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ADAPTIVE DOMAIN PARTITIONING AND DEFORMATION IN
REPRESENTATIONS FOR THE WAVESPEED USING UNSTRUCTURED

MESHES IN FULL WAVEFORM INVERSION

ZHAOHUI GUO⇤
AND MAARTEN V. DE HOOP†

Abstract. We introduce adaptive domain partitioning, unstructured tetrahedral meshes and their deformation
in parametrizations of the wavespeed in full waveform inversion. We develop a two-stage procedure consisting of level-
set based segmentation and surface or boundary controlled mesh generation using a current model and residual shape
optimization through mesh deformation using the data. The procedure is motivated by available Lipschitz stability
estimates for the inverse boundary value problem for the Helmholtz equation, if the wavespeed can be described
by piecewise constant functions and a given domain partitioning. We incorporate progressive local mesh refinement
based on the gradient in the iterative scheme. We illustrate the procedure with numerical examples.

Key words. Unstructured mesh, shape optimization, mesh deformation, Helmholtz equation, full waveform
inversion.

1. Introduction. We consider parametric representations based on unstructured meshes for
coe�cients of partial di↵erential equations describing (time-harmonic) waves, in particular, the
Helmholtz equation in which case the coe�cient is the wavespeed. The representations are motivated
by the associated inverse boundary value problem, that is, the numerical iterative reconstruction
of the coe�cients from the data, the Dirichlet-to-Neumann map. Convergence of certain iterative
methods has been established for piecewise constant models following a domain partitioning [3,
14]; approximation and compression of the coe�cients by such models are then coupled to the
radius of convergence. Convergence is derived from conditional stability estimates for the inverse
problem, which we expect to also hold under the deformation of domains, in particular, polytopes.
Here, unstructured meshes provide a natural framework, not only to adaptively obtain coe�cient
representations but also to update these through mesh deformation in parallel to coe�cient values
and, periodically, through re-meshing while increasing the resolution, that is, the number of domains
in the partitioning. The constants in the stability estimates are also sensitive to certain geometric
parameters which we can constrain in the mesh generation. Rapidly varying values and complex
structures are incorporated through local refinement, which hierarchically adapts the meshes.

Unstructured meshes typically allow a flexible structure of node point connections and adja-
cent elements, which makes them more adaptable to local or global geometrical and topological
constraints. Unstructured meshes can be designed to adapt to (geological) subsurface structure
by placing nodes along interfaces (possibly identified by large gradients), geobodies, wavespeed
isosurfaces, etc. Moreover, these meshes provide explicit representations of surfaces and interior
boundaries which enable the carrying out of operations on these such as editing or deformation.
The use of unstructured meshes has been proposed for various applications [5, 22]. Recently these
have been utilized in traveltime tomography [24, 30]. Here, we introduce such meshes in so-called full
waveform inversion. We restrict ourselves to tetrahedral meshes with triangulation of the surfaces
and interior boundaries.

In this paper, we propose a region based unstructured mesh representation of subsurface
wavespeed models for seismic full waveform inversion. We relate regions to a coarse-scale domain
partitioning. Essentially, we combine techniques for generating unstructured tetrahedral meshes
with segmentation using level sets to obtain an algorithm and strategy for (i) obtaining a domain
partitioning from an image of a current model of coe�cients, (ii) identifying large-scale structures
(for example, salt bodies), in particular, their geometry using closed surfaces, and patterns (for
example, sedimentary layers) through general interfaces while adapting the partitioning under (i),
and (iii) deformation avoiding mesh self collisions. The procedure consists of two stages: segmen-
tation of a current model or model update yielding interfaces and interior boundaries, and residual
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shape optimization using the (boundary) data. We obtain an image of a model of coe�cients by
transformation into a Cartesian grid.

Essentially, (i)-(ii) aid in constructing an explicit parametric representation of coe�cients from
an image, preserving information about the above mentioned interfaces via level sets. In computa-
tional inverse boundary value problems based on optimization, the image would be representative of
an initial coe�cient model or model update (via a gradient); thus the image is used for progressive
reparametrization. In (iii), we couple the surface and mesh deformations to gradient flows which
are derived from the relevant energy functionals, as in [20]. The gradient flow in shape optimization
for the inverse boundary value problem for the Helmholtz equation corresponds with the normal
direction of the boundary evolution. In this paper, we employ gradient flows based on triangulated
surfaces embedded in a three-dimensional tetrahedral unstructured mesh.

The numerical solution to the boundary value problem makes typically use of a mesh which is
significantly finer than the mesh defining the parametric representation of coe�cients. However,
the computational mesh is directly related to the parametric representation via mesh refinement,
which is locally determined by the value of the wavespeed. Periodically, the iterative method is
restarted upon generating an image, using segmentation and re-meshing, which periodically involves
refinement. The updating comprises (residual) shape optimization based mesh deformation for a
given wavespeed distribution, and wavespeed optimization for a given mesh or domain partitioning.

The outline of the paper is as follows. In Section 2, we present the generation of unstructured
tetrahedral meshes following the geometry inferred from level-set based segmentation and horizon
tracking on coe�cient images. We illustrate the process using an image of SEAM 3D model on
a Cartesian grid. In Section 3 we present general gradient flows for triangulated surfaces. In
Section 4, we describe (residual) shape optimization based mesh deformation, in particular, the
self-intersection problem and topological adaptation for mesh deformation. The shape optimization
is tied to the regions mentioned above. We review the derivative of the shape functional for residual
shape optimization in terms of solutions of the Helmholtz equation using the adjoint state method.
In Section 5 we carry out numerical experiments.

2. Generation of a 3D unstructured mesh based on segmentation. The adaptive do-
main partitioning starts with generating an image of the current coe�cient model. The image is
given on a regular Cartesian grid. Our procedure could be generalized to images generated on an
adaptive Cartesian grid with the hierarchical data structure of an octree in 3D [2].

We invoke a segmentation, but first discuss the generation of an unstructured tetrahedral mesh
while focussing on methods which provide explicit boundary mesh expressions. Conventional meth-
ods include Delaunay triangulation [39] and the advancing front method [32]. Both methods require
explicit representations of the geometry of the boundaries as an input, and, hence, are not suit-
able for our problem. We make use of the mesh generation algorithm DistMesh [28] for creating
unstructured surface triangular meshes using implicit geometries and Tetgen, a traditional three-
dimensional mesh generator [35], for creating interior tetrahedral meshes based on the generated
surface triangular meshes. We initiate our procedure with obtaining the geometric, boundary infor-
mation from an image of the current model or model update by segmentation and edge detection.

2.1. Image segmentation and regions. We introduce an image-based segmentation to ob-
tain a partitioning of the (current) wavespeed model. In the process, we use intermediate Cartesian-
grid based level set functions to implicitly represent subdomains and the boundaries. Each subdo-
main can have a distinct character expressed in terms of the local wavespeed variations.

We introduce level set functions [27] to implicitly describe interior boundaries and interfaces.
The level set method employs an implicit representation of images by defining the boundary of a
region by the zero level set of an embedding function �(x), which is referred to as the level set
function. The points inside the region are identified by {x | �(x) < 0} and the points outside the
region by {x | �(x) > 0}.

We view the wavespeed model as an image I(x). The segmentation is implemented by the
minimization of an energy functional, E(�), defined on a level set function. One can derive the
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Fig. 1. The SEAM 3D model (left) and the level set function of salt segmentation (right).

gradient flow equation,

(2.1)
@�

@t
= �@E(�)

@�
,

and obtain the steady state solution iteratively to compute the minimizer of the energy function
E(�), while t is the artificial evolution time. There are many possible choices for the energy functional
E(�). Here, we introduce an edge-based active contour model with a distance regularized level set
implementation [25]. The segmentation functional takes the form

(2.2) E(�) =
Z

p(|r�|) dx+ �

Z
g�(�)|r�| dx+ µ

Z
gH(�) dx,

where � and H denote the Dirac measure and the Heaviside function. The potential function p for
distance regularization is given by p(s) = 1

2

(s� 1)2. The g acts as an edge detector function based
on the gradient of I(x), which takes on small values near boundaries,

(2.3) g =
1

1 + �|rI|2 .

We may use a convolution of the image with a Gaussian kernel to mitigate any noise. The level set
method naturally allows changes in topology.

The resulting level set function, �, can be reinitialized [37] as a signed distance function  , which
is used in our volumetric mesh generation via the surface meshes. The signed distance function has
the property that |r�| = 1 while it returns the signed distance from each point to the closest
boundary. A standard way to obtain the signed distance function  of � is to solve the following
evolution equation using the artificial evolution time t,

(2.4)
@ 

@t
= sign(�) (1� |r |),

for a short period of ‘time’. Alternatively, one can employ the fast marching method [33].

Segmentation of an image of the SEAM 3D model. We illustrate our segmentation using
an image of the SEAM 3D model, on a 876 by 1001 by 751 Cartesian grid consisting of about 659
million points. The model is depicted in the left image of Figure 1, contains a highly irregular
salt body, and is strongly heterogeneous. Here, we segment the salt body and obtain the level set
function � shown in the right image of Figure 1. The region of negative values (blue) indicates the
salt body in the model. Finally we compute the signed distance function  of �, which is shown in
Figure 2. All these provide the geometric information needed in the mesh generation.
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Fig. 2. The generated signed distance function.

2.2. Horizon and edge detection. Beside salt bodies, the model might contain other impor-
tant features. The preprocessing of this information is necessary because the domain partitioning
depends on the large scale structures in the model. Various methods have been developed to ad-
dress subsurface horizon picking and interpolation. We mention the (2D) edge detection method
[6], the 3D volume interpretation method [7] which instead of processing 2D layers detects entire 3D
layers in the volume data, and the horizon fragments union method [19] which uses a 6-directional
connectivity technique to combine detected fragments to form larger horizon fragments. In [21],
the author presents a structure-oriented metric tensor field to perform image-guided interpolation.
Here, we consider the edge detection method restricted to layers which are strongly reflective and
laterally consistent. If necessary, we artificially extend interfaces to the entire image volume.

First, a boundary detector is used to identify the strong reflectors in the image. We employ
the multi-step Canny edge detection procedure [9], which finds the edges by picking local maxima
of the gradients. The algorithm is separated into five steps: smoothing with a Gaussian filter to
suppress noise; computing gradients where the intensity changes rapidly; non-maximum suppression
to mark the local maxima; double thresholding to determine the potential edges; and edge tracking
by hysteresis to detect the weak edges which are connected to strong edges. We apply the edge
detection to the image of the SEAM 3D model with properly chosen thresholding parameters. The
result of a (200 by 200 by 200) part of the model is illustrated in Figure 3. Indeed, we recover the
strong reflectors. The resulting edge is described in a ‘0-1’ matrix, with ‘1’ indicating the locations
of edge pixels.

Next, we perform a boundary tracking technique to pick edge points on the same surface or
boundary. The method utilizes a robot that walks in a sinusoidal path along the edge detected in
the previous step. Similar ‘walking’ methods have been used for tracking environmental boundaries
[10, 23]. The robot starts at a given position, and then tracks pixels of intensity 1 on the same
surface reflectors. The method uses an ordered search through a neighborhood of each picked pixel
in the iteration and changes ‘walking’ directions and search window if no pixel of intensity 1 is found.
The boundary tracking algorithm works well especially for the strong and continuous layers. We
connect all the edge points belonging to the same layer and directly construct a surface. Figure 4(a)
displays an example of two-dimensional cross section of the SEAM 3D model as well as a bottom
layer. Figure 4(b) shows the surface constructed using the edge points obtained by tracking.

Surface construction is also necessary when the layer structure is not continuous. We show an
example in Figure 5(a), where the constructed layers are shown in white on a cross section. Because
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As in [8, 16, 20], we use a variational formulation.
The shape derivative, DJ (⌦)V is defined as in [36]

(3.2) DJ (⌦)V = lim
t!0

J (⌦t)� J (⌦)

t
.

We let n denote the outward normal to �. Essentially, the shape derivative can be expressed in the
following way

(3.3) DJ (⌦)V = (⇢, v)L2
(�)

,

for a normal velocity v = V · n on � and some ⇢ 2 L2(�). This explicit expression provides a way
to find a descent direction for the shape of the (sub)domain in the direction V of maximal decrease
of the functional J (⌦). This directly yields a gradient flow evolution, which can be computed.

3.1. Triangular surface representation. We use a triangular mesh to discretize the bound-
ary, �. Such meshes have been studied extensively in geometric modeling and computer graphics,
and provide a ‘data’ structure involving vertex nodes connected by elements of line segments and
triangles to form a parametric framework for interpolation and numerical computation. Here, we
assume that � is compact, connected, oriented and has no boundary. Thus a properly triangu-
lated surface can produce a manifold triangular mesh that is a piecewise flat surface and a good
approximation of the original surface.

Let S = (X,E, T ) denote the piecewise flat triangular representation of �, where X = {xk | k =
1, 2, . . . , n} is the set of nodes, E = {(xi, xj) | 1  i, j  n} is the set of edge segments, and T =
{(xi, xj , xk) | 1  i, j, k  n} is the set of triangles represented by a triplet of nodes. We let 'k denote
piecewise linear basis function, where 'k(xk) = 1 and 'k(xi) = 0, for i = 1, 2...k � 1, k + 1, . . . , n.
The deformable triangulated surface S is represented by

S(x) =
X

k

xk'k(x).

A discrete vector field, V , on S can be linearly interpolated using the basis functions:

V (x) =
X

k

Vk'k(x).

In this way, the surface shape evolution with vector field V is consistent with the motion of nodes
xk in the direction of vector field V . In Figure 10, we show an example of surface vertex evolution
in the normal direction. The normal vector n(xk) at xk is approximated by the average of normal
vectors of surrounding triangles,

n(xk) =
1

|
P

xk2Ti
n(Ti)|

X

xk2Ti

n(Ti).

where n(Ti) is the normal vector to the triangle Ti.

3.2. Gradient flows on triangulated surfaces. We introduce a vector field V for the evo-
lution of the shape of S that decreases the energy functional J (�), which is approximated by J (S).
The shape derivative along the vector field V is represented as

(3.4) DJ (S)V = lim
t!0

J (S(xt))� J (S)
t

.

If we can write the shape derivative in the form (3.3), the standard choice of the gradient flow
follows from the inner product in L2(�): V = �⇢n on �. Then we have for the shape derivative

(3.5) DJ (⌦)V = (⇢, v)L2
(�)

= �(⇢, ⇢)L2
(�)

 0.
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Fig. 10. Surface mesh evolution, at xk in the direction of Vk, indicated by the arrow.

Assuming that the surface � is approximated by a triangular mesh, S, the inner product in L2(�)
between two vector fields V 1 and V 2 is evaluated as

(3.6)

(V 1, V 2)L2
(S)

=

Z

S
V 1 · V 2d�

=

Z

S

X

k

V 1

k 'k(x) ·
X

k

V 2

k 'k(x)d�

= UT
1

MU
2

,

where M is a sparse symmetric positive definite matrix with entries

Mij = Id
3

Z

S
'i(x)'j(x)d�.

According to [15], we can use a diagonal mass lumping matrix to approximate M , where Mii is
roughly computed by the area of the Voronoi dual cell of xi. Here we use a 1-ring triangle area of
xi to approximate it as in [18]. Thus the discrete gradient flow is given by

(3.7)
dS(t)
dt

= �M�1V.

In the case that smoothing is desirable, we can consider the Laplacian of the surface, which
simulates the surface tension; it is defined as the linear combination of the 1-ring edge of nodes on
the surface mesh,

L(xk) =
X

wkl(xk � xl) = xk �
X

wklxl,

where wkl is the weight corresponding to the mesh edge (xk, xl) with the requirement of
P

k wkl = 1.
A common choice of wkl is the uniform and cotangent weights. Then the numerical computation of
surface evolution is rewritten as

(3.8) Sn+1

= Sn � dt(M�1V + L(Sn)).

However, to preserve edges of geobodies, we can choose to apply the Laplacian smoothing only when
desired.

During the computational evolution, we use a boundary indicator to mark all the surface nodes,
which will be used later by the self-intersection checking of mesh deformation. In addition, Tetgen
generates the tetrahedral mesh with certain constraints for volume size and radius-edge ratio [26],
which measures the radius of the circumsphere and the length of shortest edge. With the employment
of Tetgen, we can perform local refinement and global re-meshing during the evolution to avoid bad
quality triangles.
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4. Mesh deformation controlled by shape optimization.

4.1. Mesh deformation and topological adaptation. Here, we discuss mesh deformation
controlled by the evolution of surface nodes in the gradient descent direction following shape op-
timization. For the non-surface nodes, as in [28], we assume a simple mechanical (spring) relation
between them. The edges of elements are controlled by a linear force-displacement as in (2.7). Thus
the gradient flow acts as an external force in the normal direction at the surface nodes, while the
positions of the remaining nodes are obtained by solving a force equilibrium in a truss structure.
During this procedure, nodes are moving to an equilibrium position. The optimal mesh can reach a
high quality, and avoid very thin and long elements. In addition, we can assign sti↵ness parameters
to the nodes that are a distance away from the evolving boundary. By setting them to infinity, we
can fix nodes that are far away from the boundaries.

The mesh parameterization that we use provides explicit and visual surface representations, but
raises two big issues for the evolution over ‘time’: mesh self-intersection and changing in topology.
To overcome these challenges, we introduce a topology adaptation method [1] in surface deformable
models in 3D. The algorithm includes two key elements: mesh self-intersection detection and topo-
logical completion for an open surface mesh. Given a closed surface mesh in evolution, the flow
of the vertex nodes is to be stopped if self-intersection has been detected; neighboring nodes of a
self-intersection part are deleted to get an open mesh; the open mesh is completed with another
mesh that is topologically equivalent to a sphere with holes. Then the evolution step continues.

One begins with identifying mesh self intersection, in particular, the edges of the triangular
mesh which intersect. For a small number of triangles, one would perform one-by-one checking to
verify whether two triangles intersect with one another. However, the cost of this checking increases
dramatically when the number of facets becomes large. The authors in [1] introduced an algorithm
to check self intersection in linear excepted time. The idea behind the algorithm is based on the
projections of nodes on gridded boxes in three directions with a chosen grid length l. Theoretically,
we can choose an optimal l such that nodes with a distance smaller than l

2

can be identified with
an intersection of triangles. Moreover, nodes that are closer than l

2

must be contained in at least
one common box. The task becomes to check the existence of a common box for each of the nodes.

The algorithm is based on a spatial hashing table [38] that defines eight hash functions hi1,i2,i3(xk)
for each vertex xk = (vx, vy, vz),

(4.1) hi1,i2,i3(xk) =

⇢
r

✓
vx
l
, i

1

◆
p
1

+ r

✓
vy
l
, i

2

◆
p
2

+ r

✓
vx
l
, i

3

◆
p
3

�
mod(H + 1),

for a given function

r(m,n) =

(
bm

l cl i = 0,

bm
l + l

2

cl i = 1,

where i
1

, i
2

, i
3

2 {0, 1}, p
1

, p
2

, p
3

are three large prime numbers, H is the hash table size and bc
indicates the largest integer that is smaller than the value inside. We restate two relevant theorems
in [1] in the following

Theorem 4.1. [1] If |xk � xl| < l
2

, then there exists at least one hash functions, hi1,i2,i3(·),
such that

hi1,i2,i3(xk) = hi1,i2,i3(xl).

Theorem 4.2. If the triangles T = (x
1

, x
2

, x
3

) and S = (y
1

, y
2

, y
3

) in the surface mesh

intersect, then there exist i and j, such that

|xi � yj | <
r

2

3
L
max

,
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di↵erence between the solution operator ut = S(⌦t; q1, q2)f and data df ,

(4.3) J (⌦t, q1, q2) =
1

2
kP(S(⌦t; q1, q2)f � df )k2L2

(⌃)

.

where P is an elliptic operator such that kP dkL2
(⌃)

= kdkH3/2
(⌃)

.
The derivative with respect to t is given by,

(4.4)
d

dt
J (⌦t, q1, q2)

����
t=0

= Re

Z

⌃

[P⇤P(S(⌦t; q1, q2)f � df )]
d

dt
S(⌦t; q1, q2)f

����
t=0

d�.

Using an augmented Lagrangian and employing the adjoint state method, we obtain

(4.5) DJ (⌦, q
1

, q
2

)V = Re

⇢ Z

�

(q
1

� q
2

)uw̄ ~n · V d�

�
=

Z

�

⇢v d�,

where w̄ 2 H1(⇥) is the solution of the equations

(4.6)

8
>>>>>>>>>>><

>>>>>>>>>>>:

(��� q
0

)w̄ = 0, w 2 ⇥

0 ,
(��� q

2

(x))w̄ = [P⇤P(S(⌦t; q1, q2)f � df )] �⌃, w 2 ⇥\⌦ ,

(��� q
1

(x))w̄ = 0, w 2 ⌦ ,

w̄� � w̄+ = 0, w 2 � ,
@w̄�

@⌫
� @w̄+

@⌫
= 0, w 2 � ,

lim
r!1

✓
r
@w̄

@r
� i

p
q
0

w̄

◆
= 0 .

On a triangular surface mesh we use the discretization introduced in Subsection 3.2.
In the optimization, we simultaneously update q

1

and q
2

, the updating of which can be denoted
by

d

dt
qt

����
t=0

with v.

Where qt is the updating family of wavespeed models with q
0

= q, v is normal velocity on �. Then,
in the shape derivative, ⇢ = �uw̄. In our case of piecewise constant models, we assume a basis
{ ↵}

Nq

↵=1

adapted to ⌦

q(x) =

NqX

↵=1

�↵ ↵(x).

Then

DJ (⌦)V = �Re

NqX

↵=1

✓Z

⇥
ukw̄k  ↵ dx

◆
v,

and

d

dt
�↵,t

����
t=0

with v 2 RNq ,

which gives the expression for ⇢ based on the piecewise constant basis.
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Fig. 14. Image of the louro3d wavespeed model (left) and salt bodies segmentation function (right).

Fig. 15. Louro3d model mesh: the tetrahedral mesh cutaway view (62k elements)(left) and the salt shape mesh
(right).

5. Numerical experiments. We carry out numerical experiments with a three-dimensional
model, which we refer to a louro3d (courtesy Total) and which contains two salt bodies of di↵erent
sizes. An image of the model is shown in Figure 14 (left); the wavespeed varies from 1517 m/s to
4500 m/s. The level set function providing the segmentation of the salt bodies is shown in Figure 14
(right). With the salt bodies’ boundary information, we generate the tetrahedral mesh displayed in
Figure 15 (left) using di↵erent colors to indicate the salt and non-salt regions; the salt bodies’ mesh
is displayed in Figure 15 (right).

5.1. Shape optimization controlled mesh deformation: geobodies. To obtain an initial
shape ⌦

0

in the shape optimization procedure, we carry out a coarse-scale full waveform inversion
for wavespeed using a structured, regular grid. The result is displayed in Figure 16.

We then carry out an initial model based segmentation and mesh generation, and perform a
residual shape optimization via mesh deformation using the data. In Figure 17, we display the
direct mesh generation of the initial shape ⌦

0

, including the salt bodies’ mesh and the tetrahedral
mesh. Then we employ the iterative mesh evolution with the descent direction derived from the
shape optimization using the data and three frequencies from low to high with 5 iterations for each
frequency. The results are shown in Figure 18, 19 and 20. We perform salt surface mesh refinement
and tetrahedral mesh remeshing at each new frequency. The zoom-in cutaway views in the final
result are shown in Figure 21.
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Fig. 16. FWI inverted model as the initial coe�cients.

Fig. 17. Initial mesh for shape optimization: the tetrahedral mesh cutaway view (left) and the initial salt mesh
(right).

Fig. 18. Shape and mesh after the first frequency: the tetrahedral mesh cutaway view (left) and the evolved salt
mesh (right).
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Fig. 19. Shape and mesh after the second frequency: the tetrahedral mesh cutaway view (left) and the evolved
salt mesh (right).

Fig. 20. Shape and mesh after the third frequency: the tetrahedral mesh cutaway view (left) and the evolved salt
mesh (right).

Fig. 21. The zoom-in cutaway views of the resulting mesh.
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Fig. 24. The initial and the first 3 iterations of the shape optimization and salt-layer mesh deformation.
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