
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2013) pp. 131-138.

NONSYMMETRIC STRUCTURED MULTIFRONTAL METHODS FOR SPARSE
MATRICES WITH APPLICATION TO SOLVING THE HELMHOLTZ EQUATION

ZIXING XIN⇤, JIANLIN XIA† , MAARTEN V. DE HOOP‡ , STEPHEN CAULEY§ , AND

VENKATARAMANAN BALAKRISHNAN¶

Abstract. Some structured multifrontal methods for nonsymmetric sparse matrices are developed, which are
applicable to discretized PDEs such as Helmholtz equations on finite di↵erence or irregular meshes. Unlike various
existing structured direct solvers, which often focus on symmetric positive definite or symmetric matrices, our methods
consider the issues for nonsymmetric cases, which often arise due to the nature of the problem or the boundary
conditions. We accommodate the nonsymmetry in both the ordering and the factorization. Multiple variations are
giving, including a randomized nonsymmetric multifrontal method. Both static and local pivoting strategies for the
structured factorizations are discussed for the stability purpose.

1. Introduction. Solving large sparse linear systems of equations is an important issue in
many engineering and scientific problems. Here, we consider the following equation:

Ax = b

where A is an n ⇥ n nonsymmetric (or non-Hermitian) matrix arising from the discretization of
PDEs on regular or irregular meshes.

Among various direct methods, the multifrontal method [16] has good data locality and takes
advantage of dense matrix kernels. Significant progress has been made since its initial development
in [7]. This method and its variations have been implemented in many high performance computing
packages.

Generally, a major hurdle in sparse direct solutions is fill-in. Thus, A is usually first reordered
with methods such as nested dissection (ND) [9] or minimal degree (MD) [17] methods. It has
been shown that ND generally has better performance than MD for large problems. For symmetric
matrices, the adjacency graph of A preserves the matrix structure and can be utilized to obtain
the ordering of original matrix. Each separator on the graph corresponds to a local reordering of
the original matrix. Finally, all the separators form a tree which serves as the assembly tree [7] in
multifrontal method. For nonsymmetric matrices, the adjacency graph of AAT or A+ AT is often
considered. Explicitly forming the structure of AAT can be very time consuming when n is large.
Thus, we choose to reorder A based on the non-zero pattern of A+AT , as often done [6].

In recent years, structured multifrontal methods [20, 22] have been developed, and combine
the multifrontal method with rank structures such as hierarchically semiseparable (HSS) forms
[3, 23]. These methods produce approximate factorizations and can break the classical factorization
complexity bounds. But the methods are mostly tested on symmetric positive definite, symmetric,
or pattern symmetric matrices.

The main contribution of this paper is to extend the approaches in [20, 22] to nonsymmetric
matrices. Since the major building pieces are mostly available, we try to put them together and put
forward a practical nonsymmetric structured multifrontal code. For various problems, especially
those where the nonsymmetry is due to the boundary conditions, the inherent rank properties are
similar to the symmetric cases. Nonsymmetric extensions of the methods in [20, 22] are shown. We
also give the major steps for generalizing a latest randomized multifrontal method in [21] to the
nonsymmetric case.
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We also consider various pivoting issues for structured factorizations. For example, we can use
static pivoting [14] to permute large entries on the diagonal so as to improve the numerical stability
of the factorization. We also discuss the potential of improving the stability of HSS factorizations.

Our solver is applied to Helmholtz equations discretized on both finite di↵erence and finite
element meshes. We show the e�ciency advantage over the standard multifrontal method.

The remaining sections are organized as follows. We briefly review HSS structures and ULV
factorizations in Section 2. We show the nonsymmetric structured multifrontal methods in Section
3, after a review of the basic idea of existing structured multifrontal methods. In Section 4, we
discuss the pivoting and stability issues. Section 5 includes our numerical experiments on Helmholtz
problems on both regular and irregular meshes. Finally, we draw our conclusions in Section 6.

2. Hierarchically semiseparable structure and ULV factorization. In our structured
multifrontal method for a nonsymmetric sparse matrix A, the intermediate dense matrices are
approximated by hierarchically semiseparable (HSS) forms. In this section, we give a brief review
of HSS representations and HSS ULV factorizations. Refer to [3, 23] for more details.

For a matrix F , we partition it into 2l block rows and 2l block columns corresponding to a
certain level l of a full binary tree T with k levels. The block rows and columns without the
diagonal blocks are called HSS blocks. Each HSS block is associated with a node in the binary tree.
Suppose the nodes of T are in their postordering and j is a non-leaf node with children c

1

and c
2

in T . If there exist matrices Dj , Uj , Vj , Rj ,Wj , Bj satisfying the following recursions:

Dj =

✓
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

◆
, Uj =

✓
Uc1Rc1

Uc2Rc2

◆
, Vj =

✓
Vc1Wc1

Vc2Wc2

◆
,

then we say that F is in an HSS form. The matrices Dj , Uj , Vj , Rj ,Wj , Bj are called the HSS
generators. T is called an HSS tree.

We say F has a low-rank property if its HSS blocks have small ranks or numerical ranks. To
take advantage of this property, we use ULV factorizations as discussed in [3, 23]. First, we sparsify
the HSS blocks by applying QL factorizations to Uj . After the diagonal generators Dj are then
updated and partially factorized conformably. Some leading pieces in the diagonal blocks can then
be eliminated, and the remaining pieces are gathered to form a reduced HSS form [20]. The process
is repeated until the root of the HSS tree is reached. The ULV factorization costs O(r2N) flops,
where r is the maximum rank of all the HSS blocks (called HSS rank), and N is the matrix size.

The ULV HSS solution [20] is performed with the sequence of factors from the factorization stage.
This includes a forward substitution stage and a backward substitution stage, which propagates
information bottom-up and then top-down along T . The solution cost is O(rN).

3. Nonsymmetric structured multifrontal methods.

3.1. Nested dissection ordering for directed graphs. In sparse direct solutions, an adja-
cency graph G for a (nonsymmetric) matrix A is defined by creating an directed edge pointing from
vertices i to j connect if aij 6= 0 [10]. LU factorization can be viewed as a process of eliminating
the vertices one by one in the graph. Eliminating a vertex will connect its neighbor vertices. In the
corresponding LU factorization process, many new nonzeros (or fill-in) may be introduced into the
Schur complements.

To reduce fill-in, we use nested dissection [9] to first reorder the vertices in the graph. The main
idea is to divide G recursively with separators or small sets of vertices. For instance, if a separator
divides the graph into two sets of vertices V

1

and V
2

, the vertices in V
1

or V
2

are disjoint. Figure
1 shows the separators in nested dissection and the associated tree structure, as used in [22]. This
tree will be used in our factorizations as the assembly tree [7]. The separators are ordered following
a bottom-up way in the tree.

Here, although G is directed, the node separators are can be obtained in the same way (see
Figure 2). That is, we can apply standard nested dissection to the graph of A+AT , for simplicity,
as often used [6].
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(i) Separators in nested dissection (ii) Corresponding assembly tree

Fig. 1. Nested dissection for an undirected graph and the corresponding assembly tree.

(i) Undirected mesh (ii) Directed mesh

Fig. 2. A separator (marked with a dashed line) for an undirected graph and a directed one.

3.2. Nonsymmetric multifrontal method. The multifrontal method [7, 16] is a very im-
portant direct method for matrix factorizations. We briefly review it here. Define is an elimination
tree T with n nodes for A, where node p is the parent of j if and only if p = min{i > j|Lij+Uji 6= 0},
where L and U are the LU factors of A [11]. The factorization of A is then organized in a bottom-up
order along T .

For a leaf node i, define

(3.1) Fi ⌘ F0

i =

0

BBB@

Aii Ai,q1 · · · Ai,qn

Ap1,i
... 0

Apk,i

1

CCCA
,

where pj and qj are appropriate nonzero row and column indices, respectively. Fi is called a frontal
matrix associated with node i. The elimination of i from the graph results in the Schur complement

Ui = �

0

B@
Ap1i
...

Apki

1

CAA�1

ii

�
Aiq1 · · · Aiqn

�
,

which is called the update matrix.
For a nonleaf node i, the frontal matrix Fi is formed by some components of A and the update

matrices from the children nodes using extend-add operations.

Fi = F0

i $l Uc1$l Uc2

where c
1

, c
2

are the two children of i. The extend-add operation here is to match the index between
the matrices by permutation and inserting zero rows/columns. It can be illustrated as follows:

2
5
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u v

◆
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Similarly, eliminate i and compute Ui. The process then repeats. More details on the multi-
frontal method for a nonsymmetric A can be found in [6].

3.3. Nonsymmetric structured multifrontal method. Here, we show an direct extension
of the supernodal structured multifrontal method in [20] to the nonsymmetric matrix A. Nested
dissection is applied to A+AT and an assembly tree T is formed.

As in [20], below certain level ls (called a switching level) of T , dense local matrix operations
are used. Above ls, HSS operations are applied instead. The switching level is selected so that the
total complexity is optimized [22]. The HSS operations are described as follows.

Without loss of generality, assume Fi corresponds to an HSS tree with k + 2 nodes, and the
children of the root k+2 are k and k+1. Also assume that the HSS form of Fi (after a direct HSS
construction) looks like

(3.2) Fi =

✓
H UkBkV T

k+1

Uk+1

Bk+1

V T
k Dk+1

◆
,

where H is a smaller HSS form. Apply the ULV factorization in [3, 23] to H:

H = LiSi.

The resulting update matrix looks like

Ui = Dk+1

� Uk+1

Bk+1

(V T
k H�1Uk)BkV

T
k+1

.

As proven in [20], this computation can be quickly done. In fact, the ULV factorization produces a
reduced matrix D̂k for H, and Fi is reduced to

(3.3)

✓
D̂k ÛkBkV T

k+1

Uk+1

Bk+1

V̂ T
k Dk+1

◆
.

Thus [20],

(3.4) Ui = Dk+1

� Uk+1

Bk+1

(V̂ T
k D̂�1

k Ûk)BkV
T
k+1

.

Ui is then passed to the parent node in the assembly tree as in the traditional multifrontal
method. Repeating the process until the root in the assembly tree is reached, then we have the final
structured factorization:

A = LU.

After the factorization, the solution stage is very similar to that in [20], except that the forward
and backward substitutions use di↵erent blocks.

If the conditions in [20] on the o↵-diagonal rank patterns [19] of the frontal matrices hold, then
we can similarly show that the nonsymmetric structured multifrontal method costs about O(n)
flops for 2D problems discretized on a N ⇥N regular mesh (n = N2) and O(n4/3) for 3D problems
discretized on a N ⇥N ⇥N regular mesh (n = N3). The solution cost is about O(n) for both 2D
and 3D, with about O(n) storage for the factors.

3.4. Randomized nonsymmetric structured multifrontal method. Similarly, we can
give a nonsymmetric variation for the randomized multifrontal method in [21]. We sketch the major
framework as follows.

1. Starting from the nodes i at the switching level, compute the products

Yi = UiXi, Zi = UT
i Xi,

where Xi is a skinny matrix of random vectors with the column size roughly equal to the
HSS rank of Fi. More details on choosing the column size can be found in [13, 15].
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2. For a node i above the switching level, compute two skinny extend-add operations

Yi = (F0

i Xi) �l Yc1 �l Yc2 , Zi = ((F0

i )
TXi) �l Zc1 �l Zc2 ,

where F0

i is extracted from A similarly to that in (3.1), and the operator �l denotes a skinny
extend-add operation, which needs to be performed only on the rows of the participating
skinny matrices.

3. Form selected entries of Fi based on F0

i and the HSS forms Fc1 and Fc2 .
4. Use the above entries of Fi and Yi and Zi to construct an HSS approximation to Fi as in

[18, 24].
5. Partially factorize Fi as in (3.2)–(3.4).

Then repeat the procedure. A significant benefit of this scheme is that the blocks passed along
the assembly tree and also in the extend-add operations are only matrix-vector products, instead of
large dense update matrices.

4. Pivoting in structured factorizations. As in standard LU factorizations, pivoting is
often needed to ensure the stability. We can follow the strategies in [6, 8, 14]. In fact, static pivoting
can be introduced into our method before nested dissection. Static pivoting usually permutes the
large entries to the diagonal which turns out to be a weighted bipartite matching problem. There
are di↵erent criterions for choosing the permutation matrix, such as maximizing the product or
the sum of the diagonal entries [8]. It is found in [14] that it achieves the best performance in
maximizing the product of the diagonal entries while scaling the matrix so that the diagonal entries
are the largest in the columns and are all equal to one.

Sometimes, local pivoting within the frontal matrices may be su�cient. That is, before the
HSS construction for Fi, we try to bring high rank blocks as close to the diagonal as possible.
This happens to be the fundamental idea behind the rank-revealing and strong rank-revealing QR
(RRQR) or LU factorizations [12]. A basic idea is, instead of compressing just an HSS block in the
HSS construction, we compress the entire block row or column. The strong RRQR strategy in [12]
is used so as to make the determinants of the diagonal blocks as large as possible. This not only
enhances the stability, but also reduces the HSS rank.

A alternative local pivoting strategy is to still use the standard HSS construction. Then during
the ULV factorization, an ill-conditioned diagonal block is not eliminated. Instead, it is directly
merged with the blocks from the sibling node. This is repeated until the diagonal block is large
enough and becomes well conditioned.

5. Applications to discretized Helmholtz equations. In this section, we show the appli-
cations of our method to (non-Hermitian) Helmholtz equations on regular or irregular meshes. Here,
nonsymmetry often occurs due to the nature of the problem or certain boundary conditions. The
structured multifrontal LU factorization in Section 3.3 (denoted NEW) is compared with the exact
multifrontal LU factorization (denoted MF). In the experiments, we set the relative tolerance of com-
pression in HSS constructions to be ⌧ = 10�6. For the following examples, satisfactory accuracies
are obtained without pivoting.

First, for the finite di↵erence discretization with N ⇥N meshes, we choose several mesh dimen-
sions, which increase by a factor of

p
2 each time, so that n doubles every time. The number of

dense local factorization levels is chosen to be 9. As can be seen in Table 5.1, when n doubles, the
factorization cost of NEW increases by a factor close to 2. The costs are also plotted in Figure 3. The
increase of the factorization cost of MF is much bigger. The relative residuals � of the methods are
reported in Table 5.2.

Our another example is a Helmholtz equation discretized on an unstructured mesh as shown
in Figure 4(i), as obtained from [5]. The nonzero pattern of the corresponding matrix is in Figure
4(ii). Again, we compare NEW and MF on this problem. See Table 5.3.
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Table 5.3
Flops counts (⇠

fact

) of MF and NEW for irregular meshes, where l
max

is the total number of levels in the assembly
tree and l

max

� l
s

= 10 is the number of bottom levels of dense factorizations.

n 103, 041 160, 801 284, 089 641, 601
l
max

15 16 16 17

⇠
fact

MF 2.62E9 5.18E9 1.25E10 4.36E10
NEW 2.35E9 4.36E9 1.04E10 3.25E10

6. Conclusions. We show structured multifrontal methods for nonsymmetric sparse matri-
ces, based on various existing techniques. The methods applicable on both structured mesh and
unstructured meshes. The idea of reduced matrix is used to save the costs. Both static and local
pivoting issues are discussed for the structured factorizations. The numerical experiments show that
the new method performs better than the exact multifrontal method. The application to discretized
Helmholtz equations is shown.

Parallel implementations of the methods will be given in the near future so as to solver larger
problems. More general applications will also be considered.
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SUPERFAST STRUCTURED SELECTED INVERSION FOR LARGE SPARSE
MATRICES

JIANLIN XIA⇤, YUANZHE XI† , STEPHEN CAULEY‡ , AND VENKATARAMANAN BALAKRISHNAN§

Abstract. We propose a structured selected inversion method for extracting the diagonal (and certain o↵-
diagonal) blocks of the inverse of a sparse symmetric matrix A, using the multifrontal method and rank structures. A
structured multifrontal LDL factorization is computed for A with a forward traversal of the assembly tree, which yields
a sequence of data-sparse factors. The factors are used in a backward traversal of the tree for the structured inversion.
We show that, when A arises from the discretization of certain PDEs, the intermediate matrices in the inversion can
be approximated by hierarchically semiseparable (HSS) or low-rank matrices. Due to the data sparsity, the inversion
has nearly O(n) complexity for some 2D and 3D discretized matrices (and is thus said to be superfast), after about
O(n) and O(n4/3) flops, respectively, for the structured factorization, where n is the size of the matrix. The memory
requirement is also about O(n). In comparison, existing inversion methods cost O(n1.5) in 2D and O(n2) in 3D for
both the factorization and the selected inversion of the matrix, with O(n logn) and O(n4/3) memory, respectively.
Numerical tests on various PDEs and sparse matrices from a sparse matrix collection are done to demonstrate the
performance.

Key words. Structured selected inversion, structured multifrontal method, data sparsity, low-rank property,
linear complexity, reduced matrix

AMS subject classifications. 15A23, 65F05, 65F30, 65F50

1. Introduction. Extracting selected entries of the inverse of a sparse matrix, often called
selected inversion, is critical in many scientific computing problems. Examples include uncertainty
quantification in risk analysis [2], electronic structure calculations within the density functional
theory framework [14], and the quantum mechanical modeling of nanotransistors and the atomistic
level simulation of silicon nanowires [4]. In these examples, the diagonal entries of the matrix inverse
are needed. In some other applications such as condition estimations [3], certain o↵-diagonal entries
are also desired. The aim of this paper is to present an e�cient method for computing the diagonal
(denoted diag(A�1)) as well as the diagonal blocks of A�1 for an n⇥n large sparse symmetric matrix
A. The method also produces some o↵-diagonal blocks of A�1, and can be modified to compute the
o↵-diagonal entries. For convenience, we usually just mention diag(A�1).

If A is also diagonally dominant and/or positive definite, A�1 may have many small entries.
Based on this property, a probing method is proposed in [18]. It exploits the pattern of the sparsified
matrix inverse together with some standard graph theories, and computes diag(A�1) by solving
a sequence of linear systems with a preconditioned Krylov subspace algorithm. Later, several
approaches are proposed for more general matrices. The fast inverse with nested dissection (FIND)
method in [11] and the selected inversion method in [13] use domain decomposition and compute
some hierarchical Schur complements of the interior points for each subdomain. This is followed
by the extraction of the diagonal entries in a top-down pass. The Selinv method in [14, 15] uses a
supernode left-looking LDL factorization of A to improve the e�ciency. The method in [1] focuses
on the computation of a subset of A�1 by accessing only part of the factors where the LU or LDL
factorization of A is held in out-of-core storage. The methods in [1, 11, 13, 15] all belong to the class
of direct methods. For iterative methods, a Lanczos type algorithm is first used in [20]. Later, a
divide-and-conquer (DC) method and a domain decomposition (DD) method are presented in [19].
The DC method assumes that the matrix can be decomposed into a 2 ⇥ 2 block-diagonal matrix
and a low-rank matrix recursively, where the decomposed problem is solved and corrected by the
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