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A DISCONTINUOUS GALERKIN METHOD FOR MODELING MARINE
CONTROLLED SOURCE ELECTROMAGNETIC DATA

TORGEIR WIIK⇤, MAARTEN V. DE HOOP† , AND BJøRN URSIN‡

Abstract. We present a discontinuous Galerkin (DG) method for the time harmonic, di↵usive Maxwell’s equa-
tions, with a view towards modeling marine Controlled Source Electromagnetic (mCSEM) data for geophysical explo-
ration. We treat the first order Maxwell system, which gives us the same approximation order in both the electric and
magnetic fields, and ensures that we do not need the penalty term used when treating the second order double-curl
formulation. Due to the discontinuous approximation space, the DG method accomodates large parameter contrasts,
and it is flexible with respect to both local mesh and polynomial order refinements. These properties make the
method suited for mCSEM modeling. In the implementation we allow a completely unstructured mesh, and utilize a
centered flux and a first order approximation space. For this setting we estimate a first order convergence rate. We
further demonstrate the method in the so-called 2.5D setting to model mCSEM data, and show the accuracy of the
method in models in which highly accurate numerical solutions can be obtained using alternative methods. Finally,
we demonstrate the method on more realistic examples and illustrate the physics of mCSEM.
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1. Introduction. In this paper we consider a discontinuous Galerkin method for solving the
time harmonic, di↵usive Maxwell’s equations. The framework is formulated in context of marine
Controlled Source Electromagnetics (mCSEM) for hydrocarbon prospecting, but is completely gen-
eral. In mCSEM, low-frequency, electromagnetic signals are used for hydrocarbon prospecting, and
it is a relatively new achievement; the first Seabed Logging (SBL) survey was conducted by Sta-
toil o↵shore Angola in 2000 [14]. Marine Controlled Source Electromagnetic (mCSEM) surveys are
usually performed by towing a horizontal, electric dipole which outputs a binary waveform, thus
generating electromagnetic signals, behind a vessel. Usually the signal’s frequencies lie in the range
0.1Hz � 10Hz, as these frequencies penetrate into the relevant depths of the subsurface. Receivers
that measure the electric and magnetic field are placed on the seabed (See Figure 1). The electro-
magnetic properties of a medium are described by its electric permittivity, electric conductivity and
magnetic permeability. A hydrocarbon reservoir will typically possess a lower electric conductivity
compared to its surroundings, which means that the electromagnetic signals from the dipole will
scatter when they hit the reservoir. From measuring this scattered field at the receivers we can be
able to predict the location of a possible reservoir, and what kind of fluid (oil, gas, water) it con-
tains. Modeling this scattered response in known models constitutes the forward scattering problem,
which we will consider in this paper. Due to the conductive media and low, distinct frequencies, the
governing equations are the time harmonic di↵usive Maxwell’s equations, i.e. Maxwell’s equations
including conduction currents.

To model the response of a mCSEM experiment we apply the discontinuous Galerkin (DG)
method, see [16] for an introduction. [16] describes very well the development of the DG method
for time dependent problems and how it relates to the finite volume (FV) method. The DG method
can be viewed as a mixture between conventional finite element methods and FV methods; over
each element in the mesh the solution is expanded in a chosen basis, and to connect this element
to its neighbors in a consistent way a numerical flux is specified along the element boundaries.
Although the FV method allows an unstructured mesh, the introduction of higher order spatial
approximations extends the stencil to several elements in the mesh, not only neighbors. This is one
important di↵erence between FV and DG methods; increasing the spatial approximation order in
the DG method still preserves the local formulation as every basis function has support over a single
element only. This leads to a method which is very flexible with respect to the computational mesh.
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Fig. 1. Figure displaying a usual configuration of a mCSEM survey. A horizontal electric dipole is towed behind
a vessel, while receivers are placed on the seabed. Main sources for measured response are: 1:Interaction with sea-air
interface, 2:direct wave, 3:Response from the seabed, 4:Response from hydrocarbon reservoir. The figure is retrieved
from [21].

Choosing order zero polynomial basis functions in DG will recover a FV method. For an example
of a FV method for the time domain Maxwell’s equations related to our formulation, see [27].

Finite element methods for solving Maxwell’s equations in the mCSEM context exist in many
di↵erent forms. In the 2.5D setting, with medium invariance in the strike direction, [32] presented a
coupled set of scalar second order equations for the strike components of the electric and magnetic
fields. A finite element method was applied to these equations by [18], and has the advantage that
the degrees of freedom is reduced and continuous elements may be used. However, to obtain the
most frequently used field component, the inline electric field, it requires a di↵erentiation of the
solution, and the implementation of anisotropy is less straightforward compared to using the first
order system. To honor the discontinuous nature of the electromagnetic fields at material interfaces
it is common to use curl-conforming elements [26] for 3D finite element methods. These ensure
that the proper discontinuities are allowed at interfaces between tetrahedrons in the mesh. This
path was taken by for instance [11], and applied to a second order equation for the electric field.
This implies that a di↵erentiation is needed to obtain magnetic field components. In this paper, we
investigate how a fully discontinuous method, namely DG, applied to the mCSEM problem through
the complete first order Maxwell system behaves.

The DG method was first applied to hyperbolic PDEs in 1973 to model neutron transport [28],
and subsequently a theoretical analysis of DG methods followed, see for instance [17]. More recently,
the interest in DG methods has increased and many contributions to theory and applications have
been made during the last two decades. Confer to [8] for a summary of the development of DG
methods until 2000.

The DG method for elliptic problems originates from finite element methods using interior
penalties (IP) to weakly enforce continuity conditions between elements, see for instance [2, 3, 13, 4,
35, 1]. The interior penalty methods arose around the same time as the DG method for hyperbolic
equations. We use a formulation based on the first order system of equations, an approach which
is similar to the method used by [12], and also closely related to the work in [15]. We note that the
solution of Maxwell’s equations in the frequency domain using DG methods has also been studied
in the context of second order curl-curl equations using IP methods, see for instance [30] and the
references therein, and so called local DG methods [10, 6]. The first order system has advantages in
as much as that one avoids numerical di↵erentiation to obtain the ”second” field (in the curl-curl

formulation you solve for either the electric or magnetic field), as both the electric and magnetic
field are observed in mCSEM. However, we have to solve for twice the number of field components.
The motivation for applying the DG method to this problem lies in the treatment of discontinuities
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in the electromagnetic fields at material interfaces, i.e. geological interfaces, in the subsurface.
Further, the DG method is flexible with respect to the computational mesh, which should prove
an advantage for the discretization geophysical models. For instance, conventional finite di↵erence
methods usually require a regular mesh, and may have problems at interfaces with large material
contrasts. The DG method handles this naturally, and the method is implemented for completely
unstructured meshes.

We present a DG method for the mCSEM problem using unstructured meshes and linear basis
functions to accomodate the slowly varying fields in homogeneous regions and the limited regularity
of the PDE coe�cients, but the DG method is also flexible with respect to local polynomial order
refinements. The choice of first order basis functions was also made with a view towards simplic-
ity for non-specialist users of the code. The problem is formulated as a first order system, thus
avoiding the penalty terms which are introduced in the curl-curl formulation. A Perfectly Matched
Layer is implemented to simulate the radiation condition on the finite computational domain. This
formulation using the DG method admits large jumps in the conductivity. This is essential for the
mCSEM problem where the conductivity varies over many orders of magnitude. First, we perform
some numerical tests using 1D Maxwell’s equations, to investigate if it is worthwhile to proceed
to realistic problems. Finally, we consider the so called 2.5D setting, with model invariance along
one direction. We validate the implementation using a plane layer model, for wich very accurate
solutions exist. After this we consider two realistic examples in the 2.5D setting to demonstrate
and explain the physics behind mCSEM prospecting. The error of the scheme is estimated to decay
linearly as a function of mesh size.

2. Basic equations.

2.1. Problem formulation. Let �, ✏ and µ denote the electric conductivity, electric permit-
tivity and magnetic permeability, which are assumed to be real, non-negative L1 functions. We
further accept the constitutive relations d = ✏e, b = µh and jc = �e, where d, e,b,h denote the
electric displacement field, electric field, magnetic flux density and magnetic field strength, respec-
tively, and jc denotes the conduction current set up by an imposed electric field. These vectors take
on values in C3. This leads us to the following form of Maxwell’s time harmonic curl equations in
R3 [33]:

r⇥ e = i!µ0h,(2.1)

r⇥ h = �̃e+ js,(2.2)

where i =
p
�1, ! = 2⇡f , �̃ = � � i!✏ and js is the source current density. Here f denotes

the frequency and µ0 is the freespace permeability. We allow � to be a rank 2 tensor, where
�11 = �22 = �

h

, �33 = �
v

and �
ij

= 0, i 6= j. This is known as TIV anisotropy (transversally
isotropic in the vertical direction), and allows for di↵erent conductivities in the horizontal and
vertical directions. This is a useful case for geophysical applications as the subsurface is often
stratified, and thus causes this anisotropy.

The source js is a horizontal electric dipole for mCSEM applications, with polarization given
by l = [l

x

, l
y

, 0]T , where |l| is the length of the source, and current amplitude I (!). The source
dipole moment is given by I |l|. This is well approximated by a point dipole, Il� (x� x

s

), when
|l| ⌧ |x� x

s

|, where x
s

is the source position [21]. Numerically we will use an approximation to a

point source such that js 2
⇥

L2
�

R3
�⇤3

, which is needed in the later weak formulation. The source
function is explicitly given later.

In our applications the frequencies lie in the range 0.1�10Hz. In the watercolumn and sediments
we have �̃ ⇡ �, i.e. the quasi-static approximation [25] applies, which means that the equations
describe a di↵usion process instead of wave propagation. This is because of the low frequencies,
the fact that the conductivity of sea-water is approximately 3.2S/m (around 1S/m for water filled
sediments) and the permittivity is usually of the same order as the freespace permittivity, ✏ = ✏0 =
8.85 · 10�12F/m.
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Further, we assume that the fields decay as they propagate towards infinity, which is expressed
through the Silver-Müller radiation condition. This is expressed as [19]

�

�

�

p
✏̃e� h⇥ r

r

�

�

�

 c

r2
,

|e|  c

r
,(2.3)

|h|  c

r
,

for large r. Here ✏̃ = ✏+ i �
!

, r = x� x
s

, r = |r| and c is a generic constant.
We consider solving equations 2.1 and 2.2 on a bounded domain ⌦ ⇢ R3 with appropriate

boundary conditions imposed on @⌦. These boundary conditions will be specified later, and will
correspond to those introduced for the Perfectly Matched Layers (PML) as discussed in Appendix
A. We introduce the Sobolev space

W = H (curl;⌦) =
n

f 2
⇥

L2 (⌦)
⇤3

: r⇥ f 2
⇥

L2 (⌦)
⇤3
o

,

and assume js 2
⇥

L2 (⌦)
⇤3
. W is the natural space for Maxwell’s equations. We further denote the

standard L2 inner product over ⌦ by

(a, b)⌦ =

Z

⌦
a · bdx,

where the overline denotes complex conjugate. We proceed by multiplying equations 2.1 and 2.2
with v 2 D, where D is a space of su�ciently smooth test functions, and integrating the result over
⌦:

(r⇥ e, v)⌦ = i!µ0 (h, v)⌦ ,(2.4)

(r⇥ h, v)⌦ = (�̃e, v)⌦ + (js, v)⌦ .(2.5)

Performing integration by parts then yields
Z

@⌦
v · (n⇥ h) dS+(h,r⇥ v)⌦ = (�̃e, v)⌦ + (js, v)⌦ ,(2.6)

Z

@⌦
v · (n⇥ e) dS+(e,r⇥ v)⌦ = i!µ0 (h, v)⌦ ,(2.7)

where n is the outward pointing unit normal, and dS is a surface measure. This yields the following
weak formulation of our problem:

Find e,h 2 W such that equations 2.6 and 2.7 holds 8v 2 D.

The measurements emeas,hmeas, taken along a line or on a surface S, are then expressed as the
restriction of e and h to S. That is,

emeas = e |S ,hmeas = h |S .

All field components are usually measured, with the exception of the vertical electric field. Engi-
neering challenges prevent this from being measured accurately.
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Fig. 2. Intersection of domain ⌦.

3. The Discontinuous Galerkin Method.

3.1. Mesh and approximation space. We solve equations 2.6 and 2.7 numerically for e and
h using the DG method on a bounded domain ⌦ ⇢ R3, where n⇥ e = 0 is imposed on @⌦. Inside
@⌦ a PML zone, where the fields are attenuated without causing any reflection back into the model,
is incorporated to simulate the radiation condition, as shown in Figure 2. Further, we consider a
non-zero electric permittivity ✏, which means that we do not consider the quasi static approximation
which is often used in this setting [25]. It is assumed that the air layer is chosen thick enough to
account for the interaction between the water column and the air.

We consider ⌦
h

, h > 0, to be a family of discretized approximations to ⌦ such that ⌦
h

=
S

K2⌧

h

K, where ⌧
h

is a tesselation of ⌦
h

into N
K

simplices K, i.e. tetrahedrons in 3D. We denote

the set of facets by �, facets between two neighboring elements by �i, and the facets on @⌦
h

as �b.
Naturally, � = �i [ �b and �i \ �b = ;.

We consider aproximate solutions
�

eh,hh

�

2 X ⇥X, where

X =
n

f 2
⇥

L2 (⌦
h

)
⇤3

: 8K 2 ⌧
h

, f |
K

2
⇥

P1 (K)
⇤3
o

.

Here P1 (K) is the space of polynomials of at most degree 1 over K. Since we consider a Galerkin
type method, the space of test functions is chosen equal to the solution space.
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3.2. Local weak formulation. We obtain the local weak formulation for the discrete solution
by considering the weak formulation over a single element K 2 ⌧

h

:

Z

@K

v · (n⇥ h⇤) dS+
�

hh,r⇥ v
�

K

=
�

�̃eh, v
�

K

+ (js, v)
K

,(3.1)
Z

@K

v · (n⇥ e⇤) dS+
�

eh,r⇥ v
�

K

= i!µ0

�

hh, v
�

K

,(3.2)

where e⇤,h⇤ are the numerical fluxes which remain to be specified, and v 2 X. As the basis for X is
chosen as real valued functions, and it su�ces to consider the basis functions, the complex conjugate
in the weak formulation is omitted. This yields the following local discrete weak formulation of our
problem:

Find eh,hh 2 X such that equations 3.1 and 3.2 hold 8v 2 X, for each K 2 ⌧
h

.

To couple each element to its neighbours and to ensure consistency a numerical flux needs to
be specified at the element boundaries, as the fields take on two values at each internal facet due
to the discontinuities. Several choices for specifying the flux term have been explored, for instance
the upwinding flux [12] is popular for flow problems. We choose to use the centered flux [12], as for
the di↵usion dominated problem there is no wave motion as such. We thus use

e⇤ = {{e}} =
1

2

�

eh,+ + eh,�
�

,

and similarily for the magnetic field. Here +/� denotes each side of the boundary surface. For each
tetrahedral element K we may write @K =

S4
k=1 Fk

, where F
k

is a facet of the tetrahedron, and
over each such facet the normal vector is constant. Since the pairwise intersection of facets on a
given tetrahedron has zero surface measure we may write the integral as the sum of the integrals
over each face. At the boundary @⌦

h

, where there are no neighbours, we implement the boundary
condition n⇥ e = 0, and define h⇤ = {{h}} = hh,+, i.e. the limit of the value in the element. This
may cause reflection at the boundary, but will nevertheless be attenuated by the PML zone.

3.3. Global weak formulation. The global weak formulation is obtained by summing equa-
tions 3.1 and 3.2 over the elements, thus obtaining

X

F2�i

Z

F

[[v]] · (n⇥ {{h}}) dS +
X

F2�b

Z

F

v · (n⇥ {{h}}) dS

+
X

K2⌧

h

�

hh,r⇥ v
�

K

=
�

�̃eh, v
�

⌦
h

+ (js, v)⌦
h

,(3.3)

X

F2�i

Z

F

[[v]] · (n⇥ {{e}}) dS +
X

K2⌧

h

�

eh,r⇥ v
�

K

= i!µ0

�

hh, v
�

⌦
h

,(3.4)

where [[v]] is the jump of v across the inter-element interface, as defined in [12]. This yields the
following global discrete weak formulation of our problem:

Find eh,hh 2 X such that equations 3.3 and 3.4 holds 8v 2 X.

3.4. Boundary and interface operators. At this point it is straightforward to make the
connection to the boundary operator M

F

for F 2 �b, and the interface operator D
F

for F 2 �i[�b,
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as presented in [15]. To do this we first separate the source term and write

�

�̃eh, v
�

⌦
h

�
X

F2�i

Z

F

[[v]] · (n⇥ {{h}}) dS �
X

F2�b

Z

F

v · (n⇥ {{h}}) dS

�
X

K2⌧

h

�

hh,r⇥ v
�

K

= � (js, v)⌦
h

,(3.5)

i!µ0

�

hh, v
�

⌦
h

�
X

F2�i

Z

F

[[v]] · (n⇥ {{e}}) dS �
X

K2⌧

h

�

eh,r⇥ v
�

K

= 0.(3.6)

We rewrite this as a single equation for wh =
�

eh,hh

�

2 X ⇥X as

(3.7)

Z

⌦
h

G0w
h · ṽdx�

X

F2�i

Z

F

[[ṽ]] ·Gn {{w}} dS �
X

F2�b

Z

F

ṽ ·Gn {{w}} dS

�
X

K2⌧

h

Z

K

wh ·
X

l=x,y,z

Ge
l

@

@l
ṽdx = �

Z

⌦
h

j · ṽdx,

where ṽ 2 X ⇥X and j = [js, 01⇥3]
T , and

G0 =

✓

�̃I3⇥3 03⇥3

03⇥3 i!µ0I3⇥3

◆

, Gn =

✓

0 N
N 0

◆

, N =

0

@

0 �n
z

n
y

n
z

0 �n
x

�n
y

n
x

0

1

A .

Here e
l

is the canonical basis for R3. Following [15] we assume that M
F

and D
F

are associated
with matrix valued fields, M

F

: �b ! R6,6 and D
F

: �b [ �i ! R6,6, respectively. We find that

D
F

= �Gn,(3.8)

M
F

= �G̃n,(3.9)

with

G̃n =

✓

0 N
�N 0

◆

.

This specifies the actions of the operators on a vector through the matrix-vector product. It is
evident that multiplication with N corresponds to the cross product with n, and the construction
of Gn, G̃n ensures that n⇥ e vanishes on the boundary.

It may be verified that our system does not fit into the Friedrichs’s systems framework treated
by [15] because of the fact that the coe�cients are complex, nor does the central flux satisfy the
conditions set in [15] on boundary and interface operators for convergence. We note that on F 2 �i,
D

F

is double valued, although its mean is zero, while on �b, D
F

is single valued.

4. Discretization.

4.1. 3D Source representation. Due to the restriction to a space of first order polynomials
we choose to implement the source as a normalized cone over R3:

js =

(

3
⇡⌧

4 (⌧ � r) d̂, r  ⌧

0, otherwise
,

where r2 = (x� x
s

)2 + (y � y
s

)2 + (z � z
s

)2 is the squared euclidian distance to the source, and

d̂ = [cos↵, sin↵, 0]T describes the source polarization, where ↵ is the angle between the source
polarization and the x-axis in the horizontal plane. This choice is made as we model a horizontal
electric dipole. This source has a unit dipole moment.
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4.2. Discrete system. In this section we describe the linear system of equations using linear
basis functions. The corresponding system with higher order basis functions (p-refinement) can be
deduced by following the same procedure. It is easily verified that

n

[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [x0, 0, 0]
T

, [y0, 0, 0]
T

, [z0, 0, 0]
T

,

[0, x0, 0]
T

, [0, y0, 0]
T

, [0, z0, 0]
T

, [0, 0, x0]
T

, [0, 0, y0]
T

, [0, 0, z0]
T

o

=
�

vi
K

: i = 1 . . . 12
 

= X
K

is a basis for X restricted to a given element K, where x0 = 1
L

(x� x0), x0 is a vertex of the
tetrahedron, and L is a characteristic lenght scale of the element. This choice is made to ensure
that the expansion coe�cients of the solutions in this basis have little dependency on the actual
spatial positions of the elements, which should yield a better conditioned system to solve. This is
called a modal basis, and di↵ers from the nodal approach as described in [16] where basis functions
are constructed around specific points within each element. The basis functions for X are chosen
to have support over only one element in the mesh, where they are given as in the definition of X

K

.
To this end we introduce �

i;j such that X = span {�
i;j : i = 1 . . . 12, j = 1 . . . N

K

}. Specifically, we
choose for a given j = j0,

�
i;j0 (x) =

(

vi
K

j0
(x) , x 2 K

j0

0, otherwise
,

where we have introduced an ordering of the elements.

Over a given element K
j0 we expand eh and hh in the chosen basis, i.e. we write eh |

K

j0
=

a1
e,K

j0
�1;j0 + . . .+a12

e,K

j0
�12;j0 and hh |

K

j0
= a1

h,K

j0
�1;j0 + . . .+a12

h,K

j0
�12;j0 , where a

i

e/h,K

j0
2 C, i =

1 . . . 12. We insert these representations into equations 3.3 and 3.4, which yields 24 equations to
determine the 24 unknown expansion coe�cients over K

j0 , coupled to the expansion coe�cients of
the neighbouring elements through the flux. We note that each integral in the weak formulation
can be calculated analytically, with the exception of

�

�̃eh, v
�

K

if �̃ is allowed to vary within the
elements, and perhaps the source integral depending on the source. These integrals are evaluated
using a Gaussian quadrature. Quadrature rules over di↵erent geometrical shapes, and of di↵erent
order, can be found in e.g. [34].

We may organize the system of equations as

(4.1)

✓

A B

B̃ C

◆✓

E
H

◆

=

✓

J
0

◆

,

where A,B, B̃, C 2 C12N
K

⇥12N
K , E,H 2 C12N

K contains the unknown expansion coe�cients, and
J 2 C12N

K contains the terms from the source integral. Specifically,

E =
h

a1
e,K1

, . . . , a12
e,K1

, a1
e,K2

, . . . , a12
e,K

N

K

i

T

,(4.2)

H =
h

a1
h,K1

, . . . , a12
h,K1

, a1
h,K2

, . . . , a12
h,K

N

K

i

T

.(4.3)

Disregarding the boundary conditions, which are implemented in the PML-zone, we find for
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i, j = 1 . . . N
K

that the matrices are given by the following sub-matrices:

(A)
ij

=

0

B

@

(�̃
h

�1;i,�1;j)
K

i

. . . (�̃
v

�1;i,�12;j)
K

i

...
. . .

...
(�̃

h

�12;i,�1;j)
K

i

. . . (�̃
v

�12;i,�12;j)
K

i

1

C

A

,

� (B)
ij

= �
⇣

B̃
⌘

ij

=

0

B

@

1
2I

@K

i

i,j,1,1 + �
ij

IKi

i,j,1,1 . . . 1
2I

@K

i

i,j,1,12 + �
ij

IKi

i,j,1,12
...

. . .
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is the outward unit normal vector for element K
i

, and �
ij

is Krönecker’s delta. We observe that
with the given choice of basis for X, both A and C are block diagonal, while B is a sparse matrix
with entries along the diagonal and positions corresponding to neighbours. For the source term we
find that

J = �
h

(�1;1, j
s)
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, . . . , (�12;1, j
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, (�1;2, j
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N

K

i
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4.3. Solving the linear equation system. To illustrate the conditioning of the system we
show the eigenvalues of the system matrix for a 1D problem, explained in Section 5.1. Further, we
show the eigenvalues after using two standard preconditioning techniques, a Jacobi preconditioner
and an incomplete LU factorization. Figure 3 displays the eigenvalues in the di↵erent cases, and we
observe the large spread in eigenvalues for the original matrix. We find that both preconditioning
approaches reduce the condition number of the system matrix, but the LU factorization is superior
in this case, clustering the eigenvalues around the line < (�) = 1 with = (�)  1, as shown in Figure
3. The incomplete LU factorization was perfomed with a cuto↵ at 10�3.

For the situations considered in the numerical examples in this paper, the size of the matrix
is within the capabilities of sparse, direct solvers. A direct solver was thus preferred due to the
conditioning of the system and the fact that we want to solve for many source positions, i.e. right-
hand-sides. The number of unknowns may be reduced slightly by enforcing divergence free basis
functions to explicitly incorporate the divergence conditions in Maxwell’s equations locally on each
element [9]. This was implemented and found not to yield significant improvements, and will not
be discussed further.

5. Numerical examples.

5.1. Numerical experiments in 1D. As a demonstration of concept we consider the 1D
frequency domain Maxwell’s equations; we restrict the propagation to the x-direction, assume that
the medium parameters depend only on this coordinate, and align the coordinate system such that
e = [0, 0, e

z

]T ,h = [0, h
y

, 0]T . This yields

�̃e
z

� @h
y

@x
= �js,

i!µ0hy

+
@e

z

@x
= 0.
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5.2.4. Salt model. Finally, we present a model including a highly resistive 10�3S/m salt
diapir. The model is shown in Figure 19. The results are obtained using a source radius of ⌧ = 6.25m,
26 wavenumbers and a frequency of 0.75Hz. The computational domain is �25000m  x  25000m,
�50000m  z  3000m. The model consists of a highly resistive air layer (� = 10�10S/m), and a
water layer with conductivity 3.2S/m. The subsurface consists of three layers, and the salt diapir
rises from below. The lowermost layer has a conductivity of 0.01S/m, and the colorscale is clipped
at 0.01S/m for vizualisation. The source is placed at x = 1000m and z = 800m, above a steeply
dipping part of the seabed. Figure 20 shows the field magnitudes in the model, while Figure 21
shows the magnitude and phase of the typical mCSEM measurements e

x

and h
y

along the seabed.
From these figures, we clearly see the e↵ect of the highly resistive salt diapir, suggesting that EM
methods are suitable for imaging these. Mapping salt structures using mCSEM is an extreme case
due to the very large resistivities, and the fact that salt structures can be large in size. This makes
the e↵ect on mCSEM data very prominent. The approximately flat phases in Figure 21 indicate a
very high propagation speed, consistent with the high salt resistivity. From Figure 22 we see how
the currents, given by �̃e, travel around the resistive diapir. Figures 22(c) and 22(d) show the vector
fields zoomed in around the top of the salt and seabed, and illustrates how the di↵erent interfaces
a↵ect the electric field behaviour. The fields are strongly a↵ected by the resistive salt.

Fig. 19. Model used in salt example. The green star denotes the source position and the green triangles the
receiver positions.

6. Discussion. We have demonstrated the properties of frequency domain DG modeling of
mCSEM data. The DG framework is flexible with respect to mesh (h) and polynomial order (p)
refinement, and is able to handle large contrasts in properties at material interfaces due to its discon-
tinuous nature. Both are important properties for electromagnetic methods in geophysics, although
only first order basis functions were discussed here. The accuracy of the method is estimated to
increase linearly as a function of decreasing mesh size. However, the corresponding linear system
of equations is often very sti↵ due to the unstructured nature of the mesh and the large parameter
variations. Thus, one needs to be careful when solving the system. We demonstrate the method
on several examples, showing the validation and capability of the implemetation, and illustrating
the physics of the mCSEM problem. For the 2.5D setting, the computational time is not heavily
dependent on the number of wavenumbers chosen, as each of them is treated in parallell.
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Appendix A. PML boundaries. To simulate the radiation condition given in equation 2.3
with equations 2.1 and 2.2 one would need a large domain computational ⌦

h

. This again would
increase the computational cost. To avoid this, a strategy using Perfectly Matched Layers (PML)
was implemented. This involves padding the domain ⌦ with an absorbing medium to ensure that the
fields are attenuated fast as they approach @⌦, as indicated in Figure 2. However, the introduction
of such a layer is not trivial. If it is done carelessly, reflections from the boundary between the
normal domain and the PML will be encountered, and these will potentially pollute the solution.
To avoid these reflections from the boundary the PML is designed in such a way that the fields are
attenuated within this zone, but it has no contrast in impedances compared to the actual domain of
interest, and thus does not cause any reflections. This attentuation emulates the radiation condition,
and allows for a smaller computational domain to be chosen. Several approaches are possible, for
instance the variable splitting presented by Berenger [5], and anisotropic matching [29], but we
choose the complex coordinate stretching, also known as complex scaling in analysis, introduced in
[7].

To this end we follow [7], and introduce the complex coordinates

x̃ =

Z

x

0
s
x

(x0) dx0,

ỹ =

Z

y

0
s
y

(y0) dy0,(A.1)

z̃ =

Z

z

0
s
z

(z0) dz0,

where s
j

(⌧) = ⇣1
j

(⌧) + i⇣2
j

(⌧) is a continuous function satisfying

⇣1
j

= 1, ⇣2
j

= 0 outside the PML zone,

⇣1
j

� 1, ⇣2
j

> 0 inside the PML zone,

such that the coordinates coincides with the ordinary cartesian coordinates outside the PML zone.
The gradient in the stretched coordinate system becomes

r̃ =



@

@x̃
,
@

@ỹ
,
@

@z̃

�

,

where @

@x̃

= 1
s

x

@

@x

. Maxwell’s equations then become

r̃ ⇥ e = i!µ0h,(A.2)

r̃ ⇥ h = �̃e+ js,(A.3)

r̃ · (✏e) = 0,(A.4)

r̃ · (µ0h) = 0,(A.5)

which looks as usual, except the coordinates may be complex. In practice s
j

(⌧) is taken as a power
function, that is

s
j

(⌧) = 1 + �

✓

d (⌧)

�

◆

m

, m � 1,

where d (⌧) is the distance in the j-direction to the boundary between the ordinary zone and the
PML zone, and � is the thickness of the PML zone. It can be verified that increasing the thickness
�, or increasing Re (�) and Im (�), will reduce the PML approximation error.

Appendix B. 2.5D frequency domain formulation. In this appendix we consider the 2.5D
situation described in the section concerning numerical results. We proceed by considering a sailing
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line in the x-direction, making the y-direction model invariant. We use the Fourier convention given
by the forward transform

F̂ (k
y

) =

Z

R
F (y) eiky

ydy,

and apply it to equations 2.1 and 2.2. This gives the following 2.5D frequency domain system
written componentwise:
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where we have omitted to denote the hat for Fourier transformed quantities. These PDEs are in
2D space for each k

y

. Thus, the corresponding basis functions depend only on x and z, while the
expansion coe�cients will depend on k

y

.
Following the procedure from earlier gives the following weak formulation for a given wavenum-

ber k
y

:
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Here v
i

, i = x, y, z denotes the components of the basis function v.
Solving the corresponding linear system of equations will give the fields in the spatial wavenum-

ber domain. To obtain the fields in the spatial domain we perform an inverse Fourier transform
using cubic spline interpolation between the wavenumbers and a Gaussian quadrature. [24] suggests
an upper bound for selecting the wavenumbers, and that they should be chosen on a logarithmic
scale.



A DISCONTINUOUS GALERKIN METHOD FOR MODELING mCSEM DATA 101

REFERENCES

[1] D. Arnold. An interior penalty finite-element method with discontinuous elements. SIAM Journal on Numerical
Analysis, 19:742–760, 1982.
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