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A DISCONTINUOUS GALERKIN METHOD FOR THE ANISOTROPIC ELASTIC
WAVE EQUATION

RUICHAO YE⇤, CHRISTOPHER L. PETROVITCH† , MAARTEN V. DE HOOP‡ , LAURA J.

PYRAK-NOLTE§ , LUCAS WILCOX¶, AND YINGCHONG SITUk

Abstract. In this paper, the anisotropic elastic wave equation is solved computationally using the discontinuous
Galerkin (DG) method for problems that range in scale from the laboratory to the planetary scale. Any numerical
method used to propagate waves e�ciently in complex media with geometric features spanning several length scales,
must accommodate tetrahedral unstructured meshes to align the element boundaries with all of the sharp velocity
contrasts that exist throughout the computational domain. Tetrahedrals are an ideal element type to use because
numerous automated meshing packages are available. The DG method is well suited to meet these requirements
because the approximation order can be adjusted to match the needs of any computational domain and it can be
used for unstructured meshes with any element type. In this study, the DG method is used with the semi implicit-
explicit (IMEX) Runge-Kutta method to discretize the spatial derivatives of the anisotropic elastic wave equation
and to integrate forward in time. Several real world applications are given to demonstrate the power of the DG
method. Most notably, a 3D transversely isotropic medium with rough surfaces based on laboratory measurements
of fractures in Austin Chalk was used to show the ability of the DG method to simulate the complex wave fields
associated with rough surfaces in carbonate rocks. At the Earth scale, the 3D SEAM model was adaptively meshed to
align the tetrahedral facets with the shape velocity contrasts, and then a seismic reflection calculation was performed.
From the applications discussed in this paper, the e�ciency of using unstructured tetrahedral elements with the DG
method is demonstrated through accurate computations of the anisotropic elastic wave equation for computational
domains with extremely complex geometric features.

1. Introduction. Even with modern high performance computing technologies, the ability
to simulate wave propagation through the Earth’s subsurface remains challenging because of the
range of length and time scales required to model seismic wave interactions in complex media. For
example, the Earth’s subsurface contains complex physical structures that include micro-cracks,
fractures, joints, velocity anomalies, folds, faults, etc. within the crust, in addition to the structure
of the Earth (crust-mantle-core boundaries). In simulations, seismic waves are required to travel
accurately over many wavelengths while maintaining a controllable amount of dispersion. Most of
these structures require a Body-Fitted Coordinate (BFC) method to capture the complexity of the
structure. While a regular grid can capture some of these features with curvilinear coordinates [19],
unstructured meshes are more flexible and can be locally refined to match any complex geometry.
The ideal computational method for modeling wave interaction with the subsurface would use an
unstructured mesh equipped with high-order accuracy.

Many di↵erent methods exist to simulate the elastic wave equation such as Finite Di↵erence
Finite Time (FDFT) method and the Spectral Element (SE) method. Virieux (1986) modeled
the linearly elastic and isotropic elastic wave equation with FDFT. In his approach, he placed the
velocity and stress fields on a staggered grid that enabled the waves to propagate over large distances.
However, the dispersion grew too large to provide accurate results [34]. A major disadvantage of
FDFT methods is the layout of the grid points, i.e., domain features are required to line up with
the grid points, otherwise dispersive errors grow considerably. The FE method was proposed to
solve this issue by using unstructured meshes to account for complex geometries. While e↵ective,
inverting the mass matrix at each time step is computationally expensive. Inverting the mass matrix
has been approached in two ways, mass lumping [15] and the SE method [18]. The SE method uses
high order hexahedral elements, combined with the Gauss-Lobatto-Legendre quadrature points, to
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diagonalize the mass matrix. The SE method has been successfully used to simulate global earth
models; however, it requires the use of hexahedral elements because quadrature points do not exist
for a tetrahedral. Hexahedral elements are a steep requirement, as tetrahedral mesh generators are
far more common and are able to model complex boundaries more e�ciently. The DG method is
an improvement to this computational toolbox with regard to the elastic wave equation. It can
incorporate any type of mesh element and has, by construction, a block diagonal mass matrix,
thereby accounting for the past methods shortcomings.

The DG method was first used by Reed and Hill to model the neutron transport equation
[29], but until recently was not used much. Several DG implementations exist now, most notably
the ADER-DG approach by Käser et al. which uses upwinding Godouv fluxes and provides equal
accuracy in both space and time [8]. Another noteworthy approach is the implementation by
Etienne et al. that focuses on low-order solutions with convolutional perfectly matching layers
(CPML) suitable for large scale 3D simulations [10]. Both of these approaches have accounted for
elastic materials, but do not correctly handle acoustic-elastic interfaces. Wilcox et al. solved the
Riemann problem exactly for the linearly elastic and isotropic wave equation, such that all complex
geometries are accurately modeled by aligning the mesh elements along internal elastic-elastic,
acoustic-acoustic, and acoustic-elastic interfaces [35]. All of these implementations have formulated
the DG method in the non-conservative form that requires the material properties within any given
element to be constant. Smith et al. have removed this restriction by writing the elastic wave
equation in its conservative form [33].

In this paper, we focus on domains with anisotropic media and apply it to realistic problems
in global seismology and laboratory scale rock physics. In the next section, the strong formulation
for the fully the anisotropic elastic wave equation is derived. Then, a stable numerical flux that is
suitable for the general anisotropic elastic wave equation is presented. In Section 4, we summarize
the implementation of the external boundary conditions and present the derivation CPML regions.
In Section 5, suitable explicit/explicit-implicit time integration algorithms are described. Then,
a detailed overview of the parallelization of the DG method is described. Our implementation
was verified by generating Rayleigh and Stoneley waves (Section 7). Our DG codes were then
extensively tested by computing the solutions to laboratory rock physics problems, and global
seismology problems, both of which included embedding anisotropic materials. Lastly, the various
advantages and disadvantages are discussed in Section 9.

2. Discontinuous Galerkin Method. The generalized Hooke’s law in an elasto-dynamic sys-
tem is expressed by relating stress, S

ij

, and strain, E
kl

. Assuming small deformations gives a linear
relationship, i.e. S

ij

= c
ijkl

E
kl

, where c
ijkl

is the sti↵ness tensor. The 81 component sti↵ness ten-
sor can be reduced, in general, to 21 independent components through symmetry arguments and is
written in matrix form by defining the stress and strain vectors as S = (S11, S22, S33, S23, S12, S13)T

and E = (E11, E22, E33, E23, E12, E13)T . The sti↵ness tensor is then rewritten as a 6 by 6 matrix,
C, defined by,

(2.1) S =

2

6666664

C11 C12 C13 2C14 2C15 2C16

C12 C22 C13 2C24 2C25 2C26

C13 C23 C33 2C34 2C35 2C36

C14 C24 C34 2C44 2C45 2C46

C15 C25 C35 2C45 2C55 2C56

C16 C26 C36 2C46 2C56 2C66

3

7777775
E ⌘ CE

Written in this form, all of the symmetry classes are only specific cases of the more general class,
i.e. isotropic, transversely isotropic, orthorhombic, etc. For example, the isotropic case can be used
simply by setting all of the C

ij

components to zero except for C11 = �+ 2µ, C12 = C13 = C23 = �,
C44 = µ, C55 = µ, and C66 = µ. (�, µ) are the Lamé constants and ⇢ is the density. By combining
Equation 2.1 with the equation of motion, the anisotropic elasto-dynamic equations is written in
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terms of the strain, E, and the particle velocity, v,

@E

@t
=
1

2
(rv+rv

T ),

⇢
@v

@t
=r · (CE) + f,

(2.2)

This can be simplified for the acoustic wave equation. The first-order pressure-velocity expression
is,

@P

@t
=�r · v

@v

@t
=
1

⇢
rP

(2.3)

Both Equation 2.2 and Equation 2.3 are rewritten in a unified form,

(2.4) @
t

q+r · (Ãq) = g,

in which Ã ⌘ Ã(x) contains spatial dependent media parameters. For the three dimensional
anisotropic elastic equation, we define the array of unknowns as,

(2.5) q = (E11, E22, E33, E23, E13, E12, v1, v2, v3)
T ,

Then, the operator, Ã, is defined as,

(2.6) Ã ⌘ Axn
x

+Ayn
y

+Azn
z

where Ai are the Jacobi matrices for the system and are defined as follows:

Ax =

0

BBBBBBBBBBBB@

0

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1

2
0 1

2 0
C11 C12 C13 2C14 2C15 2C16

C16 C26 C36 2C46 2C56 2C66

C15 C25 C35 2C45 2C55 2C56

0

1

CCCCCCCCCCCCA

,

Ay =

0

BBBBBBBBBBBB@

0

0 0 0
0 1 0
0 0 0
0 0 1

2
0 0 0
1
2 0 0

C16 C26 C36 2C46 2C56 2C66

C12 C22 C23 2C24 2C25 2C26

C14 C24 C34 2C44 2C45 2C46

0

1

CCCCCCCCCCCCA

,

Az =

0

BBBBBBBBBBBB@

0

0 0 0
0 0 0
0 0 1
0 1

2 0
1
2 0 0
0 0 0

C15 C25 C35 2C45 2C55 2C56

C14 C24 C34 2C44 2C45 2C46

C13 C23 C33 2C34 2C35 2C36

0

1

CCCCCCCCCCCCA

.

(2.7)
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In this paper, the three-dimensional system described by Equation 2.4 is solved numerically
with the DG method. The spatial domain is partitioned into tetrahedral elements, De, and the
solution, q, is discretized, q

h

, over the mesh. The grid size, h, is defined as the average radius of
each tetrahedral’s inscribed sphere. Over the entire domain, the solution of each element is required
to be in L2 and since this is a Galerkin method, both the trial functions, q

h

, and the test functions,
p, are also in L2. The inner product of the trial and test functions is defined as,

(2.8) hq
h

, p
h

i =
Z

D

e

q

h

p

h

dV.

Applying this inner product to the discrete form of Equation yields 2.4,

(2.9)

Z

D

e

@q
h

@t
p

h

dV +

Z

D

e

r · (Ãq

h

)p
h

dV =

Z

D

e

g

h

p

h

dV.

Then, integrating the above equation by parts, the weak formula of wave equation is obtained,

(2.10)

Z

D

e

@q
h

@t
p

h

dV �
Z

D

e

(Ãq

h

) · (rp

h

)dV +

Z

@D

e

F̃ (q
h

)p
h

dS =

Z

D

e

g

h

p

h

dV,

where F̃ (q
h

) is the numerical flux that couples each element to its neighbor. Without this coupling,
the solution over each element would be completely local. Therefore, it cannot be zero (as in FEM)
and will be discussed in the next section. We note that because of this, each element may be treated
completely individually, decoupling all volume integrations. For this reason, the global mass matrix
is block diagonal.

At this point, a classical FE or even many DG implementations stop at the weak formulation,
however in this study, we found it to be more convenient to write the final equations in the strong
form [13]. Equation 2.10 is integrated by parts again,

(2.11)

Z

D

e

@q
h

@t
p

h

dV +

Z

D

e

r · (Ãq

h

)p
h

dV �
Z

@D

e

⇣
n · (Ãq

h

)� F̃ (q
h

)
⌘
p

h

dS =

Z

D

e

g

h

p

h

dV,

Lastly, to define the matrices required to deploy this DG implementation, the solution is ex-
panded into N

p

nodal trial basis functions,

(2.12) q

h

(x, t) =

N

pX

n=1

q̂

h

(x
n

, t)�
n

(x),x 2 R3,

In general, the material properties are allowed to vary within each element. To write this explicitly,
Ax, Ay and Az are also expanded into the same basis, i.e.

(2.13) Am(x, t) =

N

pX

n=1

Âm(x
n

)�
n

(x), m = x, y, z.

In Equations 2.12 and 2.13, x
n

are the nodal points. The Jacobi polynomials {J↵,�

n

(x)} were used
as the basis functions, where the nodal points were constructed by minimizing the Vandermonde
matrix [13]. The basis functions are constructed by taking the product of three Jacobi polynomials,
i.e.,

(2.14) �
n

(⇠, ⌘, ⇣) =
p
8J0,0

i

(⇠)J2i+1,0
j

(⌘)(1� ⌘)iJ2i+2j+2,0
k

(⇣)(1� ⇣)i+j ,

where 0  i + j + k  N and (⇠, ⌘, ⇣) are the coordinates of the reference tetrahedral. This will
construct an Nth order solution over each element, which will require N

p

= 1
6 (N +1)(N +2)(N +3)
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degrees of freedom. The references coordinates are defined in terms of the standard tetrahedron, I,
defined by [13],

(2.15) I = {(r, s, t)|(r, s, t) � �1; r + s+ t  �1}.

So [13],

(2.16) ⇠ = �2
1 + r

s+ t
� 1, ⌘ = 2

1 + s

1� t
� 1, ⇣ = t.

By substituting Equations 2.12 and 2.13, x
n

into Equation 2.11, along with assuming p

h

is
equal to �

i

(x) (since this is a Galerkin approximation), the first term is written,

(2.17)

Z

D

e

@q
h

@t
p

h

dV =

N

pX

i,j=1

@

@t
(q̂

h

)
j

Z

D

e

�
j

(x)�
i

(x)dV,

and the second term yields, after algebraic manipulation,
Z

D

e

r · (Ãq

h

)p
h

dV

=
X

m=x,y,z

N

pX

i,j,k=1

(Âm)
k

(q̂
h

)
j

Z

D

e

(@
m

�
j

(x)�
k

(x) + �
j

(x)@
m

�
k

(x))�
i

(x)dV

=

N

pX

i,j=1

(q̂
h

)
j

N

pX

k=1

X

m=x,y,z

(Âm)
k

Z

D

e

(@
m

�
j

(x)�
k

(x) + �
j

(x)@
m

�
k

(x))�
i

(x)dV.

(2.18)

Now, the final semi-discrete form of the elastic wave equation can be written,

(2.19)
@

@t
Mq̂

h

+ Sq̂
h

� F q̂

h

= G,

The local mass matrix , MD

e

ij

, and sti↵ness matrix, SD

e

ij

are defined as,

MD

e

ij

=

Z

D

e

�
i

(x)�
j

(x)dV,

SD

e

ij

=
X

k=1

X

m=x,y,z

(Âm)
k

Z

D

e

(@
m

�
j

(x)�
k

(x) + �
j

(x)@
m

�
k

(x))�
i

(x)dV,
(2.20)

where F is the numerical flux and the source term is defined by,

(2.21) G =

Z

D

e

(g)�(x)
i

In the next section, the numerical flux is defined to complete DG method for the anisotropic
elastic wave equation.

3. Numerical Flux. The selection of numerical flux approach is of utmost importance when
formulating a DG method. The numerical flux must accurately couple the localized elements, while
remaining stable. We begin by defining some notation: the normal jump JqK = n(q� � q

+), the
total jump [q ] = q

� � q

+ and the average {{q}} = 1
2 (q

� + q

+) of the solution, q. The superscripts
“�” and “+” indicate the solution inside the element in question (along the element boundary) and
the solution inside its neighboring element, respectively. The most common flux used is the central
flux, which is merely the average of the solution of both sides along the normal direction of the



108 YE, PETROVITCH, DE HOOP, PYRAK-NOLTE, WILCOX, AND SITU

Flux type Penalty term P
F

(q�, q+)

Central 0
Upwind 1

2Jn · (Ãq)K
Lax-Friedrich 1

2 |↵|[q ]
Hybrid 1

2 |↵| ([q ]� (n · [q ])n))
Table 3.1

Several di↵erent numerical fluxes

interface, i.e., F̃ central(q) = {{n · (Ãq)}}. Many other types of fluxes can be regarded as the central
flux plus a penalty term (noted by P

F

). In general, numerical flux is expressed as [13],

(3.1) F̃ (q) = {{n · (Ãq)}}+ P
F

(q�, q+),

where the choice of P
F

(·, ·) defines the type of numerical flux (Table 3.1). If, for example, we
chose P

F

(q�, q+) = 1
2Jn · (Ãq)K, the upwinding flux is obtained. Upwinding fluxes are usually

less dissipative than a central flux, however they require the system to be diagonalizable. For the
problem at hand, the system is of the non-principal type because the S-waves, in general, cannot be
decoupled. Because of this, a central-flux is used in our implementation. Often times, a central flux
is applied by setting P

F

(q�, q+) to zero, however doing so leads to instabilities. The Lax-Friedrich
flux, also called the Rusanov flux [7], is given by P

F

(q�, q+) = 1
2 |↵|[q ] where ↵ is the largest

eigenvalue, i.e. the (quasi-)P-wave velocity of the elastic system.

In our formulation, a hybrid Lax-Friedrich flux is used, whose penalty term is given by

(3.2) P
F

(q�, q+) =
1

2
|↵| (n⇥ n⇥ [q ]) =

1

2
|↵| ([q ]� (n · [q ])n)) ,

This produces a central flux along the normal direction of the interface and a Lax-Fridrichs flux
along the tangential direction. More explicitly, Equation 3.2 is expressed in terms of the strain and
velocity as,

(3.3) P
F

 ✓
E

v

◆�
,

✓
E

v

◆+
!

=
1

2
|↵|
✓

E

� �E

+ � ([E ]n)⌦ n

v

� � v

+ � ([v ] · n)n

◆
,

where ⌦ is the vector outer product.

The boundary conditions of an elastic system give di↵erent restrictions along the normal and
tangential directions. For the normal direction, both velocity and stress are continuous across the
interface, while along the tangential direction, only the velocity is required to be continuous. No
restriction of continuity is required for the shear stress. The hybrid flux provides a stable flux scheme
for the elasto-dynamic system by treating the normal and tangential boundary conditions separately.
Substituting Equation 3.2 and 3.1 into Equation 2.11, and noting that n·Ãq

h

�{{n·Ãq

h

}} = [n·Ãq

h

]
we are left with a stable DG scheme for elasto-dynamic system, i.e.

(3.4)

Z

D

e

@q
h

@t
p

h

dV +

Z

D

e

r · (Ãq

h

)p
h

dV

�
Z

@D

e

1

2

⇣
[n · (Ãq

h

)]� |↵| ([q
h

]� (n · [q
h

])n)
⌘
p

h

dS =

Z

D

e

g

h

p

h

dV.
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Next, a projection matrix T is defined, such that Tq
h

= (n · q
h

)n,

(3.5) T =

0

BBBBBBBBBBBBBB@

n2
x

0 0 0 n
x

n
z

n
x

n
y

0 n2
y

0 n
y

n
z

0 n
x

n
y

0 0 n2
z

n
y

n
z

n
x

n
z

0

0 n

y

n

z

2
n

y

n

z

2

n

2
y

+n

2
z

2
n

x

n

y

2
n

x

n

z

2
n

x

n

z

2 0 n

x

n

z

2
n

x

n

y

2
n

2
x

+n

2
z

2
n

y

n

z

2
n

x

n

y

2
n

x

n

y

2 0 n

x

n

z

2
n

y

n

z

2

n

2
x

+n

2
y

2

0

0
n2
x

n
x

n
y

n
x

n
z

n
x

n
y

n2
y

n
y

n
z

n
x

n
z

n
y

n
z

n2
z

1

CCCCCCCCCCCCCCA

where (n
x

, n
y

, n
z

) is the unit outer normal vector of @De. By expanding q

h

and Ã (Equation 2.12
and 2.13) in the flux term of Equation 3.4 yields,

Z

@D

e

1

2

⇣
[n · (Ãq

h

)]� |↵|(I9 � T )[q
h

]
⌘
p

h

dS

=
X

m=x,y,z

N

pX

i,j,k=1

(Âm)
k

(q̂
h

)
j

Z

@D

e

n
m

(x)�
j

(x)�
k

(x)�
i

(x)dS

=

N

pX

i,j=1

(q̂
h

)
j

N

pX

k=1

X

m=x,y,z

(Âm)
k

Z

@D

e

n
m

(x)�
j

(x)�
k

(x)�
i

(x)dS.

(3.6)

where I9 is the 9⇥ 9 identity matrix. Now, the flux matrix can be defined explicitly,

(3.7) FD

e

ij

=

N

pX

k=1

X

m=x,y,z

(Âm)
k

Z

@D

e

n
m

(x)�
j

(x)�
k

(x)�
i

(x)dS.

Substituting Equation 2.20 and 3.7 into 3.4, and defining GD

e

=
R
D

e

g

h

p

h

dV as the forcing term,
the semi-discretized Discontinuous Galerkin scheme is obtained:

(3.8)
@

@t
MD

e

q̂

h

+ SD

e

q̂

h

� FD

e

q̂

h

= GD

e .

Now that the numerical flux has been derived for all of the internal boundaries between elements,
the external boundary conditions will be considered.

4. External Boundary Conditions and PML. Another important aspect of DG imple-
mentation is the external boundary conditions for the computational domain. The free-surface
boundary condition and the absorbing boundary condition are among the most frequently used
boundary conditions in seismology. For free-surface conditions, waves are completely reflected from
the boundary. This type of boundary condition is often used for rock surfaces, slits, the surface
of the Earth and fault facets. Absorbing boundary conditions are used to compute the solution
of an infinite domain. The computational domain was encased in a perfect matching layer (PML)
to enhance the e↵ect of the absorbing boundary condition. PML’s work by modifying the PDE in
PML region such that the waves are mapped to the complex plane and decay exponentially in the
real plane.

4.1. Free-surface boundary condition. In the DG framework, we cannot directly impose
Dirichlet boundary conditions as is done for continuous FEM. We only have control over the flux
conditions of each element. Therefore, we impose Dirichlet conditions by applying ghost fluxes on the
boundary of the domain that replicate the desired values. Free-surface boundary conditions require
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that (CE)n = 0 on @⌦, i.e., the external normal stress at the boundary reduces to zero. There is,
however, no direct constraint over the velocity or the tangential stress. By placing an equal and
opposite traction on the boundary at all times, i.e. S� = �S

+, the free-surface boundary conditions
are weakly imposed. To implement these conditions, the jump across any external boundary is
redefined as,

n · (v� � v

+) = 0,(4.1)

(CE

� �CE

+)n = 2(CE

�)n.(4.2)

This is accomplished by modifying the corresponding term in F q̂

h

. A convergence test and numerical
application of this implementation will be shown in Section 7.2.

4.2. Absorbing boundary condition. To simulate an infinite computation domain, the
jump across can be redefined to absorb the wave. The absorbing boundary is applied with the DG
framework by setting v

+ and E

+ to zero and in e↵ect acting as if there is no incoming wave, thereby
allowing the wave to exit the domain. However, absorbing boundary conditions for two or greater
dimensions are notoriously not well suited when waves graze the boundary. For this reason, we also
provide perfectly matched boundary layers to reduce the wave amplitude while minimizing artificial
reflections.

4.3. Convolutional perfect matching layer. As mentioned earlier, the absorbing boundary
flux conditions reduce the reflections of waves that exit the domain perpendicular to the boundary.
However, as the angle between the wave front and the boundary decreases, the approximation
begins to fail. A convolutional perfectly matching layer (CPML) was used to simulate an infinite
computational domain [17] to mitigate this e↵ect. CPML’s absorb any incoming waves by adding a
damping function, d(x), to the wave equation in the frequency-domain form, i.e.

(4.3) �i!q̃+r(Ãq̃) = f̃

becomes,

(4.4) �i!q̂+r(Ãq̂) + d(x)q̂ = f̂,

where q̃ and Ã is the solution to the wave equation (in frequency space) and the Jacobi matrices,
respectively. Note that the solution changed from q̃ to q̂ denoting the equation with and without
CPML’s. The advantage of adding the damping function in this fashion is that the solution to
Equation 4.4 exponentially decays while the CPML is present, i.e.

(4.5) q̂ = q̃ e�
R
d(x)dx

The form of d(x) is restricted in such a way that it equals zero within the computational domain
and at the boundary, and increases inside the CPML. In this study, d(r) = � log � (1 � cos 2⇡r

h

)
was chosen, where h is the thickness of the layer, r is the distance from the interface between the
CPML and the computational domain, and � is called the reflection coe�cient. In our study, setting
� = 1/1000 yields satisfactory results.

To implement the CPML, Equation 4.4 is multiplied by �i! and divided by �i!+ d, where d’s
dependence on x is now assumed. A function, ↵(x) is added to the numerator and denominator of
the coe�cient of the spatial derivative terms to force stability [17],

(4.6) �i!q̂+
i! + ↵(x)

�i! + d+ ↵(x)
r(Ãq̂) =

i!

�i! + d
f̂

In the authors experience, setting ↵(x) to unity gave satisfactory results. The right hand side will
be zero because we assume that there are no source terms in the CPML. By Fourier transforming
to the time domain,

(4.7) @
t

q+r(Ãq)�
Z

t

0
d(x)H(t� ⌧)e�(d+↵)(t�⌧)r(Ãq)d⌧ = 0
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is written. H(t) is the Heaviside function and it is always unity because the time integration is from
0 to t. The integral in the third term is defined as ⌥(t,x). Next, the integral in ⌥(t,x) is removed
by taking a partial derivative with respect to t. Finally, a coupled PDE between the solution to the
wave equation, q, and the new CPML variable is, ⌥, is written:

@
t

q = �r(Ãq)�⌥

@
t

⌥ = �(d+ ↵)⌥+ d r(Ãq)
(4.8)

The last step in the derivation of a DG method for the anisotropic wave equation, since it has
been written in a semi-discrete form that allows for CPML regions, is to consider the discretization
of the time derivative.

5. Time Discretization. In this section, we discuss a time discretization that is computa-
tionally e�cient for the complex domains used in this study. Often, the computational meshes
used to model the subsurface must contain regions where the characteristic lengths of the elements
drop far below that of a wavelength because the subsurface contains very complex geometries and
discontinuities. As a result, many simulations are not possible because the time steps must be
equally reduced to produce a stable solution. We propose two di↵erent time discretization schemes:
(1) for non-complex domains, it is advantageous to use a traditional Runga-Kutta (RK) method
and (2) for complex domains, a semi implicit-explicit (IMEX) method is used. The IMEX method
enables the solver to perform implicit time integration in areas of over sampling, while keeping the
computational e�ciency of RK in regions of proper sampling.

5.1. Explicit Runge-Kutta. After discretizing the spatial derivatives of the elastic wave
equation using the DG method, the temporal derivative is integrated. An explicit time integration
method is used when the variation in element size is small. There are a variety of time-stepping
methods available, however we chose to use the five stage low-storage explicit Runge-Kutta (LSERK)
method [13]. LSERK is an explicit method whose time-step is dictated by the Courant-Friedrichs-
Lewy (CFL) condition and allows for the largest possible stable time step. The time step was chosen
so that,

(5.1) c
p

�t

�x
=

K
CFL

p2
,

where c
p

is the maximum wave-speed, i.e., the (quasi-)P wave velocity, and K
CFL

is the CFL
constant. Recent e↵orts to define, quantitatively, a stable CFL condition can be found in [6, 3].
However in this study, Equation 5.1 is su�cient.

The LSERK method is preferred over other methods because it saves memory at the cost
of computation time. As the models grow larger, memory becomes the bottleneck rather than
computation time. Rewriting Equation 3.8 with all of the spatial derivatives on the right hand side
gives,

(5.2)
dq̂

h

dt
= �(M)�1 ((�S + F)q̂

h

+ G) = R
h

(q̂
h

, t),

the LSERK algorithm is as follows:

u(0) = q̂

n

h

,

i 2 [1, . . . , 5] :

⇢
k(i) = a

i

k(i�1) +�tR
h

�
u(i�1), tn + c

i

�t
�
,

u(i) = u(i�1) = b
i

k(i),

q̂

n+1
h

= u(5).

where the constants a
i

and b
i

are given in [13] on page 64.
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5.2. Explicit-Implicit Runge-Kutta. When the domain in question contains complex ge-
ometries within large domains, such as rough surfaces or discontinuities in the subsurface, the
resulting mesh will contain regions of over sampling with respect to the desired wavelengths. This
hinders the use of an ERK method because the stability depends heavily on the size of the time
step, which in turn is dependent on the region of highest sampling. Here we present the IMEX
method [2, 24] which allows the regions of over sampling to be integrated in time with an L-stable
third order and 3-stage Diagonally Implicit Runge-Kutta (DIRK) method, while using a fast and
simple 4-stage third order ERK method in the regions of more reasonable sampling (8-10 nodes per
wavelength).

To begin, the right hand side of Equation 5.2 is split into two vectors.

dq̂
h

dt
= R

h

(q̂
h

, t) =

✓
0

R̂exp

h

(q̂
h

, t)

◆
+

✓
R̂imp

h

(q̂
h

, t)
0

◆
(5.3)

This allows the two regions to interact on the boundaries alone, allowing the time steps to be set,
ideally, by the correctly sampled region. The beauty of this method is that the DIRK and ERK
methods where created so that each of the stages is at the same point in time. This means that
the system can be solved without requiring an interpolation at the boundary of the implicit-explicit
regions. The IMEX method’s Butcher table for the 4-stage explicit method is,

(5.4)
c a

i,j

b
i

=

0
0.4358665215 0.4358665215
0.7179332608 0.2820667392 0.4358665215

1.0 1.208496649 -0.644363171 0.4358665215
1.208496649 -0.644363171 0.4358665215

and for the 3-stage implicit method,
(5.5)

ĉ â
i,j

b̂
i

=

0
0.4358665215 0.4358665215
0.7179332608 0.3212788860 0.3966543747

1.0 0.3212788860 0.5529291479 0.5529291479
0 1.208496649 -0.644363171 0.4358665215

With the RK constants in place, the over all IMEX integration from t
i�1 to t

i

is simple. Note
that stages denoted with a hat, i.e. k̂

i

, correspond to stages in the explicit method while those
without correspond to stages in the implicit method. Initially, the first stage of the explicit method
is computed,

(5.6) k̂1 = R̂exp

h

(q̂(i�1)
h

, t)

then, for i = 1, 2, 3, all of the implicit stages and the rest of the explicit stages can be solved for,

k
i

= R̂imp

h

(q̂(i)
h

, t) where, qi

n

= ui�1
n

+�t

iX

j=1

a
i,j

k
j

+�t

iX

j=1

â
i,j

k̂
j

(5.7)

k̂
i+1 = R̂exp

h

(q̂(i)
h

, t).(5.8)

At this point, the solution at t
i+1 is,

(5.9) q̂

i

h

= q̂

i

h

+�t

3X

i=1

b
i

k
i

+
4X

i=1

b̂
i

k̂
i
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Applying the free-surface boundary condition at the domain boundary, we obtain the equation for
the relationship between amplitudes and Rayleigh wave speed,

✓
2� c2

c2
s

◆
A� 2i

✓
1� c2

c2
s

◆ 1
2

B =0

2i

✓
1� c2

c2
p

◆ 1
2

A+

✓
2� c2

c2
s

◆
B =0.

(7.5)

For a nontrivial solution, c must satisfy the determinant of the coe�cient matrix, which yields the
Rayleigh equation

(7.6)
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.

Then system is solved as

(7.7) B =
2ic2

s

2c2
s

� c2

r
1� (

c

c
p

)2A.

From the above, we derive the velocity-strain component as
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(7.8)

To perform a convergence analysis, a computational domain was chosen to be [�1, 1]⇥ [�1, 1]⇥
[0, 10] meters with periodic boundary condition along x and y direction. The wave amplitude is
negligible at z = 10 so absorbing boundary conditions were used on the z = 10 plane without
hindering the solution. The material properties were chosen such that the P-wave velocity was 2
m/s and the S-wave velocity was 1 m/s with a density of 1 kg3/m. The coe�cients were set to
(A,B) = (1.0, 1.5652). The p convergence rates are shown in Figure 3.

7.3. Elastic-Elastic Interface: Stoneley wave. The proposed DG method is used to com-
pute the boundary wave that travels along an elastic-elastic interface, i.e. a Stoneley wave. Stoneley
waves decay exponentially away from the interface as they propagate. This simulation demonstrates
the ability of this DG method to compute, correctly, a domain with an internal elastic-elastic inter-
face. The domain is split into two half-spaces, each with di↵erent material properties. The analytic
solution is written in terms of the complex amplitudes of the potentials [1], where subscripts of 1
and 2 denote the two di↵erent materials.

�1 = A1e
�kb

p,1zeikx, for z > 0

 1 = B1e
�kb

s,1zeikx, for z > 0

�2 = A2e
�kb

p,2zeikx, for z < 0

 2 = B2e
�kb

s,2zeikx, for z < 0

(7.9)
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Fig. 7. Theoretical prediction of fracture specific sti↵ness from the fracture interface wave velocity. Computed
for the material properties of Lucite: v

p

= 2730 m/s, v
c

= 1430 m/s, ⇢ = 1185 kg/m3 and a central frequency 1
MHz.

wave propagates along this non-welded interface, Rayleigh waves will be generated at the void spaces
and will couple through the areas of contact. The arriving fracture interface wave has a velocity
that ranges between the classic Rayleigh wave velocity (all void spaces or free surface) and the bulk
shear wave velocity (all welded area). The behavior of fracture interface waves is controlled by the
mechanical properties of the bulk rock (matrix) and the geometry of the fracture (i.e., aperture
and contact area distributions). In other words, fracture interface waves can be used to probe the
mechanical properties of fractures in rock. Namely, by measuring the velocities of the propagating
fracture interface waves, the fracture specific sti↵ness can be estimated. Fracture specific sti↵ness
is defined as ratio of increment of stress to the resulting increment in displacement. Pyrak-Nolte &
Morris [27] & Petrovitch et. al. [25] show that fracture specific sti↵ness is implicitly linked to the
hydraulic properties of a fracture and provides a link between the hydraulic and seismic response
of a fracture. Fracture interface waves have been theoretically derived by using displacement-
discontinuity theory [21] and observed experimentally along both natural and synthetic fractures at
the laboratory scale [28, 22].

We use the DG method to simulate fracture interface waves along fractures with di↵erent
geometry, i.e. for a range of contact area. An aperture map of a fracture was created to define
the domain of the non-welded interface. In the laboratory, an intact sample of Austin Chalk was
fractured and an acrylic cast was made of each side. Then surface roughness measurements were
performed using laser profilometry and analyzed for each cast to create a map of the void spaces and
contact areas formed by the two surfaces. Once the aperture map was obtained, a two dimensional
profile was taken from the data set and meshed. The wave velocities of the acrylic casts were
measured in the laboratory (at 1 MHz) and found to have a P-wave velocity of v

p

= 2730 m/s and a
S-wave velocity v

s

= 1430 m/s. The density of the acrylic was ⇢ = 1185 kg/m3. With these values,
the material properties of the mesh, (�, µ, ⇢), were calculated.

From the displacement-discontinuity approach to interface waves [21], the velocity-sti↵ness rela-
tion was computed. The relationship is shown in Figure 7. For a 1 MHz signal, a fracture interface
wave travels at the Rayleigh wave velocity for fracture specific sti↵nesses below 109 Pa/m. For
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Fig. 8. Averaged signal across the fracture plane for a range of contact area.

fracture specific sti↵nesses above 1014 Pa/m, the fracture interface wave will merge with the initial
shear wave front (all welded) and travel at the bulk (or matrix) shear wave velocity. However,
between these limits, two fracture interface waves exist called the fast and slow interface wave and
travel with speed, v

I

. The fast wave depends on the normal fracture sti↵ness while the slow depends
on the shear fracture sti↵ness. While analytically there exists two distinct interface waves, in this
study the di↵erence in wave speeds was to small to resolve for small sample lengths.

To see the shift in the interface velocity, the fracture sti↵ness was increased by numerically
applying a normal load that increased the contact area between the two surfaces. This was accom-
plished by adjusting the percentage of contact area during the meshing phase. While this is not
technically a correct loading method (see Hopkins [14] & Pyrak-Nolte & Morris [27] for another
approach), it will illuminate the essential wave physics in the problem. The simulated contact area
percentages were: 0%, 5%, 10%, 15%, 25%, 35%, and 40%.

Signals were averaged over 1cm to simulate the data received by a finite size laboratory trans-
ducer. The waveforms are shown in Figure 8. We note that the bulk shear wave arrivals only di↵er
in amplitude while the trailing wave systematically decreases in arrival time when the contact area
increases. To calculate the interface wave velocity, arrival times were picked after decomposing the
signals into a wavelet basis, Figure 9. From the wavelet transforms, the interface wave is clearly
observed. However, as the contact area increases, the two waves begin to interfere. Therefore using
the central frequency of the interface wave becomes rather di�cult. The arrival times of the fracture
interface waves (used to calculate the velocities in Table 8.1) were picked by determining the time
of arrival time of the maximum amplitude for a frequency of 1 MHz. Table 8.1 lists the interface
wave velocities along with the estimated specific sti↵nesses. The DG formulation presented here is
able to predict the increase in sti↵ness from the change in the velocity and simulate the observed
changes in spectral content [22].

8.3. Homogeneous anisotropic media. In this section, a simple example of the DG methods
ability to accurately compute the anisotropic elastic wave equation is given. The same material
properties were given to every finite element in a 5 ⇥ 5 ⇥ 5 meter cubic domain to produce a
homogeneous orthorhombic anisotropic medium. Orthorhombic materials have di↵erent P-wave and
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Fig. 9. Wavelet decompositions of the 0% (top left), 10% (top right), 25% (bottom left), and 40% (bottom right).

% Contact Area v
interface

(m/s) Sti↵ness (Pa/m)

0% 1311.7 n/a
5% 1314.9 6.68 ⇥ 109

10% 1318.2 1.00 ⇥ 1011

15% 1324.8 2.51 ⇥ 1011

25% 1338.2 6.31 ⇥ 1011

35% 1348.4 7.94 ⇥ 1011

40% 1357.6 1.06 ⇥ 1012

Table 8.1
Calculated sti↵nesses via the slow interface wave velocities, v

interface

, and displacement-discontinuity theory.

S-wave velocities in three orthogonal directions, that is, they have three mutually orthogonal planes
of symmetry. Each plane of symmetry has its own P-wave and S-wave velocity. For convenience,
the symmetry planes were aligned with the Cartesian reference coordinate system, i.e. x̂, ŷ, and
ẑ. The material properties were selected to produce a medium whose P-wave velocity is 5.51 m/s,
4.38 m/s, and 4.00 m/s and S-wave velocity is 2.16 m/s, 3.26 m/s, and 3.58 m/s in the x̂, ŷ, and ẑ
directions, respectively (Table 8.2). Images of the velocity field are shown in Figure 10. Note that
the direct waves are fastest in the x direction and slowest is in the z direction.

Orthorhombic systems have a wide range of real world applications. Theoretically, an or-
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Fig. 10. Snapshots contour of the velocity fields (top) V
x

, (middle) V
y

, and (bottom) V
Z

at t = 0.45s.

⇢ C11 C22 C33 C44 C55 C66 C23 C13 C12

1.0 30.40 19.20 16.00 4.67 10.86 12.82 4.80 4.00 6.24
Table 8.2

Homogeneous orthorhombic parameters

thorhombic media is most commonly created when a vertically transversely isotropic (layered)
background is embedded with parallel vertical fractures or when two or more mutually orthogo-
nal fracture sets intersect at an arbitrary angle [36]. Sedimentary basins often exhibit orthorhombic
symmetry, where fracture sets are commonly found in thick sandstone beds and granites. Therefore,
while we are only simulating a point source in a simple cubic domain, we are demonstrating the DG
methods ability to model a relevant background medium that many field scientists use to describe
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Fig. 13. 3D SEAM acoustic velocity model.

Fig. 14. Snapshot of V
x

taken at t = 4.2s of the 3D SEAM velocity model.
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Fig. 15. Snapshot of V
y

taken at t = 4.2s of the 3D SEAM velocity model.

Fig. 16. Snapshot of V
z

taken at t = 4.2s of the 3D SEAM velocity model.
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Such geometries require the DG method to accurately compute the Stoneley waves. Again, if the
DG method failed, the accumulation of the errors would render the solution useless.

The success of any computational method hinges on its ability to represent, accurately, the
domain in question. Unstructured tetrahedral meshes were paramount to the successful modeling
of the complex geometries used in this paper because of the plethora of automated tetrahedral
mesh generators. In the authors opinion, the ability to mesh a domain using tetrahedrals rather
than hexahedrals when computing solutions for the subsurface is a tremendous advantage of the
DG method over other high-order methods, namely the SE method. In most cases, the domains
in question are far too complicated to allow scientists or engineers to create a systematic method
to mesh the domain themselves and they must turn to automated meshing software. Because
tetrahedral mesh generators are far more abundant and can handle more complex geometries than
those that use hexahedrals, selecting a computational method that is not bound to a specific finite
element type is preferred. In the authors’ opinion, this is one of the major drawbacks to SEM.

Another aspect of developing a computational method to solve the anisotropic elastic wave
equation is the inversion of the mass matrix. In the classic continuous finite element method, the
semi-discrete form contains a mass matrix on the left hand side that couples each element together
rendering it implicit. Since inverting the matrix is far to expensive, solving the system iteratively
for each time step or factorizing the mass matrix has been the only acceptable solution. Currently,
there are two schools of thought to create an explicit semi-discrete form of the elastic wave equation.
The SE method evolved by, as mentioned, restricting the mesh to hexahedral elements so that the
nodal points could be, cleverly, chosen at the Gauss-Lobatto-Legendre points. By using Gauss-
Lobatto-Legendre quadrature over each element, the mass matrix will be diagonal, thereby allowing
the semi-discrete form to be explicitly solved. The other method is to use a “broken” finite element
mesh, where each element is discontinuous, i.e. the DG method. By doing so, each element will
decouple by construction and the mass matrix will be block diagonal. Then, each block of the mass
matrix will be equivalent (when the same type of element is used) and the inverse can be tabulated
beforehand. The advantage of the latter method over the former is that it isn’t dependent on
a specific set of nodal points and works for any type of finite element while the Gauss-Lobatto-
Legendre only exist for hexahedrals. However, the drawback to using the DG method is the number
of unknowns. There will always be a larger amount of unknowns (for a given mesh) with the DG
method rather than a continuous method because the discontinuous method will have two degrees
of freedom over each facet node. This is required so that a flux condition is imposed to couple each
local element into a global solution.

Mesh adaptively is another area where the DG method is superior to continuous methods.
There are two types of adaptively. The first is h-adaptively, where the characteristic size, h, of
the finite elements are allowed to vary. By doing so, one can specify areas of the computational
domain that require a large density of nodes by reducing the element size and the mesh can be
fit to all complex geometric topographies or discontinuities. However, then the use of automated
meshing algorithms becomes the key to success. All FEM (classic FEM, SEM and DG) methods
account for this h-adaptively and the true burden lies in creating the computational mesh. The
second is p-adaptively, where the number of degrees of freedom per finite element is allowed to
change from element to element. This becomes very important when the computational mesh is
strongly h-adaptive. To produce a stable solution, the computational mesh must be created such
that there are at least 8 to 10 degrees of freedom per wavelength. However, it is not always possible
to account for the complex geometric structures in the subsurface without exceeding this number.
p-Adaptively is used to combat this realization. Reducing the degrees of freedom in smaller elements
(and increasing it for larger elements) has two advantages: the maximum allowable time step can be
increased in regions of oversampling and the computational e�ciency can be increased. Traditional
continuous FEM methods account for p-adaptively, but require the use of rather complicated basis
sets because the number of nodes on any given facet of an element di↵ers. To the authors knowledge,
the SEM method cannot handle p-adaptive meshes because it is tightly restricted by its quadrature
requirements. p-adaptively poses no problem for the DG method because the volume of each element
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is completely localized. In fact, the weak formulation (Equation 2.10) is inherently p-adaptive by
construction because of this localization. The only part of the implementation that is e↵ected by
a p-adaptive mesh is the flux, but this is simply handled by recognizing that lower order elements
must be projected (L2 projection) to the higher order elements such that the jumps and averages
can be computed. In this light, we believe that when considering computational domains from the
laboratory scale to the global scale, the DG method is a proper framework to provide high-order
accurate results.

The last di�culty that must be discussed is the discretization of the time derivative. The
mesh elements can vary by large amounts when meshing domains involve realistic geometries. This
occurs when the geometric features vary over many wavelengths and the mesh generation software
forces high quality elements. At which point, the mesh has two regions: one where elements have a
reasonable number of degrees of freedom per wavelength and one where the elements are orders of
magnitude smaller. Because of this, the time step, determined by the CFL conditions is orders of
magnitude smaller than is required by the majority of the domain, thereby wasting a tremendous
amount of computational e↵ort. There have been two lines of thought to combat this problem:
(1) allowing each element to have its own local time step and (2) employing semi implicit-explicit
(IMEX) methods. Local time-stepping has been used successfully by Kaiser and Dumbser [9].
However, properly balancing the load in a parallel environment is di�cult. The domain cannot
be decomposed directly using more traditional methods, for example METIS [16], because each
element requires a di↵erent amount of computational e↵ort per simulation time. The other option
is to break the residual vector into two parts; those with large sizes and those with small sizes,
and then integrating the small elements implicitly and the larger explicitly. This allows the small
element’s time step to increase without risking instability at the cost of solving a system of equations.
By mixing the two methods, the time step is set to a value that is closer to the traditional value,
dictated by the CFL conditions for the large elements.

10. Conclusion. In this paper, we have proposed and shown that the DG method is an ideal
framework to use when the computational domain in question contains anisotropic materials and
complex geometric features over a range of length scales. The anisotropic elastic wave equation
was written in its strong form so that the solution could be approximated with the DG method.
A numerical flux was derived such that the localized finite elements were coupled in an accurate
and stable manner. The external boundaries of the domain were also accounted for by providing
numerical fluxes. Both free-surface and absorbing boundary conditions were provided. CPML re-
gions were also derived to improve upon the absorbing boundary conditions. The CPML’s enable
this method to simulate an infinitely sized domain by reducing, for all practical purposes, the re-
flections from the boundary. Two time discretization schemes, the classic LSERK method and the
more complex IMEX method were also presented. Convergence rates were found by utilizing the
analytic solutions of two di↵erent surface waves: Rayleigh and Stoneley waves. By combining all
of these elements, the method was tested with several complex rock physics and global seismology
applications. Generalized Rayleigh waves, or interface waves, were shown to agree with Displace-
ment Discontinuity theory by displaying a fracture specific sti↵ness dependence without the use of
special “jump conditions.” The DG method was also used to generate complex wave fields from
an explosive point source in an orthorhombic medium as well as a transversely isotropic medium
that was embedded into a domain with a 3D rough surface. These applications illustrated the DG
method’s ability to compute high-order solutions when complex computational domains with com-
plex materials are used. Lastly, we moved to the global scale by considering the 3D SEAM model.
This model displayed the DG methods ability to correctly handle a domain with extremely complex
geometric features within its interior. After using the DG method to compute solutions in all of the
applications listed, we demonstrated that the DG method is an ideal method to solve the worlds
more complex wave propagation problems.
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