/2)

O(n)
↵ = 21/2 O(N1/2)

Table 4.4
Cost ⇠

inv

and storage �
mem

of the structured method for extracting the diagonal entries of a discretized matrix
A of order n on a 3D n1/3 ⇥ n1/3 ⇥ n1/3 mesh, where p 2 N, ↵ > 0, and r

l

is the rank pattern for the frontal
matrices as in [22].

r
l

r = max r
l

⇠
inv

�
mem

O(1) O(1)
O(n) O(n)O((log

2

N
l

)p) O((log
2

N)p)

O(N1/p

l

), p > 3 O(N1/p)

O(N1/p

l

)
p = 3 O(N1/3) O(n log n) O(n log1/2 n)
p = 2 O(N1/2) O(n log n) O(n log n)

O(↵l

max

�lr
0

)
↵ < 21/3 < O(N1/3) O(n) O(n log1/2 n)

↵ = 21/3 O(N1/3) O(n log n) O(n log1/2 n)
21/3 <↵<21/2 < O(N1/2) O(n) O(n log n)
↵ = 21/2 O(N1/2) O(n log n) O(n log n)

5. Numerical experiments. In this section, we test our algorithms on two model problems
as well as various matrices from the University of Florida Sparse Matrix Collection. The algorithms
are implemented in Matlab and carried out on a macbook pro with a 2.3GHz Intel quad-core i7
processor and 8GB DDR3 memory. The following notation is used through out this section.

• MF: selected inversion with the exact multifrontal method.
• NEW: new structured selected inversion.
• x: vector formed by the diagonal entries of A�1 computed by MF.
• x̃: vector formed by the diagonal entries of A�1 computed by NEW.
• e = kx�x̃k

2

kxk
2

: relative accuracy.
• ⌧ : relative compression tolerance used in the HSS construction.

In the examples, we also report the structured multifrontal LDL factorization costs, although
similar results can be found in [22]. The main reason is the completeness in comparison, and another
reason is the subtle di↵erence due to the use of HSS inversion and Theorem 3.1 here.

Example 1. Consider the Poison’s equation

�u = f .

We first discretize the Laplacian operator on a 2D N ⇥N mesh, and the matrix A has the order
n = N2. For N = 128, 256, 512, and 1024, we fix ⌧ = 10�5 and l

max

� l
s

= 9. The factorization
performance is recorded in Table 5.1 and also plotted in Figure 5. We find that when n gets larger,

SUPERFAST STRUCTUERD SELECTED INVERSION 155

Table 5.6
Selected inversion flops ⇠

inv

and timing (in seconds) for Example 2 with various dimensions, where e =
kx�x̃k

2

kxk

2

,

and l

max

� l

s

= 9.

n (= N2) 1282 2562 5122 10242

l
max

12 14 16 18

⇠
inv

MF 6.57e7 5.79e8 5.06e9 4.29e10
NEW 7.42e7 5.73e8 3.85e9 2.16e10

Time(s)
MF 3.40 1.42e1 5.67e1 2.29e2
NEW 3.77 1.63e1 6.83e1 2.84e2

e 3.83e�6 3.55e�5 5.04e�4 1.19e�1

Example 3. To show our algorithm has broader applications, we apply it to some 2D and 3D
matrices from the University of Florida Sparse Matrix Collection. See Table 5.7 for the character-
istics of the test matrices.

Table 5.7
Test matrices in 2D and 3D from University of Florida Sparse Matrix Collection, where nnz stands for number

of non-zeros in the matrix.

Matrix n nnz Description

bodyy6 19,366 77,057
From NASA, collected by

Alex Pothen

wathen120 36,441 301,101
Random matrix from Andy Wathen,

Oxford Univ

2cubes sphere 101,492 1,647,264
FEM 3D electromagnetic problem

from Evan Um, Geophysics, Stanford

pwtk 217,918 11,524,432
Sti↵ness matrix from pressurized wind

tunnel problem

parabolic fem 525,825 3,674,625
Parabolic FEM from a constant
homogeneous di↵usion problem

tmt sym 726,713 2,903,837
Symmetric electromagnetics problem from
David Isaak, Computational EM Works

ecology2 999,999 4,995,991
Matrix obtained when circuit theory

applied to animial/gene flow

G3 circuit 1,585,478 7,660,826
Circuit simulation problem from

Ufuk Okuyucu, AMD , Inc

We fix ⌧ = 10�5 and l
max

� l
s

= 9 for all the test matrices. Also, as the dimension of test
matrices grows from the top to the bottom in Table 5.8, we increase l

max

accordingly. We report
the factorization and inversion flops for NEW and MF in the table and find NEW always gives better
performance. The relative error is given in the last column of Table 5.8. Even though the error for
tmt sym and ecology2 has only two digits, this problem can be easily solved if we use a smaller ⌧
instead.

REFERENCES

[1] P. Amestoy, I. Duff, J. L’Excellent, Y. Robert, F. Rouet and B. Uçar, On computing inverse entries
of a sparse matrix in an out-of-core environment, SIAM J. Sci. Comput., 34 (2012), pp. A1975–A1999.

[2] C. Bekas, A. Curioni, and I. Fedulova, Low cost high performance uncertainty quantification, in Proceedings
of the 2nd Workshop on High Performance Computational Finance, ACM, 2009, p. 8.

[3] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[4] S. Cauley, J. Jain, C. K. Koh, and V. Balakrishnan, A scalable distributed method for quantum-scale device

simulation, J. Appl. Phys., 101 (2007), p. 123715.

156 J. XIA, Y. XI, S. CAULEY, AND V. BALAKRISHNAN

Table 5.8
Computational flops for the test matrices in Example 3, where ⌧ = 10�5, l

max

� l

s

= 9, and ⇠
fact

and ⇠
inv

represent the factorization and selected inversion flops, respectively.

Matrix l
max

MF NEW

e
⇠
fact

⇠
inv

⇠
fact

⇠
inv

bodyy6 14 5.31e7 8.42e7 4.46e7 7.52e7 1.98e�8
wathen120 13 3.33e8 5.28e8 2.68e8 4.16e8 1.74e�11

2cubes_sphere 14 7.24e10 1.11e11 4.72e10 9.05e10 3.75e�4
pwtk 13 4.36e10 6.81e10 4.00e10 6.55e10 2.22e�10

parabolic_fem 14 1.01e10 1.72e10 6.46e9 1.19e10 5.96�6
tmt_sym 15 1.56e10 2.56e10 7.91e9 1.42e10 5.78�2
ecology2 16 2.83e10 4.49e10 1.17e10 2.04e10 5.23e�2
G3_circuit 16 1.11e11 1.77e11 5.33e10 9.30e10 1.37�5

[5] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[6] S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, On the numerical rank of the o↵-diagonal
blocks of Schur complements of discretized elliptic PDEs, SIAM J. Matrix Anal. Appl., 31 (2010), pp.
2261–2290.

[7] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Bans. Math. Software, 9 (1983), pp. 302–325.

[8] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp.
345–363.

[9] J. R. Gilbert and S.-H. Teng, MESHPART, A Matlab Mesh Partitioning and Graph Separator Toolbox,
http://aton.cerfacs.fr/algor/Softs/MESHPART/.

[10] A. Gillman, P. Young, and P. G. Martinsson, A direct solver with O(N) complexity for integral equations
on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247.

[11] S. Li, S. Ahmed, G. Klimeck, and E. Darve, Computing entries of the inverse of a sparse matrix using the
FIND algorithm, J. Comput. Phys., 227 (2008), pp. 9408–9427.

[12] S. Li and E. Darve, Extension and optimization of the FIND algorithm: Computing Green’s and less-than
Green’s functions, J. Comput. Phys., 231 (2012), pp. 1121–1139.

[13] L. Lin, J. Lu, L. Ying, R. Car, and W. E, Fast algorithm for extracting the diagonal of the inverse matrix
with application to the electronic structure analysis of metallic systems, Commun. Math. Sci. 7 (2009), pp.
755–777.

[14] L. Lin, C. Yang, J. Lu, L. Ying, and W. E, A fast parallel algorithm for selected inversion of structured
sparse matrices with application to 2D electronic structure calculations, SIAM J. Sci. Comput., 33 (2010),
pp. 1329–1351.

[15] L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, and W. E, SelInv–An algorithm for selected inversion of a sparse
symmetric matrix, ACM Trans. Math. Software, 37 (2011), pp. 40:1–40:19.

[16] METIS, Family of Multilevel Partitioning Algorithms, http://glaros.dtc.umn.edu/gkhome /views/metis.
[17] S. V. Parter, The use of linear graphs in gaussian elimination, SIAM Rev., 3 (1961), pp. 119–130.
[18] J. Tang and Y. Saad, A probing method for computing the diagonal of the matrix inverse, Technical report

umsi-2010-42, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, 2009.
[19] J. Tang and Y. Saad, Domain-decomposition-type methods for computing the diagonal of a matrix inverse,

SIAM J. Sci. Comput., 33 (2011), pp. 2823–2847.
[20] R. B. Sidje and Y. Saad, Rational approximation to the Fermi-Dirac function with applications in density

functional theory, Tech. Rep. umsi-2008-279, Minnesota Supercomputer Institute, University of Minnesota,
2008.

[21] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix Anal. Appl., 33
(2012), pp. 388–410.

[22] J. Xia, E�cient structured multifrontal factorization for general large sparse matrices, SIAM J. Sci. Comput.,
35 (2013), pp. A832–A860.

[23] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.
[24] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large structured linear

systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–1411.
[25] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semiseparable matrices,

Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

