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DISPERSIVE WAVES PROPAGATING ALONG A SURFACE FRACTURE

BRADLEY C. ABELL⇤ AND LAURA J. PYRAK-NOLTE†

Abstract. Significant work in the past few decades has lead to a well developed understanding of seismic wave
propagation in fractured media. However, previous research has focused on fractures within rock as opposed to
fractures at the surface of a rock. A theoretical and experimental study was performed to examine seismic wave
propagation along a fracture at the surface, i.e., along the intersection of two quarter-spaces. A theoretical model
that couples two wedges, using displacement discontinuity boundary conditions, was developed that gives rise to a new
guided waveform that is dispersive, depends on fracture specific sti↵ness at the intersection of a fracture with a free
surface and exhibits velocities that range from the single wedge-mode velocity to the Rayleigh wave velocity at a free
surface. The existence and behavior of this new guided-mode was verified using a synthetic fracture created between
two aluminum blocks. This new guided-mode enables characterization of fracture specific sti↵ness of fractures, joints
and other discontinuities at the surface of an outcrop.

1. Introduction. Seismic exploration most commonly uses body waves such as compressional
and shear waves to interrogate the subsurface, delineate structure and to monitor physical processes.
Other methods also include using the dispersion of surface waves (e.g. Rayleigh, Love), to delineate
near and subsurface features [1-3]. For near surface characterization, it is important to understand
the e↵ect of fractures on surface wave propagation. Previously, researchers have shown that gener-
alized coupled-Rayleigh waves (i.e., fracture interface waves) propagate along single fractures [4-12].
Theoretically, the fracture is represented as a non-welded interface [13] (i.e. continuous stress but
a discontinuity in displacement across the interface) between two elastic half-spaces. Fracture in-
terface waves travel with speeds that depend on the frequency of the signal and sti↵ness of the
fracture. For low fracture specific sti↵ness (i.e., few areas of contact) the interface wave travels
at the Rayleigh wave velocity because the fracture behaves similar to a free surface [5]. When a
fracture is closed and the specific sti↵ness is high, then the interface wave travels as a bulk shear
wave, i.e. the interface behaves as a welded contact.

Abell et al. (2012) [14] performed experiments to determine if fracture interface waves exist
along the intersection between two orthogonal fractures. From their work, they observed interface-
wave like modes that traveled between the Rayleigh wave and bulk shear wave velocities as the
stress on the intersection increased, thereby increasing the sti↵ness. However, at low applied stress,
they observed a mode traveling with speeds slower than the Rayleigh wave, a region not possible
for interface waves. Wedge-waves are a type of guided mode that travels with velocities lower than
the Rayleigh wave velocity [15-17]. A wedge-wave travels along the corner formed when two planes
intersect. This wedge wave can exist for a large range of wedge angles. Recently, Sokolova et al.
(2012) showed the existence of a new type of waveform, known as a Rayleigh-Stoneley (RS) wave
that travels at the surface of two quarter-spaces along a welded contact at the interface between
two dissimilar media [18] and with speed slower than the Rayleigh wave. Although theoretically
interesting, their analysis has little application to geophysics because of the small range of existence
for this wave and the need for materials with density and moduli ratios that range between 0.10
and 0.35. This Rayleigh-Stoneley mode does not exist when the material properties on either side
of the interface are the same (like for a fracture in rock).

In this paper, we demonstrate, theoretically and experimentally, that a new-mode, a Rayleigh-
Wedge wave (RW), exists along a fracture (i.e., non-welded contact) between two quarter-spaces
(Figure 1) with identical density and moduli. This RW mode propagates at the surface along the
edge formed by two elastic quarter spaces in partial contact. To the best of the authors’ knowledge,
this is the first time this mode has been quantified, theoretically and experimentally, and used to
estimate the near-surface sti↵ness of a fracture.
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Fig. 1. Geometry of the problem for coupling wedge waves. A wave propagates along the x-axis. C represents
the elastic constants and is the density of each medium. The angle, ✓, is used for reference to the transducer
polarization. The superscripts 1 and 2 refer to the two media that can have similar or dissimilar material properties.

2. Theory. Our theoretical formulation for the RW mode is based on coupled wedge waves.
Wedge waves were originally postulated for use as waveguides [15] and phonon propagation in
crystals [16], yet their applications have found many areas of use [19]. More recently theoretical
work has begun to couple these waveforms with continuous boundary conditions [18, 20]. Although
theoretically intriguing, these RS waveforms were found to exist only for two di↵erent media in
contact, with a small range of physical parameters that are unlikely to be useful or found in the
field. Our theory is based on the work originally done by Sokolova et al (2012) [18] for a welded
contact and so a brief outline of their work will be presented with more emphasis on the new results
from displacement discontinuity boundary conditions.

2.1. Problem Geometry. The theoretical formulation for RW modes is applicable for two
quarter spaces, medium 1 and 2, in contact (Figure 1). Medium 1 exists in the regionx > 0, y > 0, z >
0 with density⇢(1) and elastic constants C(1) and medium 2 occupies the region x > 0, y < 0, z > 0
with density ⇢(2) and elastic constants C(2). These form a free surface along the x � y plane at
z = 0, and a fracture plane intersecting this free surface at y = 0 along the x� z plane (Figure 1).
In the theory that follows the final superscript will represent a medium.

2.2. Boundary Conditions. Unlike the RS modes of Sokolova et al. (2012) mentioned above,
this work will use continuity of stress and displacement discontinuity boundary conditions [13,
21], leading to velocity dispersion that depends on fracture specific sti↵ness and frequency. The
displacement and stress amplitude and T respectively, have boundary conditions given by:
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2.3. Theoretical Formulation. If we define the displacement and stress field as
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where ! is angular frequency, t is time, * is the complex conjugate, and k is the wave number
(k = !

v

). Equations (3) & (4) are substituted into the equation of motion and rearranged such that,
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Representing the displacement field as a linear sum of Laguerre functions, originally used by
Maradudin et al. [16], a relationship between the expansion coe�cients and the stress amplitudes
are derived [18] and related by the matrix M , given by Equation 11 in Sokolova.

The formulation is identical to Sokolova et al (2012) from Equation 11 through Equation 13. At
this point, we apply the displacement discontinuity boundary conditions (1) and (2) above, using
the definition of G from Sokolova, to obtain:
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which are used together to obtain,
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which can be represented as an eigenvalue problem. This has has solutions when
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We used Equation 10 to determine the range of existence and the velocity of the RW mode for
a fracture edge.

2.4. Sti↵ness Conditions. The fracture specific sti↵ness in Equation 10 has components in
both the normal and tangential directions [13]. For the remainder of this paper, isotropic media
will be assumed and both media will be set to the same physical parameters (C(1) = C(2)), a case
not possible for RS waves [18].

Because of the isotropic nature of this particular study, it was assumed that the shear sti↵ness
along the z-direction was 0 (Figure 1). This was assumed because the wave must decay quickly in
the z-direction. Although studies have found that normal to shear sti↵ness ratios should be on the
order of 0.5 for solid-solid boundaries [22, 23], Choi et al (2013) has recently shown that the ratio
of normal to shear sti↵ness depends on how well mated the fracture planes are, fracture roughness
and loading conditions (uni-axial vs. bi-axial) [24]. For a first order approximation, a ratio of one
was used for the normal to shear sti↵ness.
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2.5. Numerical Simulations. Numerical trials were performed to determine the solution
to Equation 10 using the physical parameters listed in Table 2.1 for orders up to n = m = 15.
The parameters listed were experimentally measured for aluminum samples to compare to our
experimental results.

Table 2.1
Physical parameters measured for the aluminum samples. These values were used in the numerical analysis

section to calculate the velocity.

Numerical Parameters

⇢(1/2) 2700 kg

m

3

Lame’s Constant µ 2.55x1010 Pa
Lame’s Constant � 5.25x1010 Pa
Shear Velocity 3075 ± 2.5m

s

Rayleigh Velocity 2879 ± 2.5m

s

Wedge Velocity 2812 ± 2.5m

s

Compressional Velocity 6192 ± 2.5m

s

Angular Frequency, ! 2⇡(0.4MHz)

Rayleigh-Wedge mode velocities were found for (1) constant frequency with varying sti↵ness and
(2) constant sti↵ness with varying frequency. From our analysis, the RW mode ranges in velocity
from the wedge velocity to the Rayleigh velocity (Figure 2). This is in agreement with the limits of
Equation 10. As  ! 1, the first term in Equation 10 ! 0 resulting in the same solution for the
RS wave, which for the same parameters is just a Rayleigh wave. In a similar manner, as  ! 0,
the media become decoupled, and each wedge is essentially coupled to vacuum leaving only a wedge
wave, i.e. Equation 10 becomes det[G(1)] = 0, which is the solution put forth by Maradudin et al.
[16].

The dispersion curves collapse to a single curve when the velocity is normalized by the Rayleigh
velocity, and the sti↵ness is normalized by the frequency times the seismic impedance (Z = ⇢v

shear

)
where v

shear

is the shear velocity. The result is the single curve, shown in Figure 2 that can be used
to estimate the sti↵ness of the fracture at the surface of a rock or sample if the velocity, frequency
and matrix material properties are known.

2.6. Experimental. To verify the existence of this theoretically-derived guided mode, a ex-
periments were performed on aluminum blocks measuring 0.3 m x 0.3 m x 0.3 m to measure the
Rayleigh-Wedge mode as a function of stress. The aluminum blocks were machined smooth such that
there was no visible roughness on the sample faces. Large blocks were used because the Rayleigh and
Wedge wave velocity travel within 7% of each other, making it di�cult to separate the waveforms
observed for small samples.

Two aluminum blocks were stacked, vertically but rotated by 90�, to form the geometry shown
in Figure 1. The blocks were placed in a single axis Instron 100 klbs load frame to apply a load
normal to the fracture plane (Figure 3). An Instron Model 59-R8100BTE controller, using Bluehill3
software monitored and applied the desired load to the sample. The sample was loaded from 0 kN
to 400.3 kN in steps of 2.22 kN. Once the desired load was reached, the load was maintained while
seismic waveforms were propagated at the surface of the blocks along the fracture (y = 0 and z = 0
in Figure 1).

Seismic transducers, with a central frequency of 1 MHz (Olympus Panametrics V103 and V153)
were used to propagate compressional (P) waves and shear (S) waves along the fracture. The
transducers were coupled to the samples using honey and a frame was used to attach the transducers
to the sample (Figure 3).

Signals were recorded for waves propagated along the surface, along the fracture at the surface
of the block, along the fracture deeper in the block and through the bulk material at each applied
load. These measurements were done using di↵erent transducers such that each location could be
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Fig. 2. Normalized phase velocity vs. normalized sti↵ness. ! is the frequency, Z is the impedance ⇢vshear and
 is the sti↵ness. The above result is from several sti↵ness and frequency sweeps. Note that at low sti↵ness the
theory predicts a wedge wave velocity and at high sti↵ness the Rayleigh velocity is predicted

Fig. 3. Aluminum samples inside the Instron 100 klbs load frame. The bottom two blocks form the geometry of
Figure 1, and the top block is used as a spacer to help distribute load evenly along the surface. The transducer frame
can be seen holding the array platen on the left side of the blocks.
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Fig. 4. Seismic waveforms for the bulk, Rayleigh, wedge, and RW waves. The RW wave is stress dependent
and is shown for 0 kN, 22.2 kN and 400.3 kN loads. Note that as the load increases, the RW wave converts from
the wedge to the Rayleigh wave velocity.

characterized for a given applied stress.
The source transducers were excited using a square-wave pulse of 400V with a repetition rate

of 1000 Hz from an Olympus 5077PR pulse generator. These signals were received and recorded in
a National Instruments PXI-1042 controller with a PXI-5122 digitizer and then stored for analysis.

2.7. Polarization. S-wave transducers were used to propagate waveforms along the coupled
wedge at several polarizations. Previous research by DeBilly et al. [17] found that the polarization
of the shear wave propagating along single wedges played a vital role in the amplitude of the received
signal.

Using the angle, ✓, defined in Figure 1, it was determined that the polarizations with the highest
amplitude was at 0� relative to the fracture plane. This was in agreement with the displacement
amplitudes calculated from the numerical section of the paper.

3. Results. The waveforms recorded through the bulk, along the surface and along the fracture
were found to be in agreement with previous experimental and theoretical work on interface waves
[5-12] and Rayleigh waves [25]. The mode observed along the intersection of the two blocks was not
in agreement with any previously discussed results nor previously observed. Waveforms at each load
were analyzed and found to be in agreement with the theoretical formulation discussed above. When
no load was applied to the fracture, the observed RW waveform matched the wedge wave observed
for either block, i.e., essentially a contact with zero sti↵ness. As the load was increased, and the
fracture closed, the signal was observed to increase in velocity such that at high loads (> 100 kN)
the fracture had closed and the velocity matched that of the Rayleigh wave (Figure 4).

This observed RW waveform is the first evidence that the guided mode from wedge waves, which
couples through the points of contact along the surface expression of a fracture, exists, is dispersive
and depends on the sti↵ness of contact.
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Fig. 5. Experimental group velocity, normalized by Rayleigh velocity, as a function of applied load from the
load frame. Group velocities were calculated from the wavelets for 0� using a frequency of 0.4 MHz. Error bars are
shown for the wedge and Rayleigh velocity from experimental measurements on both blocks of aluminum. Error bars
for the data fall within the size of the symbols.

3.1. Wavelet Analysis. A Morlet wavelet [26] of the recorded seismic waveform was per-
formed for all of the applied loads to calculate the group velocity. A wavelet transform, that
calculates the energy density of the waveform as a function of time and frequency simultaneously,
indicated that the peak in the energy spectrum occurred around 0.4 MHz for this sample geometry
and 0.65MHz for the intact sample.

The group velocities were then calculated from each wavelet using the arrival time of the dom-
inant energy for 0.4 MHz and are shown as a function of applied load in Figure 5. Using the
normalized dispersion curve (Figure 2), an estimate of the sti↵ness at the fracture edge was ob-
tained.

4. Discussion. The experimental results show that a coupled wedge mode, known as a Rayleigh
Wedge mode, does indeed exist at the surface of a material along a fracture and is in the theoret-
ically derived range of velocities. First order assumptions for displacement discontinuities resulted
in very accurate theoretical velocities compared to those observed in the experiment.

The experimental and theoretical results show that coupled-wedge modes do exist even when
medium 1 and medium 2 have the same material properties. Unlike the RS wave, which is also a
guided coupled mode, there are no restrictions on whether the media must be the same or di↵erent,
thus a similar guided-mode should also exist when the media are di↵erent and in partial contact.

This study has given rise to a new and powerful tool for estimating fracture sti↵ness along
coupled quarter planes. This technique can be used in conjunction with the well established interface
wave characterization in seismically measuring the fracture sti↵ness and how it varies with depth
along a fracture.

This new technique has opened up a new set of topographic features which can be explored for
both geophysical and engineering applications such as structural integrity, dike structures, outcrops,
and other intrusions found on di↵erent geologies on earth [27, 28]. It has also given field work another
tool to help in the correct interpretation of seismic data to prevent common misconceptions from
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shallow seismic analysis [29].

5. Conclusion. The theoretical derivation described here hypothesized the existence of a new
type of guided waveform for a geometry with two elastic quarter planes in contact along their edge.
Using a coupled wedge wave approach with a Laguerre polynomial expansion and displacement
discontinuity boundary conditions a characteristic determinant was derived (Equation 10). The
RW-mode was found to propagate with a velocity that is a function of both frequency and sti↵ness.
By normalizing the theoretical results (Figure 2), the theory can be scaled to frequencies used in
the field to determine the range of fracture sti↵nesses that can be detected for a given frequency.
Future work in this area should include experimental verification of the e↵ect of di↵erent media,
a parameter study of the range of existence for this coupled wedge mode and theoretical work on
four wedges coupled to form a fracture intersection. Rayeligh-Wedge waves provide an additional
characterization tool for monitoring the alteration of surface fractures caused by stress.
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