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MULTI-LEVEL, MULTI-FREQUENCY, COMPRESSED FULL WAVEFORM
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FLORIAN FAUCHER† , MAARTEN V. DE HOOP‡ , HENRI CALANDRA§ , LINGYUN QIU¶, AND

CHRISTIAN RIVERAk

Abstract. We study the inverse boundary value problem for the wave equation and recovery of the wavespeed
upon taking a time-Fourier transform of the data. We design a hierarchical compressed reconstruction in a multi-
level scheme for the inverse boundary value problem associated with the Helmholtz equation using the Dirichlet-
to-Neumann map, or the single-layer potential operator, at selected frequencies as the data. The compression is
based on a domain partitioning of the subsurface, while the hierarchy is straightforwardedly established through
refinement. The coe�cients are assumed to be piecewise constant functions following the domain partitioning, thus
allowing the presence of conormal singularities (causing reflections and di↵ractions); these guarantee a Lipschitz
stability estimate for the inverse problem which gives a radius of convergence, related to the stability constant, of the
scheme even in the case of partial data. The stability constant grows exponentially with the number of subdomains
in the domain partitioning, whence the compression. The frequencies are selected to control the approximation
errors in the data due to the compression at the di↵erent levels in the scheme. The stability constants (number of
subdomains) and approximations errors (frequencies) are coupled through a condition between levels for convergence
of the multi-level scheme. We use Haar wavelets for the compression in alternative strategies providing a gradual
increase in the number of subdomains in the domain parititioning via adaptive, local multi-scale refinement. We
include visco-acoustic behavior and carry out numerical experiments.

1. Introduction. We study the inverse boundary value problem for the wave equation and
recovery of the wavespeed, including attenuation, upon taking a time-Fourier transform of the data.
We follow a hierarchical compressed reconstruction in a multi-level scheme for the inverse boundary
value problem associated with the Helmholtz equation using the Dirichlet-to-Neumann map as the
data [16]. The e↵ectiveness and convergence of this scheme was analysed in [7, 8]. The wavespeed can
be complex and frequency dependent and, hence, visco-acoustic behaviour is included. Density can,
in principle, be recovered via the reconstruction of a potential (using its frequency dependency) in
the corresponding Schrödinger equation. We do not address the inverse source (signature) problem
here.

Iterative methods for the above mentioned inverse boundary value problem have been col-
lectively referred to, in reflection seismology, as full waveform inversion (FWI). (The term ‘full
waveform inversion’ was supposedly introduced in [31] with reference to the use of full seismograms
information.) Lailly [24] and Tarantola [43, 44] introduced the formulation of the seismic inverse
problem as a local optimization problem encompassing a least-squares (L2) minimization of a misfit
functional. We also mention the original work of Bamberger, Chavent & Lailly [3, 4] in the one-
dimensional case. Tarantola noticed that the evaluation of the gradient of the mentioned functional
corresponds with an imaging procedure with a cross correlation imaging condition. Initial numerical
experiments in the two-dimensional case were carried out by Gauthier [19]. Since then, a range of
alternative misfit functionals have been considered; we mention, here, the criterion derived from the
instantaneous phase [11].

The time-harmonic formulation was initially promoted by Pratt and other collaborators in [37,
34] and specifically for wide-angle reflection data in [36]. The Newton method using the discretized
Helmholtz equation as a point of departure was developed by Pratt, Shin & Hicks [35]. Later the
use of complex frequencies was studied in [38, 20]; misfit functions using a logarithmic norm were
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explored in [44, 40, 41].

The nonlinearity of FWI has motivated studies to develop hierarchical multiscale strategies to
mitigate this nonlinearity. In the time domain, Bunks et al. [13] proposed successive inversion of data
subsets of increasing frequency contents following the intuition that low frequencies are less sensitive
to cycle skipping. This multiscale approach can, for example, be related to the subspace search
method advocated by Kennett, Sambridge & Williamson [22]. The time-harmonic formulation,
however, has been recognized as the more natural one for this purpose. The idea of frequency
progression has been considered, amongst others, by Sirgue & Pratt [42] and extensively studied in
the electromagnetic waves case, for example, by Bao and Li [5, 6]. The application of wavelet bases in
compressing the successive models in the iteration has been considered by [27, 26] in wave-equation
tomography (sparsity promoting optimization) and in FWI by Lin, Abubakar & Habashy [25] (for
the purpose of reducing the size of the Jacobian). In our approach the compression, in particular, the
compression rate, plays a fundamental role in guaranteeing convergence of our multi-level scheme.

Malinowski, Operto & Ribodetti [28] demonstrate high-resolution imaging of attenuation and
phase velocity in the visco-acoustic case. In this context, we also mention the work of Askan,
Akcelik, Bielak & Ghattas [2]. Our convergence analysis applies to complex wavespeeds.

In FWI one commonly applies a ‘nonlinear’ conjugate gradient method, a Gauss-Newton method,
or a quasi-Newton method (L-BFGS; for a review, see Brossier [12]). For the application of multi-
scale Newton methods, see Akcelik [1]. In this paper, we carry out numerical experiments with the
nonlinear conjugate gradient method. In the gradient method, the step length is typically estimated
by a simple line search for which a linearization of the direct problem is used (Gauthier, Virieux &
Tarantola [19]). This estimation is challenging in practice and may lead to a failure of convergence.
For this purpose, research based on trust region has been studied by Eisenstat & Walker in [17],
for FWI see Métivier and others in [30], the method is detailed in [15]. In various approaches one
accounts for the Hessian, at least its diagonal, in the Gauss-Newton scheme [39]. The second term in
the Hessian (Newton method) can be interpreted in terms of multiple scattering (see, for example,
Pratt, Shin & Hicks [35]). In certain earthquake seismology applications, one builds the Fréchet
derivative or Jacobian (sensitivity, for example, [14]) explicitly and then applies LSQR.

1.1. Time-harmonic waves. We formulate FWI in the frequency domain as an inverse
boundary value problem for the Helmholtz equation. We consider a bounded domain ⌦ of R3

representing the region of interest in the subsurface; the data are acquired on an open portion of
the boundary, @⌦. Time-harmonic waves are solutions, u, of

(1.1)

(
� (�+ q(x))u = 0 on ⌦,

u = g on @⌦.

Here, q = q(x) = k(x)2 = !2c(x)�2 with ! representing the (possibly complex) angular frequency
and c = c(x) the wavespeed; g = g(x,!) is a boundary source. For the discretization of the
Helmholtz operator we employ a finite di↵erence method with a compact stencil, and a massively
parallel structured multifrontal solver, Hsolver [46, 47, 48]. This solver is naturally designed for
solving the Helmholtz equation for many right-hand sides.

Attenuation. To incorporate visco-acoustic behaviour of subsurface materials, we introduce
complex wavespeeds leading to attenuation. For a comprehensive review of models of attenuation,
we refer to [45]. Suppressing the x-dependencies in the notation, the wave number k becomes:

k(!) =
!

c(!)
=

!

cp(!)
+ i↵(!),
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where cp represents the phase velocity. We consider the Kolsky-Futterman model ([23], [18]) which
has been widely used in applications and is given by

8
>>>><

>>>>:

1

cp(!)
=

1

cr
+

log
���
!r

!

���
⇡crQr

,

↵(!) =
|!|

2crQr
,

where cr and Qr represent the values of the the phase velocity cp and the quality factor Q at a
reference angular frequency, !r. If ↵cp ⌧ 2|!|,

Q(!) = Qr +
1

⇡
log

���
!r

!

��� .

If Q and cp were both frequency independent, then cp = cr, Qr = Q, and the equation for the
complex wavespeed may be simplified to

c(!) =
4cpQ2 � 2i sgn(!) cpQ

4Q2 + 1
.

In the case of weak attenuation, 4Q2 � 1, the expression on the right-hand side can be approximated
as

(1.2) c(!) = cp

✓
1� i sgn(!)

1

2Q

◆
.

This simplified representation was used in [28] while studying full waveform inversion with attenu-
ation.

1.2. Modelling the data and mismatch functional. The data generated by the boundary
sources, g, can be represented by the so-called single layer potential operator, Sq. That is,

(1.3) Sq : g 7!
Z

@⌦
Gq(x, y)g(y) d�(y), x 2 @⌦,

where Gq is the fundamental solution of �(�+q(x)) in R3. This operator is discussed and analyzed
in [32]. We note that the single-layer potential operator and the so-called Dirichlet-to-Neumann
map represent equivalent data [32]. The action of Sq has been referred to as source blending [9].
The forward problem is then described by

F :
!2

c(x)2
= q(x) 7! Sq

In [32] it was shown that Sq1 � Sq2 is a Hilbert-Schmidt (HS) operator if c2(x) = c1(x) in a small
neighborhood of @⌦. Thus, if q† represents the ‘true’ model and, hence, F (q†) = Sq† the data, we
can introduce the mismatch functional

(1.4) J (q) = 1
2kSq � Sq†k2

using the HS norm

(1.5) kSq � Sq†k =

 1X

j=1

k(Sq � Sq†) jk2
�1/2

,
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where { j} is a countable basis in H1/2(@⌦), and could be chosen to be right singular functions of
the residual operator. Note that the norm of the residual operator, kSq �Sq†k, does not depend on
the choice of basis { j}. As an alternative, the log criterion replacing

k(Sq � Sq†) jk2 by k log(Sq j)� log(Sq† j)k2,

has been proposed [44, 40]. This is well-defined considering Sq � Sq† as a densely defined operator
and using a basis { j} of H3/2(⌦). Intuitively, the log criterion may capture better the components
of the residual which belong to the small singular values; however, it does not give a proper norm
for the residual operator. We will consider both functionals in our examples, where we will truncate
the sum at N , a fixed number of terms.

2. Iterative scheme.

2.1. Gradient descent. We consider time-harmonic waves, described by solutions, u say, of
the Helmholtz equation on Rn, n � 3. We write

q(x) = �!2c�2(x,!);

! 2 R. We introduce a bounded open (computational) domain ⇥ ⇢ Rn with boundary in C(1,1).
We assume that ⇥ 0 = Rn\⇥ is connected. We consider the problem,

(2.1)

8
>>><

>>>:

(��� k2)u = 0, x 2 ⇥ 0 ,

(��+ q(x))u = f, x 2 ⇥ ,

lim
r!1

r(n�1)/2

✓
@u

@r
� iku

◆
= 0 .

Here, q 2 L1(⇥) while �k2 = �!2c�2
1 , where c1 is constant.

We replace (2.1) by the equivalent problem on ⇥ ,

(2.2)

8
<

:

(��+ q(x))u = f, x 2 ⇥ ,

@u

@⌫
= �⇤eu, x 2 @⇥ ,

where ⇤e is the exterior Dirichlet-to-Neumann map for the Helmholtz equation on ⇥ 0. We introduce
an open bounded domain, D, with D ⇢ ⇥ and a boundary in C(1,1), and D0 = Rn\D being
connected. Let ⌃ be an open portion of @D. In the above, furthermore, f represents volume
sources supported in @D; this property will be implicit through the introduction of an appropriate
Dirac measure and factoring out  (defined on @D) in f .

The solution, u, of (2.2), in H1(⇥), also solves the variational equation

(2.3) b(q;u, v) = s(v) for all v 2 H1(⇥),

where

(2.4) b(q;u, v) =

Z

⇥
(ru ·rv̄ � q uv̄) dx,

and

(2.5) s(v) =

Z

⇥
f v̄ dx�

Z

@⇥
(⇤eu) v̄ d�.

We consider the one-parameter family of models, qt, with q0 = q, and a set of source functions,
(fk(x))Nk=1; we collect (uk,t(x))Nk=1 satisfying

(2.6) b(qt;uk,t, v) = sk(v) for all v 2 H1(⇥),
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with

(2.7) sk(v) =

Z

⇥
fk v̄ dx�

Z

@⇥
(⇤eu) v̄ d�.

(The first integral on the right-hand side is e↵ectively an integral over @D.) We write the solution,
uk,t, restricted to @D as an operator, S(qt), acting on fk, and introduce the functional,

(2.8) J (qt) =
1

2

NX

k=1

kP (S(qt)fk � df,k)k2L2(@D);

here, (df,k(x))Nk=1 represents the data, and P is an elliptic operator such that kP dkL2(@D) =
kdkH3/2(@D).

Taking the derivative with respect to t yields

(2.9)
d

dt
J (qt)

����
t=0

=
NX

k=1

Re

Z

⌃
[P⇤P(S(qt)fk � df,k)]

d

dt
S(qt)fk

����
t=0

d�.

We introduce v = (vk(x))Nk=1, Lagrange multipliers (wk(x))Nk=1 and a family of functionals,

(2.10) L(qt; v, w) = J (qt) +
NX

k=1

Re (b(qt; vk, wk)� sk(wk)),

where S(qt)fk in J (qt) is replaced by vk. If vk = uk,t is the solution of the direct problem (2.6),

L(qt;ut, w) = J (qt) for all wk 2 H1(⇥), k = 1, . . . , N,

then

d

dt
L(qt;ut, w)

����
t=0

=
NX

k=1

Re

⇢  Z

⌃
[P⇤P(S(qt)fk � df,k)]

d

dt
S(qt)fk

����
t=0

d�

+b

✓
q;

d

dt
S(qt)fk

����
t=0

, wk

◆ �
+

d

dt
b(qt;uk, wk)

����
t=0

�

for all wk 2 H1(⇥). If wk solves

b(q; v, wk) = �
Z

⌃
[P⇤P(S(qt)fk � df,k)] v d�

for all v 2 H1(⇥), k = 1, . . . , N,(2.11)

then

(2.12)
d

dt
L(qt, ut, w)

����
t=0

=
NX

k=1

Re
d

dt
b(qt;uk, wk)

����
t=0

.

We can write (2.11) in the form of the direct problems:

b(q; w̄k, v) = �
Z

⌃
[P⇤P(S(qt)fk � df,k)] v̄ d�

for all v 2 H1(⇥), k = 1, . . . , N ;(2.13)
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here, (w̄k)Nk=1 is the so-called adjoint state, with w̄k 2 H1(⇥) being the solution to

(2.14)

8
>>><

>>>:

(��� k2)w̄k = 0, x 2 ⇥ 0 ,

(��+ q(x))w̄k = [P⇤P(S(qt)fk � df,k)] �⌃, x 2 ⇥ ,

lim
r!1

r(n�1)/2

✓
@w̄k

@r
� ikw̄k

◆
= 0 .

Again, we have the equivalent problems

(2.15)

(
(��+ q(x))w̄k = [P⇤P(S(qt)fk � df,k)] �⌃, x 2 ⇥ ,

@w̄k

@⌫
= �⇤ew̄k, x 2 @⇥ .

We have made use of the fact that ⇤⇤
e(w̄k) = ⇤ewk. We then evaluate

(2.16)
d

dt
b(qt;uk, wk)

����
t=0

= �
Z

⇥
ukw̄k

d

dt
qt

����
t=0

dx.

We identify

d

dt
qt

����
t=0

with �.

Thus

(2.17) dJ (q, �) = �
NX

k=1

Re

Z

⇥
ukw̄k � dx =: (⇢, �)L2(⇥).

In the case of attenuation in d
dtqt above, we can distinguish its real and imaginary parts. Instead,

we distinguish between @q
@cp

d
dtcp;t and

@q
@Q

d
dtQt, where

8
>>>>>>>><

>>>>>>>>:

@q

@cp
= � 2!2

c3p

✓
1� i sgn(!)

2Q

◆2 ,

@q

@Q
= � i sgn(!)!2

c2pQ
2

✓
1� i sgn(!)

2Q

◆3 .

A comprehensive review for gradient computations may be found in [35, 33].

2.2. Convergence. The convergence rate and convergence radius of our iterative scheme are
derived based on a conditional Lipschitz-type stability estimate for the inverse problem. In [8] it
was proven that

(2.18) kq � q†k  C kF (q)� F (q†)k,

in particular, for piecewise constant functions,

q(x) =
JX

j=1

qj�Dj (x),

incorporating interfaces, pinchouts etc., where the qj are constant coe�cients and the � character-
istic functions; here, we pre-assume a domain partitioning {Dj}Jj=1 of ⌦. Moreover, in [8] it was
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shown that C increases exponentially with increasing J . Increasing J implies an increasing spatial
resolution.

The convergence radius is also determined by the lower bound of kDF (q†)k, where DF signifies
the Fréchet derivative of F . Indeed, such a bound implies the above mentioned Lipschitz stability
estimate. In the case of weak attenuation, it is clear that the lower bound of the Fréchet derivative
with respect to Q decreases significantly, which implies a rapidly increasing stability constant, with
decreasing frequency.

We mitigate the above mentioned growth of the stability constant by introducing a multi-level
approach based on a hierarchical compression of the model during the reconstruction. The com-
pression at any level leads to an approximation error: Let q†J denote the compressed approximation

of q† using J domains, then the error, kF (q†J) � F (q†)k, decreases as !2 as ! # 0. A condition on
the coupling between approximation errors and stability constants from level to level guarantees
convergence of our scheme, see [16]. This condition is satisfied if kq†J � q†k decreases at least expo-
nentially with J . Given this compression rate, we can then choose an appropriate set of frequencies
which control the approximation errors at the di↵erent levels. A straightforward choice is facilitated
by a gradual increase in J . For the analysis, precise conditions and expressions for the convergence
radii, see [8].

In our implementation we use the nonlinear conjugate gradient method including projections.
The step size is computed using a backtracking line search. (By successively increasing the step size
one finds the smallest one that reduces the functional, which is then used to update the model.)

3. Adaptive domain partitioning and model compression. In our applications, we will
employ domain partitionings based on boxes and piecewise constant functions derived from the
Haar basis. The boxes naturally fit a grid. Haar wavelets have been used for compressed model
representations, for example, in tomography [27, 26]. In subsection 3.1 we briefly review the basis of
Haar wavelets and the notion of scale refinement. The increase of the number of domains by refining
the scale one level is large and hence an obstruction to a proper use of our multi-level approach. To
arrive at a more gradual increase of the number of domains, still using Haar wavelets, we introduce
in subsection 3.2 two adaptive strategies based on local refinement. We give numerical examples
for a test model. We will apply the adaptive strategies to the gradient, periodically, in the iterative
scheme; that is, we use the current gradient to determine, periodically, the next domain partitioning
in our multi-level approach; see subsection 3.3.

3.1. Haar wavelets. The Haar basis [21] is defined using a scaling function � and a mother
wavelet  . In the one-dimensional case,

 (x) =

8
>>>><

>>>>:

1 if 0  x <
1

2

�1 if
1

2
 x < 1

0 elsewhere.

and the basis is formed by functions  j,k(x) = 2�j/2 (2�jx� k), j, k 2 Z. This basis is orthogonal
in L2. The scaling function is simply the characteristic function on the interval [0; 1], while

�j,k(x) =

(
|Ij,k|�1/2 if x 2 Ij,k

0 elsewhere,

where Ij,k = [2j(k � 1), 2jk]. The Haar coe�cients of a function f are then given by

djk = hf, j,ki,

where h., .i denotes the inner product in L2, and the ‘averages’ of f on Ij,k by

sjk = hf,�j,ki.
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These satisfy the relationships,

dj+1
k = 1p

2
(sj2k�1 � sj2k)

and

sj+1
k = 1p

2
(sj2k�1 + sj2k),

which are used in the design of a fast transform [10]; [29]. We follow an extension to higher
dimensions based on taking tensor products.

In this section, we use a model example on a regular grid which we refer to as louro3d. The
model contains irregularly shaped salt bodies, is of size 124⇥ 79⇥ 31, and represents a wavespeed.
We will illustrate multi-scale approximations of the model by injecting it into the original grid,
which corresponds with the 0 level compression. In Figure 1 we illustrate the decomposition of
louro3d into Haar wavelets over 4 levels of compression. The number of coe�cients for each level is
given in Table 3.1.

Fig. 1. Decomposition into Haar wavelets, and implied domain partitionings, from level 4 (upper left figure) to
level 0 (bottom figure). The level 0 corresponds with the original louro3d model.
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level of compression number of coe�cients or domains percentage
0 303 676 100%
1 36 270 12%
2 4 123 1.4%
3 405 0.1%
4 28 0.009%

Table 3.1
Number of coe�cients or domains in the domain partitioning depending on the level of compression for the

louro3d model shown in Figure 1.

It is immediate from the structure of the Haar basis that refining the scale increases J in the
domain partitioning by a factor 8. For the multi-level scheme, which requires a gradual increase of
J , we now introduce an adaptive local refinement.

3.2. Local refinement. We discuss two methods, which assume a given coe�cient model on
a (computational) grid.

Method 1. In this method, we simply refine only where the deviation from the local average
of the wavespeed evaluated through the scaling functions appears to be above a certain threshold.
In case a refinement is applied, the box (domain) is split into 8 new boxes. Furthermore, we can
distinguish the directions and subject them to refinement independently.

We apply this method to the louro3d model. We illustrate it for compression level 2 highlighting
the implied domain partitionings. In Figure 2 we show a horizontal slice of the results; the left figure
corresponds with Figure 1 (level 2) while the middle figure represents the method discussed here. The
number of domains or coe�cients has been moderately increased, from 4123 (1.4% of the original)
to 7455 (2.5% of the original), still far below the number for Haar level 1 (12% of the original). In
Figure 4 we show the logarithmic approximation error in L2 as a function of the number of domains,
J , in the domain partitioning, and illustrate the e↵ect of a more gradual increase (the red dots).

Method 2. The strategy of our second method is based on gluing boxes together forming larger
domains. The criterion for gluing follows from comparing adjacent averages at a current level. If
the averages are su�ciently close we glue to underlying domains together. The threshold in the
criterion essentially controls the increase in the number of domains in the domain partitioning from
level to level.

Fig. 2. A horizontal slice of the compressed louro3d model at level 2; the color bar indicates wavespeed in m/s.
Left: Haar basis (4123 domains); middle: method 1 (7 455 domains); right: method 2 (9704 domains).
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We show an example using the the louro3d model in Figure 2 (right). Here, the level 1 Haar
compression yields the initial paritioning. We apply the gluing in the horizontal directions only. In
Figure 4 we show the logarithmic approximation error in L2 as a function of the number of domains,
J , in the domain partitioning, and illustrate the e↵ect of a more gradual increase (the green dots).

Fig. 3. Representation of the local refinement methods for compression and domain partitioning. Left: method
1 (7455 domains); right: method 2 (9704 domains).

Fig. 4. The error, in L

2 norm, as a function of the number of domains in the domain partitioning. The blue
dots correspond with the di↵erent levels following the compression with Haar wavelets. The red dots correspond with
method 1, and the green dots correspond with method 2; these methods generate intermediate domain partitionings
as compared with the one using the Haar wavelets.

While the first method keeps the structure of the Haar basis, the second method, of course,
provides more flexibility, while both methods can be applied directionally. We illustrate this in
Figure 5 for a 2-dimensional grid. Method 1 starts from a coarser scale representation (left subfigure);
a local refinement to a finer scale is illustrated in the two top subfigures. Method 2 starts from a
finer scale scale representation (right subfigure); the gluing to domains corresponding with a coarser
scale scale is illustrated in the two bottom subfigures.

3.3. Gradient adaptive compression. In our multi-level iterative scheme, we refine the
domain partitioning at each new frequency in the (discrete) frequency progression. In the refinement,
we use the current gradient as a point of departure and project it onto two neighboring scales; the
finest of these two scales corresponds with the next level. Method 1 uses the coarsest scale to
construct the new domain partitioning while Method 2 uses the finest scale for this purpose.

4. Numerical experiments. We carry out numerical experiments illustrating the perfor-
mance of our multi-level, multi-frequency iterative scheme using modelled data. We consider the
data to be noise-free, though, in view of the mentioned stability estimates, additive noise through
the approximation errors will not influence the results in a significant way. As mentioned before, the
underlying theory including a condition for convergence can be found in [8]. We invoke the gradient
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Fig. 5. Example of the local refinement methods in 2D. Method 1 is illustrated in the upper part, while method 2
is illustrated in the bottom part. Left: the Haar level 1 represention; right: the Haar level 0 representation. Method
1 takes the coarser level as a starting point, selects which part should be refined and then refines as if it were Haar
with one level down on the selected part (upper right subfigure). Method 2 starts from the finer level, selects which
domains should be glued together (two in this example) and merges domains accordingly (lower left subfigure).

adaptive refinement of the domain partitioning. We start with the lowest available frequency and a
model representation on the coarsest scale using the computational grid as a reference for the finest
scale. After a prescribed number of iterations, the frequency is increased; we carry out a domain
re-partitioning as outlined in the previous section, and then restart the iterations. This process
progresses through a set of frequencies determined by the condition on the approximation errors
which involves the upper bound of the stability constants, and the stability constants themselves.
These implicitly depend on the ‘true’ solution which we do not know in practice. However, through
some trial iterations, a reasonable choice of frequencies can be obtained. In subsections 4.1 and 4.2
the wavespeed is real-valued and the stability constants and approximation errors control the con-
vergence of our multi-level, multi-frequency iterative scheme; in subsection 4.3 we consider complex
wavespeeds and attenuation where the (frequency dependent) lower bound of the Fréchet derivative
also strongly influences the convergence in particular for the recovery of the quality factor.

4.1. Salt bodies: louro3d. The louro3d model was illustrated in Figure 1 (bottom); the step
size is 20m and the wavespeed varies between 1517 m/s and 4527 m/s. We generate data between
1 Hz and 15 Hz with our Hsolver.

We employ, here, the non-adaptive approach using the Haar basis for the domain partitioning
and refinement. The initial model is shown Figures 6 (right) and 7 (right), and does not contain
any indication of the salt bodies.

Fig. 6. Left: True wavespeed model; right: initial wavespeed model.
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Fig. 7. Vertical slices of the true wavespeed model (left) and initial wavespeed model (right).

We begin with illustrating the role of compression in the convergence of our scheme. This role
becomes pronounced at relatively higher frequencies, as expected from the explicit expressions for
the convergence rates [16]. In Figure 8, the mismatch functionals are plotted as a function of the
iteration, at 2 Hz (left) and 3 Hz (right), with compression (level 2) and without compression (level
0).

Fig. 8. The mismatch functionals (logarithmic scale) as a function of iteration at 2 Hz (left) and 3 Hz (right),
with compression (level 2, the red curve) and without (level 0, the blue curve).

We proceed with applying our multi-level iterative scheme progressively for frequencies in the
set {2, 3, 4, 5, 6, 7, 8, 9, 10} (in Hz). Here, we simply use the Haar basis for compression and domain
partitioning. At 2 Hz we start with level 2; at 4 Hz we refine the domain partitioning to level 1 and
at 8 Hz to level 0. Figure 9 shows a horizontal slice of the (partial) recovery at level 2 and Figure 10
shows the same horizontal slice of the (partial) recovery at level 1. In Figures 11 and 12 we show
the (partial) recovery obtained at level 0.

Fig. 9. A horizontal slice of the true wavespeed model (left) and the (partial) recovery at level 2 (right).
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Fig. 10. A horizontal slice of the true wavespeed model (left) and the (partial) recovery at level 1 (right).

Fig. 11. The true wavespeed model (left) and the (partial) recovery at level 0 (right).

Fig. 12. A vertical slice of the true wavespeed model (left) and the (partial) recovery at level 0 (right).

The model consists of multiple disconnected salt bodies of di↵erent sizes. Even after the first
iterations at the coarsest level, in Figure 9, the largest bodies appear with a wavespeed close to
the true wavespeed at their centers. Following the progression in our multi-level, multi-frequency
scheme we begin to resolve the smaller bodies, as well as the boundaries of the bodies and the
wavespeeds in their interiors; see Figures 10, 11 and 12.

Figure 13 presents the residuals corresponding with a centrally located shot (real part) during
the 5 Hz reconstructive iterations, Figure 14 during the 10 Hz iterations. The left figure shows
the starting residual, in the middle after 5 iterations at the considered frequency, on right after 20
iterations. The residuals are decreasing while the salt bodies are partly being resolved. The residual
does not decrease near the boundary of the computational domain; indeed, we cannot resolve the
wavespeed near this boundary.
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Fig. 13. The residual for a central shot at di↵erent stages of the 5Hz frequency iterative reconstruction of the
louro3d model. The color bar indicates the di↵erence, all Figures have the same scale. Left: at the first iteration;
middle: after the fifth iteration; right: after the twentieth iteration.

Fig. 14. The residual for a central shot at di↵erent stages of the 10Hz frequency iterative reconstruction of the
louro3d model. The color bar indicates the di↵erence, all Figures have the same scale. Left: at the first iteration;
middle: after the fifth iteration; right: after the twentieth iteration.

4.2. Statoil model. We use a second test model (courtesy Statoil) representing a di↵erent
geological environment with high wavespeed contrasts to illustrate our adaptive compression meth-
ods. The model is of size 256⇥146⇥123 and the stepsize of the grid is 10 m; see Figures 15 and 16.
The set of frequencies used in our scheme is {3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 20, 25} (in Hz). We carry
out a maximum of 20 iterations per frequency. The initial model is built from a one-dimensional
wavespeed profile in depth.

Fig. 15. True wavespeed model (left) and initial model (right).
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Fig. 16. A vertical slice of the true wavespeed model (left) and the initial model (right).

Nonlinear compressed reconstruction using the Haar basis. The Haar level 3 is the
initial compression. It is switched to level 2 at 4 Hz, to level 1 at 6 Hz and to level 0 at 10 Hz.
Figures 17 and 18 show the finite reconstruction at 25 Hz. Figure 19 gives a three-dimensional view
and also shows wavespeed profiles in depth. We note the wavespeed in the high wavespeed layer
has not completely been resolved. We expect that an iterative scheme based on high-frequency data
will further resolve such a detail.

Fig. 17. Horizontal slice of the true wavespeed model (left) and the reconstruction at 25 Hz (right).

Fig. 18. Vertical slice of the true wavespeed model (left) and the reconstruction at 25 Hz (right).
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Fig. 19. The partial reconstruction at 25 Hz (left) and wavespeed profiles in depth at x = 1.3km; y = 400m:
the true wavespeed in blue, the initial model in green, and the reconstruction using Haar basis in red circles.

Nonlinear compressed reconstruction using method 1. Again, the Haar level 3 is the
initial compression. We apply method 1 for the domain re-partitioning. Table 4.1 shows the implied
gradual increase in the number of domains in the multi-level approach while increasing the frequency.
Figures 20, 22 (left) and 23 (left) show the finite reconstruction obtained with method 1.

frequency level of compression number of domains percentage
3Hz Haar level 3 8 640 0.19%
4Hz Haar level 2 69 120 1.5 %
5Hz method 1 348 847 7.6 %
6Hz Haar level 1 569 984 12.4 %
7Hz method 1 1 242 950 27 %
8Hz method 1 2 090 685 45.5 %
9Hz method 1 3 052 765 66.4 %

10Hz-25Hz level 0 4 597 248 100 %

Table 4.1
Number of domains versus frequency in the multi-level scheme for the model depicted in Figure 15 of original

size 256⇥ 146⇥ 123.

Fig. 20. The partial reconstruction at 25 Hz using method 1 (left) and wavespeed profiles in depth at x = 1.3km;
y = 400m: the true wavespeed in blue, the initial model in green, and the reconstruction in red circles using method
1.
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Fig. 23. Horizontal slice of the true wavespeed model (middle) and the reconstruction at 25Hz using method 1
(left) and method 2 (right).

Fig. 24. Convergence rates: The mismatch functional (logarithmic scale) as a function of iterate. Left: at
20 Hz; right: at 25 Hz. The blue curve corresponds with the refinement using the Haar basis while the red curve
corresponds with the refinement using method 1. The green curve corresponds with the refinement using method 2.
The domain partitioning is kept fixed in both cases.

4.3. Attenuation. Here, we consider complex wavespeeds and attenuation. We study the
partial recovery of the phase velocity and quality factor (cf. (1.2)), or the real and imaginary parts
of the wavespeed. For our numerical experiments, we use a model containing an artificial geobody
with the shape of a cross; see Figures 25 and 26. Outside the body, the phase velocity increases
linearly in depth; also, the phase velocity is significantly higher inside the body than outside it. The
quality factor is chosen to increase with increasing phase velocity. The model is of size 124⇥79⇥31
with a step size of 20 m.

There is no fundamental obstruction to recover a complex wavespeed, and, indeed, our stability
estimates hold for this case. However, the key challenge, here, is that the Fréchet derivative with
respect to the quality factor becomes significant in magnitude only for relatively high frequencies.
We encounter the e↵ect of the (lower) bound of the Fréchet derivative on the radius of convergence
and convergence rates. In our model, a su�ciently high frequency is reached at 15 Hz. At this
frequency, partial recovery of the quality factor becomes possible; see Figure 28. In Figure 27 we
show the partial recovery of the phase velocity. An appropriate set of frequencies follows to be
{3, 4, 5, 6, 7, 8, 10, 12, 15} Hz. We begin with the Haar basis at level 2; at 4 Hz we refine the domain
partitioning to level 1 and then to level 0 at 8 Hz.

5. Discussion. We have implemented and applied the analysis and construction of a multi-
level, multi-frequency iterative scheme including conditions for convergence developed in [16]. The
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Fig. 25. Horizontal slice of the true phase velocity (left) and quality factor (middle right) and the initial model
(middle left and right).

Fig. 26. Vertical slice of the true phase velocity (left) and quality factor (right) and the initial model (middle).

Fig. 27. Partial reconstruction of the phase velocity at 15 Hz.

Fig. 28. Partial reconstruction of the quality factor at 15 Hz.
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analysis provided an understanding and a precise characterization of, for example, frequency progres-
sion in full waveform inversion; it also showed that this progression should be coupled to hierarchical
model compression in a particular way to guarantee convergence. The analysis originated from a
Lipschitz stability estimate for the inverse problem [7] using the single layer potential operator as the
data. This estimate was obtained for piecewise constant (blocky) models incorporating interfaces,
pinchouts, etc., corresponding with a given domain partitioning. We introduced two adaptive meth-
ods of (directional) compression and compared their performance in computational experiments
using two geologically di↵erent models. The compression overcomes in part the need for very-low
frequency data while allowing initial models not containing prior information about the structure of
the ‘true’ model. Our analysis and application are based on the behaviors of the stability constants,
and approximation errors at low frequencies. The stability analysis, which will be local, and, hence,
convergence, at high frequencies requires the use of di↵erent techniques, which is a current subject
of research.
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