
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2013) pp. 247-262.

ITERATIVE RECONSTRUCTION OF PIECEWISE SMOOTH WAVESPEEDS
USING A CRITERION DERIVED FROM THE SCATTERING RELATION

RUICHAO YE⇤ AND MAARTEN V DE HOOP†

Abstract. We study the inverse boundary value problem for the wave equation and recovery of the wavespeed
in the high-frequency limit. In the low-frequency regime we have studied the convergence of iterative methods via
the Fourier transform in time, using the Helmholtz equation. Here, we focus on high-resolution reconstruction, again,
using iterative methods. We restrict our analysis to piecewise smooth wavespeed models containing interfaces. We
assume that the presence (but not the location) of interfaces is known. We introduce directional boundary sources
(such as wave packets) and a mismatch functional given by the cross correlation power constrained by a structure
tensor residual.

1. Introduction. We study the inverse boundary value problem for the wave equation and
recovery of the wavespeed in the high-frequency limit. Sepcifically, we focus on the formulation
of iterative methods for the inverse boundary value problem for the wave equation referred to
as full waveform inversion (FWI) at relatively high frequencies on the one hand and address the
integration of these methods with wave equation reflection tomography on the other hand. (For
work related to this aspect, see Symes [45].) Our approach is motivated by the geodesic X-ray
transform using the (multiply) broken scattering relation as the data, which can be obtained from
the Dirichlet-to-Neumann map. We develop a strategy derived from a uniqueness theorem (partial
reconstruction) for the associated inverse problem [24]. We constrain our models to models with

structure (piecewise smooth with discontinuities, sometimes referred to as blocky), represented on
an unstructured (tetrahedral) mesh. We synthesize directional (Gaussian) wavepackets (belonging
to a frame [20]) from ‘point’ sources, and we may require certain preprocessing of the data containing
multiple scattered wave constituents involving microlocal cuto↵s, including time windowing.

The approach we propose, here, is part of a comprehensive procedure we have been developing
for the mentioned inverse boundary problem. This procedure is initiated by taking a time-Fourier
transform of the data followed by a hierarchical compressed reconstruction following a multi-level
scheme for the inverse boundary value problem for the Helmholtz equation using the Dirichlet-to-
Neumann map as the data[15, 4, 5]. The e↵ectiveness of this reconstruction has been analyzed and is
essentially limited to a minimum size of the subdomains underlying a blocky model representations
and to lower frequencies. We then segment (without interpretation) the result on an unstructured
mesh with internal boundaries [22] and optimize their shapes in particular and varying wavespeeds
in general via a gradient flow using the data. The result is used in the approach developed in this
paper. We emphasize that it yields in principle models with limited resolution, though through
re-segmentation progressively the resolution can be enhanced while interfaces can vanish. We use
a subset of (multiple) reflections in the data which is controlled by window functions in our misfit
functional and data simulated in the current model. We use the adjoint-state method and an
augmented Lagrangian to arrive at our iterative scheme. (For a review of this method, see Plessix
& Mulder [34].)

It has been recognized that upon considering a misfit based on least-squares, the separation in
time between measured and modeled data needs to be within a half period to avoid convergence
toward a local minimum (Beydoun & Tarantola [6]; one refers to this as cycle skipping). Pratt et

al. [37] analyzed this limitation more carefully and related the cycle skipping to the relative time
error to the reciprocal of the length of the propagation path in number of wavelengths. This was
our motivation to develop a proxy to detecting a distance between scattering relations (Stefanov &
Uhlmann [43]) from finite-frequency measured and modeled data. The scattering relation contains
the surface source and receiver locations, the source and receiver ‘horizontal’ slownesses (‘slopes’)
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and travel times corresponding with (broken) rath paths. (We note that the scattering relation is
also used in stereotomography as the data (Billette & Lambaré [7] and Lambaré et al. [30].) In
principle, the scattering relation can be obtained from the Dirichlet-to-Neumann map. To obtain
a criterion, we introduce directional boundary sources (Gaussian wave packets) and a mismatch
functional given by the cross correlation power regularized by a structure tensor residual with
Gaussian window functions.

The use of cross correlation power, for the purpose of velocity analysis via local optimization,
was proposed by Van Leeuwen & Mulder [48, 49], and may be compared with the splitting intensity
introduced for the purpose of estimating anisotropy from shear-wave data (Long et al. [32]). The
cross correlation power is sensitive to the travel residual and intuitively more linearly related to large-
scale wavespeed variations [11]. The incorporation of a cross correlation in the misfit functional to
arrive at an ad hoc integrated approach to FWI and wave-equation tomography was considered by
Wang, Singh & Jian [52].

Double beamforming was used by Brossier & Roux [10] in time-harmonic FWI. Under the
assumption that the wavespeed is known near the surface where the sources and receivers are
located, they exploited beamforming to select arrivals based on slopes and arrived at a hierarchical
level with the purpose to mitigate the nonlinearity of the inverse problem. Downey, Routh &
Cha [17] introduced a method of grouping shots into encoded multi-shot gathers. The encoding is
convolutional in time and the process results in the generation of random beams. The motivation
was a significant speedup in the computation of the gradient. We also mention the work of Vigh &
Starr [50] in which plane-wave gathers are used as the data.

An energy norm in the misfit can be theoretically justified in the frequency-domain formulation.
However, the e↵ectiveness of FWI at higher frequencies has been identified as challenging (Virieux
& Operto [51]), which has been understood by analyzing the stability of the time-harmonic seismic
inverse problem. The time-harmonic formulation was initially promoted by Pratt and collaborators
[39, 36] and specifically for wide-angle reflection data in [38]. Pratt, Shin & Hicks [35] developed
the Newton method using the discretized Helmholtz equation as a point of departure.

Lailly [28] and Tarantola [46, 47] introduced the formulation of the seismic inverse problem
as a local optimization problem encompassing a least-squares minimization of a misfit functional.
They noticed that the gradient of this functional has the form of an imaging procedure with a cross
correlation imaging condition. We also mention the original work of Bamberger, Chavent & Lailly
[3, 2]. Chavent [12] introduced a method based on the adjoint state in inverse problems to compute
the gradient of a functional without the Fréchet derivatives. This originated from control theory
[31]. Kolb, Collino & Lailly [27] carried out initial computational experiments with such a procedure
restricting the models to the planarly layered class.

The apparent ability of wide aperture data to resolve the long wavelengths of the model has
prompted studies to consider long-o↵set acquisition as a way to design an improved FWI [38, 42, 40].
Indeed, the least-squares misfit, for short-o↵set acquisition, is quite insensitive to intermediate
wavelnegths variations in the model. We also assume the availability of long-o↵set data.

A strategy to mitigate the nonlinearity in waveform inversion is layer stripping. Here, the
wavespeed is only recovered in a pre-determined layer, possibly conforming geology using interpreted
horizons, hierarchically from shallow to deep. (One can more generally ‘mask’ subdomains in the
inversion process.) This strategy might be coupled to source-receiver o↵set weighting, that is,
progressively introducing longer o↵sets, shorter apertures and longer recording times, with the goal
to optimize sensitivity and resolution in given regions in the subsurface [42, 53].

Jurado, Sinoquet & Ehinger [25] considered reflection tomography for piecewise smooth models
(in reflection seismology also referred to as ‘blocky’ models). They parametrized the smooth parts
of the models by B-splines, and the interfaces by a level set function, that is, depth as a function
of surface coordinates also using B-splines. The interfaces can intersect one another and thus form
a pinch out by allowing a zero jump across portions of interfaces. The data were reflection times
associated with single scattered waves. These could be multi-valued while they parameterized the
data by source angle. They incorporated inequality constraints and used a Gauss-Newton method.
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In this context, we also mention the work of Lailly & Sinoquet [29] and Delprat-Jannaud & Lailly
[16], who analyzed ‘ill-posed and well-posed’ formulations of the reflection tomography problem.
Later, Clapp, Biondi & Claerbout [14] incorporated geologic information into reflection tomography.
Malcolm & Nicholls [33] studied (constrained quadratic) optimization for interface reconstruction
for impenetrable period acoustic media using time-harmonic data.

The use of unstructured polyhedral meshes to represent (piecewise constant) wavespeed models
in inverse problems has been proposed in global optimization (genetic algorithms) by Schoenauer,
Ehinger and Braunschweig [41]; they based their evolving representations on Voronoı̈ diagrams.

The process of progressively increasing the complexity of the models has been proposed both
in local (iterative) and global optimization. In the latter category we mention the pseudo-subspace
method of Boschetti [8] where the progression follows a user-defined evolution. We follow a strategy
or re-segmentation. For an alternative method for model reparameterization via preconditioning
and explicitly estimating the dips in the gradient, see Guitton, Ayeni & Dı́az [21].

One typically applies a ‘nonlinear’ conjugate gradient method, a Gauss-Newton method, or a
quasi-Newton method (L-BFGS; for a review, see Brossier, Operto & Virieux [9]). For the appli-
cation of multi-scale Newton methods, see Akcelik [1]. We carry out numerical experiments with
the nonlinear conjugate gradient and L-BFGS methods. In the gradient method, the step length is
typically estimated by a simple line search for which a linearization of the direct problem is used
(Gauthier, Virieux & Tarantola [18]). This estimation is challenging in practice and may lead to
a failure of convergence. In various approaches one accounts for the Hessian, at least its diagonal,
in the Gauss-Newton scheme [26]. In certain earthquake seismology applications, one builds the
Fréchet derivative or Jacobian (sensitivity, for example, [13]) explicitly and then applies LSQR. The
second term in the Hessian (Newton method) can be interpreted in terms of multiple scattering
(see, for example, Pratt, Shin & Hicks [35]).

The inverse boundary value problem: Modelling the data. We focus on the acoustic
wave modelling with constant density on the spatial domain Rn with n = 1, 2, 3, and the data are
modelled as solutions to the inhomogeneous Cauchy initial value problem,
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2. Iterative scheme.

2.1. Correlation power criterion. To conduct the inverse scattering, we require a compari-
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model perturbation. Here, the interface is represented by an amplitude times a given smooth
function h = h(x), see Figure 1 A. We generate synthetic data and compute the functional J with
data generated by a flat (zero amplitude) interface. The traditional L2 functional exhibits local
minima and gives a narrow range of convergence as expected; see Figure 1 B. The cross-correlation
power criterion gives a much larger range of convergence. It gives a proper descent direction even
if the data misfit caused by a model perturbation is as large as 2.5 wavelengths, see Figure 1 C. We
note that this is sensitive to the choice of �; see Figures 1 C and D. We can choose to vary � in our
iterative scheme.

2.2. Augmented Lagrangian. We develop an adjoint method for determining the gradient of
the error functional with respect to the model parameters. To this end, we introduce the augmented
functional (cf. (1.1), (1.2), (2.1) and (2.2))
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in which c has been expanded into basis functions:
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The basis functions will vary depending on the structure of the perturbation under consideration.

Gradient. We first carry out an integration by parts:
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and replace the third term of Lagrangian. We take the gradient of the Lagrangian with respect to
the variables C

t

, u
i

, u0;i, u1;i and c yielding
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where k.k denotes the Euclidean norm in Rn.

We obtain additional contributions to the augmented Lagrangian:

L
s

= J

s

+
X

i

Z

⌃r

Z
T

0
�

E;i(x̄r

) · (E
i

(x̄
r

)� (ES

i

)(x̄
r

)) dx̄
r

+
X

i

Z

⌃r

Z
T

0
�

S;i(x̄r

) :

✓
S

i

(x̄
r

)�
Z

p

i

(x̄
r

� ȳ
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the right-hand side of the final equation needs to be added to (2.8).

Checkpointing. The final value problem is solved reverse in time. However, in our computa-
tions we solve for ub
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which is an initial value problem, forward in time. For the computation of the gradient in (2.17)
and (2.19) we use checkpointing [19, 44].

3. Computational experiments. We carry out three basic experiments to test our func-
tional: (i) the reconstruction of the shape of a curved interface, (ii) the recovery of interval
wavespeed, and (iii) the joint reconstruction of interface shape and interval wavespeed. We re-
strict our experiments to dimension two. We build a model which is 10 km wide and 4 km deep
(including a 1 km padding while incorporating a perfect matching layer), consisting of two layers.
The top layer has smoothly varying wavespeed ranging from 1.5 km/s to 3.0 km/s. The bottom
layer has a wavespeed of 3.3 km/s and will be kept fixed during iterations. The data consist of 45
shots with a 200 m spacing; the acquisition surface is positioned at 1 km depth in the computa-
tional domain. As the source signature we use a Ricker wavelet with a peak frequency of 10 Hz.
We observe the wavefield at 182 receivers with a 50 m spacing. We consider di↵erent models for the
di↵erent experiments. Throughout, we assume the source to be known.
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The test model designed for the joint inverse problem combines the features of both previous
test models. The interface in the true model is described by a smooth function, 150 sin(⇡x/200)
exp(�(⇡(x�500)/1000)2). There are two smooth perturbation up to 60 % in the interval wavespeed.
The phase misfit between synthetic and modelled data is more than one period. Here, the sensitivity
of the data to the interface shape appears to exceed the sensitivity to the wavespeed. We alternate
the updating for interface shape and wavespeed. Model updates are illustrated in Figure 7, as well
as the corresponding modelled data.

4. Discussion. We presented the formulation of an iterative method for the inverse boundary
value problem for the wave equation (full waveform inversion) at high frequencies based on a novel
misfit functional. We synthesize directional (Gaussian) wavepackets from ‘point’ sources, and gen-
erate a functional given by the cross correlation (in time) power regularized by a structure tensor
residual with Gaussian window functions. We use a subset of (multiple) reflections in the data which
is controlled by window functions in our misfit functional and data simulated in the initial/current
model, as well as slopes in the data. We constrain our models to models with structure, namely,
piecewise smooth with discontinuities (sometimes referred to as blocky).

We carried out computational experiments, revealing the basic properties of the functional.
The method we developed is in some way derived from wave equation tomography with multiple
reflections and as such has natural limitations. Refining the structure in the iterative method beyond
the class of models considered here is a topic of ongoing research.
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