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MATRIX-FREE SPARSE DIRECT SOLVERS

JIANLIN XIA⇤

Abstract. Existing direct solvers for large linear systems, especially sparse ones, require the matrices to be
explicitly available. In practical computations, often only matrix-vector products instead of the matrix are available,
which makes iterative methods the only choice. Here, we derive matrix-free sparse direct solvers based on matrix-
vector products. Two stages are involved. The first stage is to reconstruct the sparse matrix with a multi-nested
dissection ordering. This idea recursively reorders the matrix and the separators with nested dissection, so that a
compact probing strategy can reconstruct the matrix entries via the simultaneous recovery of multiple blocks with
a small number of vectors. For discretized matrices in 2D or 3D, each dimension thus corresponds to one layer of
nested dissection. The number of matrix-vector products required is O(logd N), where d is the dimension and N is
the mesh dimension (e.g., 2D N ⇥ N or N ⇥ N ⇥ N mesh), and the reconstruction is thus said to be superfast. A
simplified fast scheme can also be used, which uses O(N logd�1 N) In the second stage, the matrix is factorized in a
randomized multifrontal method based on rank structures and randomized sampling. The overall solver costs about
O(n) and O(n4/3) flops for some 2D and 3D problems, respectively, where n is the matrix size (e.g., n = N2 in 2D
and N3 in 3D). The solver has a potential to work for varying parameters. For example, when the diagonal or few
entries of the matrix change, we can reuse at least part of the previous factorizations, which is nearly impossible
in classical direct factorizations. The multi-nested dissection idea also has other benefits such as in the structured
solutions.
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1. Introduction. The solution of large sparse linear systems is one of the most critical tasks
in modern scientific or engineering computations. Two classes of sparse solvers are typically used,
and their benefits and limitations have been thoroughly studied [1, 7, 8, 9, 13].

Among one of the limitations of sparse direct solvers is the need of the explicit matrix A.
However, in practical applications such as sparse grid methods [22] and iterative mesh refinements
[2, 6, 26], it may often be di�cult or expensive to form the matrix. On the other hand, in such
applications, the products of A with vectors can often be conveniently computed in about O(n)
flops, where A is n⇥ n. For such cases, iterative methods are then usually used.

On the other hand, for these cases where A is not explicitly available, direct methods may
have significant advantages due to the robustness and the e�ciency for multiple right-hand sides.
Sometimes, it may also need to approximately reconstruct A so as to form e↵ective preconditioners
for iterative solutions.

Thus in this work, we propose some matrix-free sparse direct solvers, which includes a fast or su-
perfast reconstruction of A with matrix-vector products, followed by a fast structured factorization.
A superfast sparse reconstruction needs about O(logd N) matrix-vector products for A discretized
on a N ⇥ N ⇥ · · · ⇥ N mesh. (We name it superfast similarly to a structured solution in [30] and
Toeplitz solutions.) A fast sparse reconstruction needs about O(N logd�1 N) products instead, but
is simpler. Here, we assume the mesh or adjacency graph is known, well shaped [20, 21, 24], and
only locally connected. The local connectivity means that each mesh or graph point is connected to
only a finite number of other points nearby, and thus each row or column of A has a finite number
of nonzero entries. For simplicity, we also assume A is symmetric, since our primary consideration
is the connectivity of the graph points.

Our reconstruction scheme includes the following major features.
1. A multi-nested dissection (or multi-layer nested dissection) ordering is proposed to extend

standard nested dissection [11] to multiple layers. That is, the separators in nested dissection
are recursively reordered with nested dissection again, until the bottom layer separators are
one dimensional (1D) lines. This strategy is not only useful in our reconstruction of the
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matrix, but also in rank structured solutions [5, 25]. Correspondingly, we also extend the
concept of assembly trees [10, 18] to multi-assembly trees.

2. The diagonal blocks can be reconstructed simultaneously with a small number of matrix-
vector products, since multi-nested dissection helps distribute the diagonal blocks into di↵er-
ent rows and columns. This avoids using multiple matrix-vector products for reconstructing
multiple diagonal blocks. A basic sparse reconstruction scheme is then shown and analyzed.

3. A compact probing strategy is given to e�ciently reconstruct the o↵-diagonal blocks of A.
A fundamental idea is to separate those blocks in the o↵-diagonal block that do not have
overlapping column indices from those that do. Blocks without overlaps are reconstructed
simultaneously. We then cycle through all the descendants of an (outer layer) node in the
multi-assembly tree. Each cycling peels o↵ some connections.

Under certain mild assumptions, we can show that the reconstruction is superfast. In fact, we
may also simplify the scheme to get a fast version. This is especially attractive for 3D problems,
where the overall reconstruction cost is no more than the factorization cost, even with the fast
solvers in [28, 29].

In the factorization stage, we employ a fast randomized sparse direct solver in [29], which is
based on the multifrontal method, rank structures, and randomized sampling. Due to the use of
matrix-vector products both here and in [29], we mainly emphasize the potential of updating the
factorization when A is varied due to some parameters. (In standard LU factorizations, this is
usually impossible.) Examples include A� sI with a shift sI, or the consideration of the Helmholtz
discretized matrix A� �I, where � is related to the frequency.

The remaining part of the paper includes these sections. Section 2 briefly reviews nested dissec-
tion and then shows a basic sparse reconstruction. Our superfast reconstruction with multi-nested
dissection is given in Section 3. The sparse factorization together with the potential of updating
the factorization are shown in Section 4. Section 5 presents the numerical tests.

2. Basic sparse reconstruction scheme and nested dissection. Consider a sparse matrix
A with the corresponding adjacency graph G, which may also be a mesh. The nested dissection
ordering (ND) [11] of is one of the most useful ordering methods to reduce fill-in in sparse direct
solutions. It uses separators or subsets of G to recursively divide G into smaller graphs. The
separators are then organized into multiple levels with the aid of a binary tree T, which may be
used as an assembly tree [10] in sparse factorizations. Upper level separators are ordered later and
thus eliminated later. See Figure 1. We say this ND is a one-layer version. After ND, the matrix
looks like Figure 2(i), with the corresponding assembly tree T in Figure 2(ii). For convenience,
assume T is in its postordering with the nodes denote by i = 1, 2, . . . ,k ⌘ root(T). Also assume si
is the set of all mesh points corresponding to node or separator i, |si| is its cardinality, and

Ni = {j|j is an ancestor of i and A|si⇥sj 6= 0},

where A|si⇥sj denotes a submatrix of A selected by the row index set si and the column index set
sj. (Similarly, we use A|

:⇥sj to mean the selection of all the entries of A in columns sj.) Ni is the
set of all upper level neighbors [28] of i.

We can then present a basic (and less e�cient) scheme to reconstruct the matrix A via matrix-
vector products. This is done in a top-down levelwise traversal of T. For convenience, we reconstruct
the block column corresponding to each separator i. For k = root(T) at level 1 of T, let

V (1) =

✓
0
I

◆

n⇥|sk|
.

Then clearly,

A|
:⇥sk = AV (1).

See Figure 3(i)–(ii).
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Table 3.1
Notation used in multi-nested dissection and our matrix reconstruction.

Symbol Meaning
T The first (or outer) layer assembly tree
i A node (or separator) of T
l A level of T, with root(T) at level l = 1
l
max

The maximum number of levels in T
si The set of all mesh points corresponding to a first layer node i
Ti The assembly tree in the second (or inner) layer corresponding to

node i of T
i A node of Ti

l A level of Ti for certain i
l
max

(Ti) The maximum number of levels of Ti

(l, l) A level l of Ti for all nodes i at level l of T
(l, l)

max

The maximum number of levels of all Ti for i at level l
si,i The set of all mesh points corresponding to a node i of Ti

n(l,l) maxi: node at level (l,l){|si,i|}
V (l,l) The skinny matrix used to recover the separators at level l of Ti for

all i at level l of T
Ni,i {j|j is an ancestor of i in Ti and A|si,i⇥si,j 6= 0}

generalized to higher dimensions. To distinguish the notation among di↵erent layers of the multi-
assembly tree, we define or restate some notation in Table 3.1.

3.2. Diagonal block reconstruction. We first consider the reconstruction of the diagonal
blocks corresponding to the first layer nodes i of T. For the node i =root(T) at level l = 1, we can
simply apply the basic reconstruction scheme in Section 2 to A|si⇥si . See Figure 6(i)–(ii).

Clearly, all the nodes i at level l > 1 are disjoint and thus A|si⇥si can be reconstructed simul-
taneously. This is done for all the nodes of the inner trees Ti at the same levels. That is, let V be
an n⇥ n(l,l) skinny matrix, which is a zero matrix except

(3.1) V (l,l)|si,i = I (i: at level (l, l)).

Then compute matrix-vector products

W = AV (l,l).

Clearly, for all nodes i at level l of T,

A|si,j⇥si,i = W |si,i (i 2 Ni,j).

See Figure 3(iii)–(vi).
That is, we simultaneously visit all the nodes at level (l, l), which are across multiple inner layer

tress Ti. This can be recursively applied to the multiple layers for high dimensional problems, and
the total number of matrix-vector products required to recover all A|si⇥si blocks is given below.

Lemma 3.1. Assume the (d-layer) multi-nested dissection is applied to a d-dimensional N ⇥
N ⇥ · · · ⇥N mesh. Then it needs O(logd N) matrix-vector products to reconstruct all the diagonal
blocks A|si⇥si of the matrix A.

3.3. O↵-diagonal block reconstruction and compact probing. The diagonal block re-
construction in the previous subsection follows a general idea of probing, where a small number of
vectors are used to extract certain information with matrix-vector products (see, e.g., [23]). This
can be extended to a method which we call compact probing.
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Thus, to recover the o↵-diagonal blocks A|sj⇥si with i 2 Nj for all j, we cycle through all the
descendants j of i in a bottom-up order to identify the disjoint blocks. Due to the local connectivity
assumption in Section 1, each mesh point in separator i is only connected to finite number of mesh
points in other separators. Thus, the overlaps are generally small, especially between the separators
at the same level. The removal of certain blocks with overlaps at one cycle creates new disjoint
blocks. Then this is repeated until all blocks are reconstructed.

The major steps for finding the probing vectors V (associated with each node i of T) are listed
as follows. For each descendent j of i,

1. find the nonzero column indices in A|sj⇥si ;
2. find the nonzero column indices ĉi,j and ci,j in A|sj⇥si that have and have no overlaps with

any other blocks in A|
:⇥si , respectively;

3. find the nonzero row indices r̂i,j and ri,j in A|sj⇥si that have and have no overlaps with any
other blocks in A|

:⇥si , respectively;
4. update the nonzero column indices ĝi and gi in A|

:⇥si that have and have no overlaps,
respectively;

5. set V |ci,j = I.
Figure 7 illustrates how the connections between i and its descendants are removed or peeled

o↵ in the cycling. That is, in an ideal situation, the pieces in i to be removed at each level happens
to match those at the multiple levels of Ti. The details are given in Algorithm 1. For convenience,
the following simple routines are used:

W = mv(V ) – evaluating the product of A with V ;
r = any(si, sj, d) – the nonzero row or column indices of A|si⇥sj for d = 2 or 1, as used in

Matlab;
[c, ĉ] = setdiff(si, sj) – the set c that is in si but not sj, and the set ĉ that is in both si and

sj, similarly to the routine in Matlab.

(i) Connections between i and its descendants (ii) After removing one level

(iii) After removing another level

Fig. 7. Cycling through the descendants of node i of T to remove the connections between disjoint pieces of i
and i’s descendants.
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Algorithm 1 Finding the probing vectors due to the contribution of a node i

1: procedure [V, ri,j, r̂i,j, ci,j, ĝi] = compactprobe(G,T,i)
2: for l̃ = l

max

, l
max

� 1, . . . , l do . Cycling all the descendants of i at level l
3: V  0
4: for node j at level l̃ of Ti do
5: t any(sj, si, 1) . With G
6: [ci,j, ĉi,j] setdiff(t,gi)
7: r̂i,j  any(sj, ĉi,j, 2) . With G
8: ri,j  setdiff(sj, s̃j)
9: gi  [gi, ci,j]

10: t setdiff(si, ci,j)
11: ĝi  [ĝi, t]
12: V |ci,j  I
13: end for
14: end for
15: end procedure

After we find V, the reconstruction of the o↵-diagonal blocks of A from W = mv(V ) can be
conveniently done. Again, we cycle through the descendants of i. The details are shown in the
algorithm in the next subsection. The cost is given as follows.

Lemma 3.3. Assume the (d-layer) multi-nested dissection is applied to a d-dimensional N ⇥
N ⇥ · · · ⇥ N mesh, and assume the pieces in a top layer separator i to be removed at each level
happens to match those at the multiple levels of Ti. Then it needs O(logd N) matrix-vector products
to reconstruct all the o↵-diagonal blocks in A|

:⇥si of the matrix A.

Remark 3.1. For some cases, the o↵-diagonal blocks may also be treated as low-rank blocks,
and can be reconstructed with random probing vectors as in [14, 32].

3.4. Algorithm summary and superfast and fast matrix reconstruction. We summa-
rize the method in Algorithm 2. Again, for notational convenience, we show the algorithm with a
two-layer assembly tree.

About the total number of matrix-vector products needed, we have the following proposition.
Proposition 3.4. Assume the conditions in Lemmas 3.1 and 3.3 hold. Then it needs O(logd N)

flops to recover the matrix A.
Due to this result, we say the reconstruction is superfast. In fact, sometimes, we can simplify

the scheme slightly. For example, for a 3D problem, we can apply a two layer MND instead.
This can help simplify the coding. Similarly, we can use a (d � 1)-layer MND for a d-dimensional
problem. Then it can be verified that the total number of matrix-vector products O(N logd�1 N).
For 3D problems, assume each matrix-vector multiplication costs O(n) flops, then the total cost
is O(n4/3 logn), which is comparable to the structured factorization cost in [28, 29]. Thus, this
simplified reconstruction is said to be a fast scheme.

Remark 3.2. Similar to the methods in [28, 29, 30], we may use a switching level ls so
as to avoid working on small separators. That is, below ls, we follow the strategy in the fast
reconstruction, and above ls, we follow the superfast version.

Remark 3.3. Although our discussions and pictorial illustrates use regular meshes, the
discussions are applicable to more general meshes, which may make the analysis more complicated.

4. Direct factorization and factorization update for varying parameters. After the
reconstruction of A, we can then directly factorize it, or construct a preconditioner based on it.
Here, we are interested in fast solvers based on rank structures, as developed in [28, 29, 30]. We
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Algorithm 2 Matrix reconstruction from matrix-vector products

1: procedure A = mv2mat(G,T,mv)
2: for l = 1, 2, . . . , l

max

do . First/outer layer loop
3: for l = 1, 2, . . . , (l, l)

max

do . Diagonal block reconstruction
4: V  0 . Initializing probing vectors
5: for node i at level (l, l) do
6: V |si,i  I . As in (3.1)
7: end for
8: W  mv(V ) . Multiplication of A with V
9: for node i at level (l, l) do

10: for node j so that i 2 Ni,j do
11: A|si,j⇥si,i  W |si,i . All the blocks of A|si⇥si

12: end for
13: end for
14: end for
15: end for
16: for l = l

max

, l
max

� 1, . . . , 1 do . O↵-diagonal block reconstruction
17: for node i at level l do
18: [Vi, ri,j, r̂i,j, ci,j, ĝi] = compactprobe(G,T, i)
19: V  V + Vi . Putting more nonzeros in (not an actual addition)
20: end for
21: W  mv(V ) . Multiplication of A with V
22: for node i at level l do
23: for l̃ = l

max

, l
max

� 1, . . . , l do
24: for node j at level l̃ of Ti do
25: A|ri,j⇥ci,j  W |ri,j . An o↵-diagonal block in A|

:⇥si

26: r̂i,par(j)  r̂i,par(j) [ r̂i,j
27: end for
28: end for
29: r̂i,i  ĝi

30: end for
31: for node i at level l do . The remaining nonzero entries
32: [ri,i, ci,j] any(

S
j: child of i

r̂i,j, r̂i,i)

33: V |ci,j  I
34: end for
35: W  mv(V )
36: for node i at level l do
37: A|ri,j⇥ci,j  W |ri,j
38: end for
39: end for
40: end procedure

focus on the method in [29] due to the e�ciency and flexibility. The method combines three types
of techniques:

1. multifrontal factorizations [10] of large sparse matrices after nested dissection;
2. hierarchically semiseparable (HSS) [3, 4, 31] and rank structured matrices;
3. randomized sampling [14, 16] for fast matrix compression.

We briefly review the major steps of the method as follows, following an assembly tree:
1. use randomized sampling as in [17, 19, 32] to compute an HSS approximation to the inter-

mediate dense matrices (called frontal matrices);
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2. partially factorize the HSS frontal matrix and form the Schur complement (called an update
matrix);

3. pass the product of the update matrix with some random vectors to the parent node of the
assembly tree;

4. assemble the child matrix-vector products together in an operation consisting of permuta-
tion, expansion, and addition (called an extend-add operation);

5. form selected entries of the parent frontal matrix as necessary.
When certain conditions are satisfied, some discretized matrices on 2D (N ⇥N) and 3D (N ⇥

N ⇥N) meshes can be factorized in about O(n) and O(n4/3) flops, respectively, where n = N2 in
2D and N3 in 3D. The solution costs and memory requirements about linear in n for both 2D and
3D.

Here, we would like to emphasize some additional benefits. That is, it is possible to (at least
partially) update the factorization when the matrix is varied due to some parameters (e.g., shifts
sI). There are two major reasons.

1. Since the matrix A is reconstructed from matrix-vector products (and most entries stay the
same), and the method in [29] also uses matrix-vector products for intermediate operations,
we can quickly update the matrix-vectors products to update A or certain intermediate
matrices.

2. If A is changed to A� sI by sI due to a shift or a frequency, it is even possible to (at least
partially) update the factorization. For example, in the structured sparse factorizations of
A, we may keep certain bottom level separators to be large, so that their corresponding
frontal matrices are approximated by large HSS matrices. HSS matrices have a very useful
feature in that, if the diagonal is varied by sI, the ULV-type factorization [4] can be updated,
and this saves about 60% of the work [27].

Thus, depending on the actual requirements, di↵erent variations of the solvers can be used,
together with the fast or superfast sparse reconstruction.

5. Numerical experiments. We focus on the performance of the sparse reconstruction, since
the sparse factorization performance can be found in [29]. Clearly, the adjacency graph instead of
the nature of the problem is our main concern. Thus, we only show the stencil or mesh, and skip
the descriptions of the actual PDEs.

First, we look at some 2D problems discretized on 7-point finite element meshes with the function
grid7 in [12]. We report the numbers of matrix-vector products (#

mv

) required to fully reconstruct
the discretized matrix A in Table 6.1. #

mv

is also compared with the line O(log2 N) in Figure 8.
The line for #

mv

is not very far from that for O(log2 N), and we expect them to be consistent for
large n.

Next, consider some 3D problems discretized on tetrahedral finite element meshes with the
function grid3dt in [12]. We similarly report #

mv

in Table 6.2. Again, when n increases by a
factor of 8, the growth of #

mv

is quite slow.

6. Conclusions. We primarily demonstrated a sparse reconstruction method based on matrix-
vector products. The method is superfast or needs only O(N logd N) matrix-vector products. Our
near future work is to further consider the update of the factorization for varying parameters,
without using large bottom level separators. This is especially useful for eigenvalue solutions with
shifts or for problems with multiple frequencies as in full waveform inversion in seismic imaging.
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