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FAST INVERSION OF THE EXPONENTIAL RADON TRANSFORM BY USING
FAST LAPLACE TRANSFORMS

FREDRIK ANDERSSON⇤
AND VIKTOR NIKITIN†

Abstract. The Fourier slice theorem used for the standard Radon transform generalizes to a Laplace counterpart
when considering the exponential Radon transform. We show how to use this fact in combination with using algorithms
for unequally spaced fast Laplace transforms to construct fast and accurate methods for computing, both the forward
exponential Radon transform and the corresponding back-projection operator. Moreover, we show how to use this
result for inverting data modeled by the exponential Radon transform, both in the case of complete and incomplete
data measurements. For the case of incomplete data, we show how to formulate the reconstruction problem as a
deconvolution problem that only uses standard FFT after some initial computations using Laplace transforms.

1. Introduction. Let s 2 R and ✓ 2 S

1, where S

1 denotes the unit circle. The standard two
dimensional Radon transform is defined as

Rf(s, ✓) =

Z

x·✓=s

f(x) dx =

Z 1

�1
f(s✓ + t✓

?) dt,

and the parameters s and ✓ are used to parameterize the set of lines in R2.
The attenuated Radon transform in R2 describes the mapping from functions f and µ to line

integrals of the form
Z 1

�1
f(s✓ + t✓

?)e�
R 1
t µ(s✓+⌧✓

?
) d⌧

dt.

Integrals of this type appear for instance in medicine, where f describes the intensity distribution of
isotopes or radiopharmaceuticals inside a tissue, and where the function µ describes the attenuation
of the tissue. For the case where µ is constant within a known convex body, then the data obtained
from the attenuated Radon transform can be modeled by the simpler exponential Radon transform

[21],

(1.1) R
µ

f(s, ✓) =

Z

x·✓=s

f(x) dx =

Z 1

�1
f(s✓ + t✓

?) dt.

In [16], a generalization of the Fourier slice theorem is derived for the exponential Radon transform
along with an integral equation for the reconstruction problem of obtaining f given R

µ

f . A similar
integral equation is also derived in [6].

In [22], properties of the exponential Radon transform are derived, along with an inversion
formula of filtered back-projection type. Fourier-Laplace aspects of the exponential Radon trans-
form are also discussed. Since then, the exponential Radon transform and the associated inversion
problem have been discussed by several authors. For instance, range conditions are discussed in [1],
Cormack-type inversion formulas are discussed in [18], and an explicit formula for 180 degree data
is given in [19].

One of the most popular methods of inverting the usual Radon transform is by means of the
filtered back-projection method [17]. A drawback with this approach is that it has, in its standard
implementation, a time complexity of N3, if we assume that reconstruction is made on an N ⇥N

lattice, and that the number of samples in s and ✓ are both of the order N . Although there are
methods for fast (O(N2 logN)) back-projection, cf. [3, 10, 12], most of the fast methods rely on
usage of Fourier transforms, cf. [8, 9, 17].

In this paper, we make use of the Fourier-Laplace slice theorem to construct a fast O(N2 logN)
using methods for unequally spaced fast Laplace transforms [4].
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2. The Fourier-Laplace slice theorem and inversion in the continuous case. The
adjoint associated with the exponential Radon transform (1.1) can be written

(2.1) R⇤
µ

g(x) =

Z

S

1

eµx·✓
?
g(x · ✓) d✓,

cf. [22, 16]. It is a weighted integral of g over lines passing through the point x, and with µ = 0
this operator is typically referred to as the back-projection operator.

The Fourier slice theorem, which relates the one dimensional Fourier transforms of Radon
transformed data with the two-dimensional Fourier transform of data, is fairly straightforward to
generalize so that it applies to the exponential Radon transform. To see this, consider the one-
dimensional Fourier transform of the exponential Radon transform with respect to the first variable,
s, of R

µ

f :

(2.2)

Z 1

�1
R

µ

f(s, ✓)e�2⇡is�

ds =

Z 1

�1

Z 1

�1
f(s✓ + t✓

?)e�2⇡is�+µt

ds dt

Let us use describe ✓ by means of an angle �, i.e. ✓ = (cos�, sin�). By a change of variables,

x

1

= s cos(�)� t sin(�), s = x

1

cos(�) + x

2

sin(�)

x

2

= s sin(�) + t cos(�), t = �x

1

sin(�) + x

2

cos(�)

(2.2) transforms into

Z 1

�1
R

µ

f(s, ✓)e�2⇡is�

ds

=

Z 1

�1

Z 1

�1
f(x1, x2)e�2⇡i�(x1 cos(�)+x2 sin(�))+µ(�x1 sin(�)+x2 cos(�))

ds dt

=

Z 1

�1

Z 1

�1
f(x1, x2)ex1(�2⇡i� cos(�)�µ sin(�))+x2(�2⇡i� sin(�)+µ cos(�))

ds dt

= b
f

✓
� cos(�)� i

2⇡
µ sin(�),� sin(�) +

i

2⇡
µ cos(�))

◆
= b

f

✓
�✓ +

iµ

2⇡
✓

?
◆
.

This result is a generalization of the Fourier slice theorem. For more details, see [22, 16].

R
µ

f(s, ✓) can thus be obtained by a inverse one-dimensional Fourier transform of b
f ,

R
µ

f(s, ✓) =

Z 1

�1
b
f

✓
�✓ +

iµ

2⇡
✓

?
◆
e2⇡is�d�

=

Z 1

�1

Z

R2

f(x)ex·(�2⇡i�✓+µ✓

?)+2⇡is�

dxd�(2.3)

From this relation it immediately follows that

R⇤
µ

g(x) =

Z 1

�1

Z

S

1

g(s, ✓)ex·(2⇡i�✓+µ✓

?)�2⇡is�

d✓ ds.(2.4)

A reconstruction formula for the exponential Radon transform then formally reads

(2.5) f(x) = R⇤
�µ

WR
µ

f,

where W denotes the convolution operator

(2.6) Wg(s, ✓) = � 1

(2⇡)2

Z 1

�1

cos(µ(s� s̃))

s� s̃

@

@s̃

g(s̃, ✓) ds̃.
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The above integral is to be interpreted in terms of principal values. The Fourier multiplier bw
associated with W is given by

(2.7) bw(�) =
(

|�|
(2⇡)

2 if |�| � µ

2⇡

0 otherwise.

For details about this result, we refer to [22].
It is interesting to consider the structure of the formula (2.5) a bit more in detail. In the

remainder of this section we make formal arguments and ignore the functional analysis about which
requirements that are needed for convergence, for being able to use Fubini’s theorem etc.

Assume that we replace W in (2.5) with a convolution operator in s with kernel v(s, ✓) which
may have depend on ✓. Let bv denote the Fourier transform of v with respect to s, and consider the
operator

T
v

f = R⇤
�µ

Z 1

�1
v(s� s̃, ✓)R

µ

f(s̃, ✓) ds̃.

By using (2.3–2.4) to represent R
µ

and R⇤
�µ

and (formally) changing the order of integration,

T
v

f(y) =

Z 1

�1

Z

S

1

Z 1

�1
v(s� s̃, ✓)

⇥
✓Z 1

�1

Z

R2

f(x)ex·(�2⇡i�✓�µ✓

?)+2⇡is�

dxd�ds̃ ey·(2⇡i�✓+µ✓

?)�2⇡is̃�

◆
ds̃ d✓ ds.

=

Z

R2

Z 1

�1

Z

S

1

bv(�, ✓)f(x)e(y�x)·(2⇡i�✓+µ✓

?)
d✓ d� dx.

=T

v

⇤ f(y),

where

T

v

(x) =

Z 1

�1

Z

S

1

bv(�, ✓)ex·(2⇡i�✓+µ✓

?)
d✓ ds.

For every choice of filter v the e↵ect of applying T
v

can thus be described in terms of a convolution,
where the kernel only depends on v. This result is of particular interest when v is chosen to
model incomplete measurements, e.g., incomplete angles [19] or not dense enough sampling in the
s-direction. Since convolutions are easy and fast to compute numerically by means of standard
FFT, this observation can prove useful for designing iterative methods to remove artifacts due to
incomplete sampling in a similar fashion, as was suggested for the case of unequally spaced Fourier
data in, e.g., magnetic data interpolation [8], and in synthetic aperture radar [5].

3. Discretization. Assume that we have sampled R

µ

f(s, ✓) at equally spaced points in s and
✓. Specifically, let us assume that we have samples at a grid with N

s

points in the s-direction and
N

✓

points in the ✓-direction, and that we have complete coverage in the ✓-domain, and that the
coordinate system is normalized so that the spacing between lines (points in the s-direction) is one.

s

j

= j, j = �N

s

2
, . . .

N

s

2
� 1,

✓

l

=
l

2⇡
, l = 0, . . . N

✓

� 1.

Associated with the nodes s
j

are frequency nodes

�

k

=
k

N

s

, k = �N

s

2
, . . .

N

s

2
� 1,
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Using these nodes, we can compute a discretized version of (2.3) in two steps. First, we need to

evaluate b
f at the nodes (�

k

✓

l

+ µ✓

?
l

). If f is given by sampling on the lattice [�N

2

, . . . ,

N

2

� 1] ⇥
[�N

2

, . . . ,

N

2

� 1], then a discrete counterpart for the computation of b
f(�✓ + µ✓

?) reads

(3.1) b
f(�

k

✓

l

+ µ✓

?
l

) =

N
2 �1X

n1=�N
2

N
2 �1X

n2=�N
2

f(n
1

, n

2

)e(�µ sin(✓l)�2⇡i cos(�l)�k)n1+(µ cos(✓l)�2⇡i sin(�l)�k)n2
.

By abuse of notation, we will use the same symbols for both the discrete and the continuous represen-
tations as long as there is no risk of misinterpretation. The imaginary part of the exponential above
corresponds to a polar frequency grid, and the real part gives contribution from decaying/growing
exponentials. In the absence of the real part (i.e. µ = 0), sums of the above type can be approx-
imately evaluated (with precision ✏) in O(N2 logN + N

s

N

✓

log ✏) by using unequally spaced fast
Fourier transforms (USFFT) [7, 11, 14]. To account for the case where µ 6= 0, unequally spaced
fast Laplace transforms [4] (USFLT) can instead be used, at the same computational cost as for the
USFFT.

Once b
f(�

k

✓

l

+ µ✓

?
l

) is computed, a discrete version of R
µ

(f)(s
j

, ✓

l

) can be obtained by one-
dimensional discrete Fourier transforms

R
µ

f(s
j

, ✓

l

) =
1

N

s

Ns
2 �1X

k=

Ns
2

b
f(�

k

✓

l

+ µ✓

?
l

)e2⇡i�ksj
.

The back-projection operator R
µ

can be discretized in a similar way, using one-dimensional FFT
operations in the s-direction along with a two-dimensional USFLT operation. Since the operators
are adjoint, the order between the operations are reversed, and for the USFLT operation, it changes
from a Z2 ! C2 operation to a C2 ! Z2 operation, cf. [4].

In order to make reconstructions from exponential Radon data following (2.5), it remains to
discretize the convolution operator W in (2.6). This is preferably done in the frequency domain,
using the multiplier of (2.7). Due to the singularity at � = µ

2⇡

, a standard FFT implementation will
not provide high accuracy. By using optimal quadratures and one-dimensional USFFT operations,
this problem can be avoided, however at some extra computational cost. We propose a simpler
approach, and make use of a combination of oversampling, an end-point corrected trapezoidal rule
[2] for equally spaced nodes � where bw(�) > 0, along with adding a few nodes close to the singularity
and using a higher order method for approximation on that (short) interval. In the simulations given
in what follows, we have used an oversampling factor of 4, an 8-order end-point corrected trapezoidal
rule [2, Table 1] with endpoint weights

1

120960
[�23681, 55688,�66109, 57024,�31523, 9976,�1375],

and Simpson’s 3/8-rule for the short interval between the discontinuity in w and the node in �

where w(�) > 0.

We illustrate the performance of the proposed algorithm on some examples. First, we model
some forward problems and compare the accuracy obtained by using the fast Laplace transform
approach to using line integration with cubic interpolation.

We use a Gaussian function

f(x
1

, x

2

) = e�((x1�y1)
2
+(x2�y2)

2
)

,
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centered at (y
1

, y

2

), with  > 0 for which we have the explicit formula

R
µ

f(s, ✓) =

exp
⇣
� 1

4
(82 sin(✓)v

1

cos(✓)v
2

+ 4 sin(✓)v
1

µ� 82

s sin(✓)v
2

� 4 cos(✓)v
2

µ

� 4 cos(✓)22

v

2

2

+ 42

v

2

1

cos(✓)2 � µ

2 + 42

s

2 � 82

s cos(✓)v
1

+ 42

v

2

2

)
⌘
⇤
r

⇡



.

We can also discretize the calculation of line integrals in (1.1) by cubic interpolation from the
equally spaced samples in f , to points along lines to discretize

(3.2) R

µ

f(s
j

, ✓

l

) ⇡ �t

X

m

f(s
j

cos(✓
l

)� t

m

sin(✓
l

), s
j

sin(✓
l

) + t

m

cos(✓
l

))eµtm .

Figure 1 shows the approximation accuracy of R
µ

f for the discretized line integration and the
USFLT method. We see that the error in the computation of R

µ

f is substantially smaller when
using the USFLT compared to using the discretized line integration, and in addition with a time
complexity that is favorable for the USFLT method.

We now focus on the inversion using (2.5). One practical issue that needs to be addressed is that
we assume both that data is measured and reconstructed on an equally spaced, quadratic lattice.
On the other hand, the sampling of the (exponential) Radon transformed data is in terms of polar
lattices. While doing reconstruction, we will therefore choose either to work with oversampling in
order to inscribe the quadratic lattices (in space and (complex) frequency) in larger polar grids, or
to undersample so that the polar grids are instead inscribed in the quadratic lattices. The situation
that is most indicative to how the method performs is, in our opinion, the case where we can assume
that the support of the function we work with is inside a circle (of radius N/2) while the frequency
content if this function is essentially also contained in a circle (of radius 1/2). Clearly both conditions
cannot be strictly satisfied at the same time due to the uncertainty principle, but they can certainly
be satisfied if we loosen the conditions and satisfy with numerical compact support (i.e. that the
functions are smaller in absolute value then some prescribed value outside of the circles of support
mentioned above). The Gaussian example in Figure 1 is a good example of this.

To illustrate accuracy of the suggested implementation of (2.5), we conduct some examples on
the Shepp-Logan [20] phantom. We use the modified version available in the MATLAB function
phantom. The function f used is illustrated in the left panel of Figure 2. The phantom consists of
linear combinations of characteristic functions of ellipses, and its support is inscribed in a circle. As
its Fouirer transform is not rapidly decaying, we apply a smooth filter to remove contribution from
frequencies outside a circle of radius 1/2. The left panel of Figure 2 shows this filtered version of
the phantom.

We assume that we have access to 360� of data, and we assume that we have su�ciently dense
sampling for reconstruction, specifically we use parameters N

s

= 3/2N and N

✓

= 3N . The middle
panel of 2 shows the reconstruction using (2.5) and the USFLT discretization discussed in this
section. The right panel shows the error between the original (filtered) data and the reconstruction,
amplified by a factor 104.

4. Incomplete data. We now focus on the case where the data sampling is not su�ciently
dense, or not complete enough for being able to use (2.5). Typical such cases of interest concern
limited angle (i.e. only 180� as discussed in [19]), the case of missing angle, or when the sampling
in the s-direction is not dense enough.
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(a) (b)

(c) (d)

Fig. 1: (a) - Gaussian with parameters N = 128, = 0.02, (y
1

, y

2

) = (10, 20),
(b) - exponential Radon transform with parameters N

s

= 192, N
✓

= 180, µ = 2

N

.
Comparison with analytical formula for the forward transform: (c) - approximination error when
using USFLT, (d) - approximination error when using line integration.

Fig. 2: Reconstruction using 360� of exponential Radon data. The original image is shown in the
left panel, and the corresponding reconstruction is shown in the middle panel, with the gray scale
indicating variations between [0, 1]. The error between is depicted in the right panel, where the gray
scale now shows errors in the range [0, 10�4].
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As mentioned in the end of Section 2, we can model missing data by choosing a weight function
v, and associated with this choice is a convolution operator T

v

. If the discrete filtering step consists
of simple multiplication – in contrast to the modifications (end-point correction and oversampling)
done for w in (2.7), and if (3.1) is used for the discretization of the Fourier-Laplace transform, then
the corresponding discrete version of the operator K

v

will be a Toeplitz operator with kernel (point
spread function)

T

v

(n
1

, n

2

) =
X

k,l

bv(�
k

, ✓

l

)ex·(2⇡i�k✓l+µ✓

?
l )

n

1

, n

2

= �N, . . . N � 1.

The reconstruction problem will then be

(4.1) T
v

f = R⇤
�µ

(v ⇤s g), where g = R
µ

f.

For the computation of R⇤
�µ

(v ⇤s g)(x) we use USFLT and one-dimensional FFT’s. Note that the
Toeplitz operator T

v

will in general not be positive definite.
An initial assumption of the function f was that its support was contained in a circle with

radius N/2. This condition will typically not be satisfied for (4.1), since the point spread function
T

v

will typically not have compact support. However, we can incorporate the constraint in the
reconstruction procedure. Let the operator �

D

denote multiplication with the characteristic function
of the disc centered at the origin with radius N/2, and let us rephrase (4.1) into

(4.2) �

D

T
v

�

D

f = �

D

R⇤
�µ

(v ⇤s g).

Since the Toeplitz operator can be rapidly evaluated by means of standard FFT (see [13, p202] and
[5] for a similar application), we can now try to solve (4.2) by using iterative methods. The simplest
method is to use the conjugated gradient method applied to the normal equations (CGN) and solve

(4.3) �

D

T
v

�

D

T ⇤
v

�

D

f = �

D

T ⇤
v

�

D

R⇤
�µ

(v ⇤s g).

See [15] for a comparison of commonly used iterative methods for solving non-symmetric systems
of linear equations.

In Figure 3 we display some results for the case where data is only available for 180�. Again,
we consider results using the Shepp–Logan phantom. We also include the reconstruction obtained
by ignoring the decay parameter µ in the reconstruction procedure.

The top left panel of Figure 3 depicts the result obtained when applying R⇤
�µ

(v ⇤s g) to the
measured data g, where we have used

bv(�, ✓) =
(
|�| if |�| � µ

2⇡

and 0 < ✓ < ⇡

0 otherwise.

We note that there are some low-frequency errors in the reconstruction, as well as some vertical
artifacts. The grayscale color scheme used in the images of the phantom represent values in the
range [0, 1], and in this particular case, the low-frequent errors make some of the details fall outside
of the color range. However, the reconstruction can be seen in the bottom left panel of Figure 3,
depicting variations in the range [0, 1].

The top right panel of Figure 3 depicts the result obtained when applying the standard Radon
inversion R⇤

0

(v ⇤s g) to the measured data g. In this case bv(�, ✓) = |�|
(2⇡)

2 . The reconstruction error

for this method can be seen in the bottom right panel, also depicting variations in the range [0, 1].
The middle panel of Figure 3 shows the reconstruction result after 500 iterations of the conju-

gated gradient applied to (4.3). This reconstruction outperforms the other two in terms of quality.
The reconstruction error is shown for this case in the middle lower panel, but in this case variations
in the range [0, 10�2] are shown.
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Fig. 3: Reconstruction using 180� of exponential Radon data. The original image is the same
one as used in the left panel of Figure 2. The top left panel shows the result after applying the
reconstruction (2.5) to the incomplete data set; the top middle panel is the result after iteratively
solving the corresponding deconvolution problem 4.1; the top right panel is the result after applying
the standard inversion for the Radon transform (i.e. using µ = 0). The three lower panels show
the corresponding absolute errors. The gray scales used in the bottom left and right panels indicate
variations between[0, 1], whereas the bottom middle panel indicates variation between [0, 10�2].

5. Conclusions. We have shown how to construct fast algorithms for the computation of
the exponential Radon transform and the associated (adjoint) back-projection operator by using
algorithms for fast Laplace transforms. We show how to construct numerical schemes for inversion
in this case. In cases where there is not su�cient data for standard inversion formulas to apply, we
show that we can reformulate the reconstruction problem in terms of a two-dimensional Toeplitz
operator. Toeplitz operators can be applied rapidly by employing standard fast Fourier transforms.
Hence, we can make use of iterative methods to solve the corresponding deconvolution problem,
after the right hand side and the point spread function have been computed by using fast Laplace
transforms.
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