
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2013) pp. 157-169.

SUPERFAST ALGORITHM FOR COMPUTING ARBITRARY ENTRIES OF THE
INVERSE OF A SPARSE MATRIX WITH APPLICATION TO THE HESSIAN IN

TIME-HARMONIC FWI

XIAO LIU⇤, JIANLIN XIA† , YUANZHE XI‡ , AND MAARTEN V. DE HOOP§

Abstract. We extend a structured selected inversion method to the extraction of any arbitrary entry of the inverse
of a large sparse matrix A. For various discretized PDEs such as Helmholtz equations, a structured factorization
yields a sequence of data-sparse factors of about O(n) nonzero entries, where n is the matrix size. We are then able
to extract any arbitrary entry of A�1 in about O(log2 n) flops for both two and three dimensions. On the contrary,
even the latest developments are either too expensive or have severe di�culties in this. Our method also uses ULV
factorizations instead of explicit hierarchically semiseparable inversions to enhance the stability and accuracy. We
fully take advantage of the structures (e.g., common nested bases in the blocks) to achieve the high e�ciency. The
method can have a substantial impact on Gauss-Newton iterations, where preliminary studies of the Hessian matrices
are made. Numerical tests indicate significant advantages over exact inversions.

1. Introduction. The computation of a subset of a large sparse matrix inverse is critical
in many scientific computing and engineering problems. Applications include risk estimation in
uncertainty quantification [3], the evaluation of retarded and less-than Green’s functions in quantum
nanodevice design [5], computing a rational approximation for Fermi-Dirac functions in the Density
Functional Theory [24], and Gauss-Newton iteration in the time-harmonic full waveform inversion
(FWI) [8, 18].

Suppose A is a given sparse matrix of order n. Several algorithms have been proposed to find
the diagonal entries of A�1. For direct methods, one of the earliest methods is proposed in [21].
It forms two equations to reveal the relation between the LDU factorization of A and its inverse.
Later, the methods in [11, 12, 14, 15] are all derived from the nested dissection ordering [9] and
share two common stages: factorizing the matrix in a bottom-up ordering of the separators, and
then computing the entries of the inverse in a top-down traversal of the separators. The methods in
[22, 23, 24] combine classical iterative solvers with sparse approximation techniques and solve this
problem in an iterative way.

The work for finding the o↵-diagonal entries of A�1 is rarely done. The methods based on
traditional linear system solutions [1] are suitable when a few entries are desired. If the number of
required entries is large, those methods are ine�cient and the worst case is equivalent to solving n
linear systems. The direct methods designed for diagonal inverse entries also calculate certain o↵-
diagonal entries during the computation process, but those entries only correspond to the non-zero
pattern of the factors. It is not easy to extend them to computing an entry of A�1 at an arbitrary
position. The inverse multifrontal method in [4] generalizes the method in [21] and provides a
theoretical framework for identifying the dependence of any inverse entry in the factors. Similar to
the linear system solution problem, the main drawback of direct methods is the issue of fill-in [9].
For 3D problems, they need O(n2) [28, 30] flops to factorize A and the resulting factors have about
O(n4/3) non-zero entries, which is too expensive. On the other hand, the iterative methods have
economic storage but su↵er the convergence issue for indefinite matrices if good preconditioners are
lacking.

Recently, the structured inversion algorithm proposed in [32] provides a new approach to this
problem. After the structured factorization [28, 30] with hierarchically semiseparable (HSS) struc-
tures [2, 31], the factors have only about O(n) non-zero entries. Due to such data sparsity, the
structured inversion algorithm can find all the diagonal entries in about O(n) flops, whereas other
existing inversion algorithms need about O(n3/2) and O(n2) for 2D and 3D problems, respectively.

⇤Department of Mathematics, Purdue University (liu867@math.purdue.edu)
†Department of Mathematics, Purdue University (xiaj@math.purdue.edu)
‡Department of Mathematics, Purdue University (yxi@math.purdue.edu)
§Department of Mathematics, Purdue University (mdehoop@purdue.edu)

157

158 X. LIU, J. XIA, Y. XI, AND M. V. DE HOOP

In this paper, we generalize the method in [32] to the computation of arbitrary entries of A�1,
and apply it to computing the Hessian matrix needed in FWI. The main contributions are mentioned
as follows.

1. Fast and stable HSS inversion scheme. Explicit HSS inversion algorithm often relies
on the recursive application of the Sherman-Morrison-Woodbury (SMW) formula, which
may not be numerically stable. That is, the accumulated errors can lead to an inaccurate
HSS inverse. Here, we propose a new fast and stable HSS inversion algorithm to replace
the explicit one, which depends on the backward stable HSS ULV-type factorization scheme
and resolves the stability issue. The algorithm traverses the HSS tree from the root to the
leaf level and has the complexity of about O(N), where N is the size of the HSS matrix.

2. Arbitrary structured randomized inversion. We use the randomized structured multi-
frontal method [29] to factorize the original matrix, which is more e�cient and flexible than
the classical one used in [32]. Moreover, the factors from randomized factorization scheme
have additional internal structures, which can be utilized to reduce the computational com-
plexity and enhance the stability significantly for our structured inversion algorithm. We
show that the computation of any (i, j)th entry in the inverse matrix essentially corresponds
a traversal of the path connecting these two nodes on the elimination tree. This means that
the actual computation only involves the factors associated with the nodes along this path.
In general, our new algorithm requires about O(log2 n) flops to compute each inverse entry
for both 2D and 3D problems.

3. Hessian matrix. Direct computation of the Hessian matrix in the Gauss-Newton iteration
for FWI includes one explicit inversion of a Helmholtz matrix and several matrix-matrix
multiplications, which is too expensive and has never been done before. We show that this
problem can be converted into the other one, where the Hessian matrix equals the selected
inverse of a large sparse matrix. Thus, the proposed structured inversion algorithm can be
exploited to solve this problem e↵ectively.

The remaining section of the paper is organized as follows. Section 2 presents the HSS inversion
method based on ULV factorizations. The randomized structured multifrontal LDL factorization is
reviewed in Section 3. Section 4 provides an arbitrary inversion algorithm to compute any entry of
the inverse. Section 5 proposes a way to compute the diagonal and arbitrary entry of the Gauss-
Newton Hessian. Section 6 gives some experimental results about the arbitrary inversion and the
Gauss-Newton Hessian.

2. HSS LDL factorization and inversion.

2.1. HSS LDL factorization. The HSS LDL factorization is developed in [33] for symmetric
matrices with rank structures. Here we only summarize the main steps of this algorithm, for detailed
explanation and illustration, the reader is referred to [33].

Here, the inputs are the HSS generators [2] D,U,B,R, and the outputs are the factors Q̂, L̂, D̂.
• If i is a leaf, first compute a QL factorization of the o↵-diagonal basis

Ui ! Q̂i

✓
0
Ūi

◆
.

Then update the diagonal block by the same orthogonal matrix and compute a partial LDL
factorization.

Q̂T
i DiQ̂i !

✓
L̂i;1,1

L̂i;2,1 I

◆✓
D̂i

Si

◆✓
L̂T
i;1,1 L̂T

i;2,1

I

◆
.

• If i has children c
1

, c
2

, merge children node’s reduced basis and compute a QL factorization

✓
Ūc1Rc1

Ūc2Rc2

◆
! Q̂i

✓
0
Ūi

◆
.

SUPERFAST SPARSE ARBITRARY INVERSION AND GAUSS-NEWTON 159

Then form the new diagonal block by merging children’s information and perform a similar
partial LDL factorization.

Q̂T
i

✓
Sc1 Ūc1Bc1Ū

T
c2

Ūc2B
T
c1Ū

T
c1 Sc2

◆
Q̂i !

✓
L̂i;1,1

L̂i;2,1 I

◆✓
D̂i

Si

◆✓
L̂T
i;1,1 L̂T

i;2,1

I

◆

Note that if i reaches the root, just compute a full LDL factorization of the form L̂iD̂iL̂T
i .

2.2. Fast and stable HSS inversion. The HSS LDL inversion algorithm perform a top-down
traversal of the HSS tree. The basic idea of HSS LDL is to invert each factor and multiply them
back.

With the inputs Q̂, L̂, D̂, the outputs are the generators of the inverse: D̃, Ũ , B̃, R̃.
1. If i is the root node, compute the inverse of the reduced block from LDL factor,

D̄i = L̂�T
i D̂�1

i L̂�1

i .

Then split it into 4 blocks and pass the submatrices to the two children

D̄i !
✓
Tc1 B̃c1

B̃T
c1 Tc2

◆
.

2. If i is not the root, compute the inverse from the L and Q factor

D̄i = Q̂i

✓
L̂T
i;1,1 L̂T

i;2,1

I

◆�1

✓
D̂�1

i
Ti

◆✓
L̂i;1,1

L̂i;2,1 I

◆�1

Q̂T
i

The same split is performed to D̄i. In order to get the R generator, compute

Ūi = Q̂i

✓
L̂T
i;1,1 L̂T

i;2,1

I

◆�1

✓
0
I

◆

Then split Ūi

Ūi !
✓
R̃c1

R̃c2

◆
.

Note that if i is a leaf node there’s no need to split the matrix, just let D̃i = D̄i, Ũi = Ūi.

3. Structured multifrontal block LDL factorization. We briefly review the structured
multifrontal LDL factorization in [32] based on the multifrontal method [6, 16] and a structured
variation [28], and mention a randomized version. To reduce the propagation of the nonzero elements
in Gaussian elimination, we first reorder the original matrix by nested dissection [9]. As a result,
the index set of the original matrix is partitioned into groups of indices called supernodes, and the
possible positions of nonzeros in the L factor is acquired by a symbolic factorization.

The block Gaussian elimination on supernodes follows a tree structure called the elimination tree

T [6]. The key idea of the multifrontal method is that the elimination at each step doesn’t involve
all the indices of all the groups. Let Ni be the set of nodes that is involved in the row operations
at node i. Then the factorization can be performed following the order of Ni. The parent node
par(i) is defined as the first element in Ni. For more detailed study within supernodes, let ti be i’s
index set in the original matrix, tj,i be the subset of tj that will be updated by node i. Therefore
t̃i =

S
j2Ni

tj,i is the set of rows involved in the factorization at i. With these notations, the nonzero
pattern in the factorization can be summarized in the next proposition. Figure 1 illustrates such a
relationship in the matrix.

160 X. LIU, J. XIA, Y. XI, AND M. V. DE HOOP

Fig. 1. Nonzero structure after nested dissection

Proposition 3.1. Theorem 3.1 and 3.2 in [16] Ni is a subset of i’s ancestors. Moreover if

p = par(i), then it follows that

Ni \ {p} ⇢ Np,

tj,i ⇢ tj,p, 8j 2 Ni \ {p} .

The multifrontal method at each node only works on related submatrices and therefore trans-
forms global sparse matrix operations into local dense operations.

The Gaussian elimination is performed locally following two steps: first eliminate the o↵-
diagonal block of the current node, then send a low-rank update matrix to the parent node. For the
leaf node, the frontal matrix Fi is taken from the corresponding nonzero block columns and rows of
the original matrix.

Fi = F0

i =

✓
A|ti⇥ti (A|

˜ti⇥ti)
T

A|
˜ti⇥ti 0

◆

For the nonleaf nodes, the frontal matrix is a combination of the original blocks and update matrices
representing the influence of Gaussian elimination at children nodes.

Fi = F0

i$l Uc1$l Uc2

With these notations, both the exact and the structured factorization can be written as

Fi =

✓
Fi,i (FNi,i)

T

FNi,i FNi,Ni

◆
=

✓
I

LNi,i I

◆✓
Fi,i

Ui

◆✓
I (LNi,i)

T

I

◆
,

LNi,i = FNi,iF
�1

i,i ,

Ui = FNi,Ni � FNi,iF
�1

i,i (FNi,i)
T .

In many 2D and 3D discretized models, the frontal matrix has low-rank o↵-diagonal blocks. Hence
a HSS compression on Fi can significantly reduce the computation and storage cost. The HSS form
of Fi is demonstrated in Figure 2.

The fast way to compute update matrix Ui has been established in [28, 33]. The computation
of update matrix only needs the last step reduced matrix of HSS factorization. Note that FNi,i is
the top level o↵-diagonal block and has the low-rank form FNi,i = Uk+1

BT
k U

T
k .

Ui = FNi,Ni � (Uk+1

BT
k U

T
k)F�1

i,i (UkBkU
T
k+1

).

162 X. LIU, J. XIA, Y. XI, AND M. V. DE HOOP

Fig. 3. The path to get a diagonal block

After the top-down traversal process, essentially we have computed Ci,i, CNi,i, CNi,Ni , i.e. the inverse
corresponding to each frontal matrix. To see it clearly, write

Ci =

✓
Ci,i (CNi,i)

T

CNi,i CNi,Ni

◆
.

Furthermore, for a fixed node j, Cj,j only depends on the path from root(T) to j. The path is
shown in Figure 3. The computation restricted to this path is summarized for future comparison
with o↵-diagonal algorithm.

Algorithm 2 Compute Cj,j

k = root(T)
Locate the path k ! i

1

! ... ! il = j
Ck,k = F�1

k . Direct inversion at the root node
for node i from i

1

to il do
Select CNi,Ni from the parent node
CNi,i = �CNi,NiLNi,i . Inverse at the frontal matrix 2-1 block
Ci,i = F�1

i,i � LT
Ni,i

CNi,i . Inverse at the frontal matrix 1-1 block

end for

diagonal block

Note that CNi,i are o↵-diagonal elements of the inverse. In the computation of the diagonal at
node j, we have already computed some o↵-diagonal elements along the path.

4.2. O↵-diagonal of the inverse. Any o↵-diagonal block can be easily computed using the
result from the diagonal blocks. An o↵-diagonal block is related to two di↵erent nodes in the
elimination tree.

4.2.1. Examples.
1. A 3⇥ 3 example:

C =

0

@
C

11

C
12

C
13

C
21

C
22

C
23

C
31

C
32

C
33

1

A = A�1 =

0

@
A

11

A
13

A
22

A
12

A
31

A
32

A
33

1

A
�1

,

C
32

= �A�1

33

L
32

= �C
33

L
32

,

C
21

= LT
32

A�1

33

L
31

= �CT
32

L
31

.

C
32

is the multiplication of a block from the parent and the local L factor. It has been
partly computed already in the computation of the diagonal during CN2,N2LN2,2. Here the
only di↵erence is to get more rows. Same result holds for C

31

.

SUPERFAST SPARSE ARBITRARY INVERSION AND GAUSS-NEWTON 163

The o↵-diagonal block C
21

is the multiplication of a block from the inverse at node 2 and a
block of the L factor at the sibling node 1. The inverse part should be computed according
to the nonzeros of the L factor at the sibling node.

2. A 7⇥ 7 example:

A =

0

BBBBBBBB@

A
11

A
13

A
17

A
22

A
23

A
27

A
31

A
32

A
33

A
37

A
44

A
46

A
47

A
55

A
56

A
57

A
64

A
65

A
66

A
67

A
71

A
72

A
73

A
74

A
75

A
76

A
77

1

CCCCCCCCA

The primary di↵erence is the upper-level 3⇥ 3 o↵-diagonal blocks (the biggest blank). The
result is written in Matlab notation:

C(4:6,1:3)=-C(7,4:6)’*[L(7,1)-L(7,3)*L(3,1),L(7,2)-L(7,3)*L(3,2),L(7,3)].

The last matrix suggests an interaction within the L factor. This is a top-down update
from node 3 to the leaves.

4.2.2. General algorithm. There are two di↵erent situations for the two nodes involved in
a given o↵-diagonal block.

1. One node is an ancestor of the other. Examples are C
31

in the 3⇥ 3 case; C
31

, C
71

, C
73

in
the 7 ⇥ 7 case. In general, let k be an ancestor of j, the computation of Ck,j follows the
top-down path from k to j, as is shown in Figure 4. See Algorithm 3.

Fig. 4. O↵-diagonal block, the first case

The complexity of this algorithm mainly depends on the length of the path and the size of
each Ni in the multiplication. If we compare this case with the computation of the diagonal,
we can see that this is essentially computing more o↵-diagonal rows on a shorter path.

Algorithm 3 Compute Ck,j, k is an ancestor of j

Locate the path k ! i
1

! ... ! il = j
for node i from i

1

to il do
Select Ck,Ni from the parent node
Ck,i = �Ck,NiLNi,i . Compute the inverse on those rows

end for

2. The two nodes are not direct relatives. Examples are C
21

in the 3⇥ 3 case; C
21

, C
41

, C
43

in
the 7⇥ 3 case. Let j,k be the nodes, p be the ancestor connecting them. The computation
starts from p following two di↵erent paths to the two nodes. This is shown in Figure 5. See
Algorithm 4.

164 X. LIU, J. XIA, Y. XI, AND M. V. DE HOOP

Fig. 5. O↵-diagonal block, the second case

The complexity mainly depends on the length of two paths, the size of par(i) on the first
path and the size of Ni on the second path. This case is usually more expensive than the
first case.

Algorithm 4 Compute Ck,j, j,k connected by an ancestor p

Locate the path p ! i
1

! ... ! il = j
q = i

1

L̄Nq,p = 0
for node i from i

1

to il do
L̄Nq,i = LNq,i � L̄Nq,par(i)Lpar(i),i . process the information in the L factor

end for
Locate the path p ! ĩ

1

! ... ! ĩ
˜l = k

for node i from ĩ
1

to ĩ
˜l do . Compute the rows needed by the sibling

Select CNq,Ni from the parent node
CNq,i = �CNq,NiLNi,i . Compute the inverse on those rows

end for
Ck,j = CT

Nq,k
L̄Nq,j . Get the final result

The cost of the method is shown as follows.
Theorem 4.1. Assume A is a discretized matrix from a 2D (N ⇥ N) or 3D (N ⇥ N ⇥ N)

regular mesh. Also assume the same rank properties as in [28, 32] holds. Then if the computation

of an o↵-diagonal block of A�1

includes total k entries, the total cost for finding such k entries is

about O(m log2 n).

5. Application in the Hessian of time-harmonic FWI.

5.1. Hessian in full waveform inversion. In domain ⌦, receivers are placed on the set
⌃r ⇢ ⌦. FWI seeks to minimize the misfit between the synthetic data and the real data on the
receivers. Let q be the model parameter to be recovered in ⌦. Define the forward mapping Fs from
q to the wavefield restricted to the receivers.

Fs : q ! Rus

R is the restriction operator from ⌦ to ⌃r. us is the wavefield in ⌦ which solves the state equation
with source term fs

(5.1) L(q)us = fs.

Consider complex L2 inner-product in this model, the objective functional takes the form

J(q) =
1

2

NsX

s=1

kFs(q)� dsk2.

SUPERFAST SPARSE ARBITRARY INVERSION AND GAUSS-NEWTON 165

ds is the real data collected on ⌃r. Then the linearized forward operator rFs is the so-called Born
approximation.

In optimization theory, first order algorithms require gradient and second order algorithms
make use of Hessian or approximate Hessian. The adjoint-state method plays a significant role in
the computation of gradient and Hessian-vector product. [18] has derived the formulas. It is helpful
to rewrite the results using our notation. The gradient is the Frechet derivative of J(q)

rJ(q)(·) =
NsX

s=1

Re
⇣
�s,rL(q)(·)us

⌘
,

in which us,�s solve

L(q)us = fs

L(q)⇤�s = �R⇤(Rus � ds).

For a fixed v, the Hessian-vector product is

H(v, ·) = r2J(q)(v, ·) =
NsX

s=1

"
Re

⇣
µs,rL(q)(·)us

⌘
+Re

⇣
�s,rL(q)(·)↵s +r2L(q)(v, ·)

⌘#
,

in which ↵s, µs solve

L(q)↵s = �rL(q)(v)us

L(q)⇤µs = �R⇤R↵s �rL(q)(v)⇤�s.

The Gauss-Newton Hessian ignores the second order derivative of Fs, in this case we have

H̃(q) =
NsX

s=1

rFs(q)
⇤rFs(q).

Note that the operator rFs(q)
⇤rFs(q) is not only related to optimization theory, but also an

important subject in linearized scattering theory. Therefore we are interested in computing it.

5.2. Computing approximate Hessian in Gauss-Newton iterations. Starting from this
point we restrict ourselves to the isotropic Helmholtz equation. Similar techniques can be established
on general state equation.

L(q)u = (��� q(x))u.

From Fs(q) = Rus, we have rFs(q)(�q) = R@qus(�q). @qus can be computed by taking derivative
with respect to q on both sides of Helmholtz equation.

L@qus(�q) +rL(q)(�q)us = 0.

The derivative of Helmholtz operator is simply a multiplication by ��q, so we have

L@qus(�q) = us�q

To solve the equation above consider finite di↵erence discretization, it gives a simple discretization
of the Helmholtz equation. Let A be the matrix representation of Helmholtz equation. Let R be
the projection to the receiver, namely identity matrix on receiver points, zero elsewhere. Let Us

166 X. LIU, J. XIA, Y. XI, AND M. V. DE HOOP

be the point-wise multiplication by us, i.e. a diagonal matrix generated by the entries of us. Then
rFs ⇡ RA�1Us.

H̃(q) =
NsX

s=1

rFs
⇤rFs

⇡
NsX

s=1

U⇤
s(A

�1)⇤R⇤RA�1Us

=
NsX

s=1

U⇤
s(A

⇤)�1RA�1Us

Note that Us are diagonal matrices and are already computed in the gradient. Selected entries of
H̃ are directly related to the same entries in M = (A⇤)�1RA�1.

The direct inversion and multiplication is too expensive. The key is to link M to the inverse of
a sparse matrix. Since R is not full-rank, the sparse matrix ARA⇤ is not very helpful because it is
neither invertible nor the pseudoinverse of (A⇤)�1RA�1. But consider a larger sparse matrix

✓
A
�R A⇤

◆
=

✓
A�1

(A⇤)�1RA�1 (A⇤)�1

◆�1

,

therefore M is the lower-left block of the inverse of a double-sized sparse matrix.
The Helmholtz solver already generates the nested dissection ordering of the matrix A. We

can reuse that information to get a nested dissection ordering of the double-sized matrix. Suppose
1,2, ...,k are the supernodes for A, 10,20, ...,k0 are the supernodes for A⇤, then let 1 [10,2 [
20, ...,k [k0 be the supernodes for the double-sized matrix.

After this reordering, the diagonal of M will be permuted into the diagonal blocks of the double-
sized matrix. Thus, the algorithm for computing the diagonal of the inverse is enough to compute
the diagonal of the Hessian. If more entries are needed, then we can use the algorithm for arbitrary
entries.

6. Numerical experiments. Our code is written in Matlab and tested on a server with 32GB
memory and Quad-Core AMD Opteron(tm) Processor 2380.

6.1. Arbitrary inversion. Since our algorithm is based on paths in the elimination tree,
di↵erent o↵-diagonal entries will have di↵erent cost. The worst case is the block related to the
left-most leaf and the right-most leaf. They have the longest distance in the elimination tree.

Consider the model problem of solving Poisson’s equation on a 2D regular grid, let the grid be
N ⇥N and the matrix A be n⇥ n, then n = N2. The primary concern is the comparison between
the inversion based on exact multifrontal method (MF) and our new structured algorithm (NEW). The
results are shown in Table 6.1 and Figure 6.

Table 6.1
Flops and time (in seconds) for processing the L factor

n (= N2) 1282 2562 5122 10242

l
max

11 13 15 17

Flops

MF 3.55e5 3.24e6 3.36e7 3.13e8
NEW 3.40e5 9.33e5 3.67e6 1.60e7

Time(s)

MF 0.0036 0.0061 0.0143 0.0495
NEW 0.0077 0.0061 0.0105 0.0220

168 X. LIU, J. XIA, Y. XI, AND M. V. DE HOOP

7. Acknowledgements. This research was supported in part by the members of GMIG at
Purdue University, BGP, ExxonMobil, PGS, Statoil and Total. The research of Jianlin Xia was
supported in part by NSF grants DMS-1115572 and CHE-0957024.

REFERENCES

[1] P. Amestoy, I. Duff, J. L’Excellent, Y. Robert, F. Rouet and B. Uçar, On computing inverse entries
of a sparse matrix in an out-of-core environment, SIAM J. Sci. Comput., 34 (2012), pp. 1975–1999.

[2] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[3] C. Bekas, A. Curioni, and I. Fedulova, Low cost high performance uncertainty quantification, in Proceedings
of the 2nd Workshop on High Performance Computational Finance, ACM, (2009), p. 8.

[4] Y. E. Campbell and T. A. Davis, Computing the sparse inverse subset: an inverse multifrontal approach,
Tech. Report TR-95-021, CIS Dept., Univ. of Florida, (1995).

[5] S. Cauley, J. Jain, C. K. Koh, and V. Balakrishnan, A scalable distributed method for quantum-scale device
simulation, J. Appl. Phys., 101 (2007), p. 123715.

[6] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Bans. Math. Software, 9 (1983), pp. 302–325.

[7] A. M. Erisman and W. F. Tinney,On computing certain elements of the inverse of a sparse matrix, Comm.
ACM, 18 (1975), pp. 177–179.

[8] A. Fichtner and J. Trampert Hessian kernels of seismic data functionals based upon adjoint techniques,
Geophys. J. Int., 185 (2011), pp. 775–798.

[9] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp.
345–363.

[10] J. R. Gilbert and S.-H. Teng, MESHPART, A Matlab Mesh Partitioning and Graph Separator Toolbox,
http://aton.cerfacs.fr/algor/Softs/MESHPART/.

[11] S. Li, S. Ahmed, G. Klimeck, and E. Darve, Computing entries of the inverse of a sparse matrix using the
FIND algorithm, J. Comput. Phys., 227 (2008), pp. 9408–9427.

[12] S. Li and E. Darve, Extension and optimization of the FIND algorithm: Computing Green’s and less-than
Green’s functions, J. Comput. Phys., 231 (2012), pp. 1121–1139.

[13] L. Lin, J. Lu, L. Ying, R. Car, and W. E, Fast algorithm for extracting the diagonal of the inverse matrix
with application to the electronic structure analysis of metallic systems, Commun. Math. Sci. 7 (2009), pp.
755–777.

[14] L. Lin, C. Yang, J. Lu, L. Ying, and W. E, A fast parallel algorithm for selected inversion of structured
sparse matrices with application to 2D electronic structure calculations, SIAM J. Sci. Comput., 33 (2010),
pp. 1329—1351.

[15] L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, and W. E, SelInv—An algorithm for selected inversion of a sparse
symmetric matrix, ACM Trans. Math. Software, 37 (2011), pp. 40:1—40:19.

[16] J. W. H. Liu, The Multifrontal Method for Sparse Matrix Solution: Theory and Practice, SIAM Rev., 1 (1992),
pp. 82–109.

[17] METIS, Family of Multilevel Partitioning Algorithms, http://glaros.dtc.umn.edu/gkhome /views/metis.
[18] L. Métivier, R. Brossier, J. Virieux, S. Operto The truncated Newton method for Full Waveform Inversion,

J. Phys.: Conf. Ser., 386 (2012), 012013.
[19] H. Niessner and K. Reichert, On computing the inverse of a sparse matrix, International Journal for Nu-

merical Methods in Engineering, 19 (1983), pp. 1513–1526.
[20] S. V. Parter, The use of linear graphs in gaussian elimination, SIAM Rev., 3 (1961), pp. 119–130.
[21] K. Takahashi, J. Fagan, and M. Chin, Formation of a sparse bus impedance matrix and its application to

short circuit study, in Proceedings 8th PICA Conference, Minneapolis, Minnesota, 1973.
[22] J. Tang and Y. Saad, A probing method for computing the diagonal of the matrix inverse, Technical report

umsi-2010-42, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, 2009.
[23] J. Tang and Y. Saad, Domain-decomposition-type methods for computing the diagonal of a matrix inverse,

SIAM J. Sci. Comput., 33 (2011), pp. 2823–2847.
[24] R. B. Sidje and Y. Saad, Rational approximation to the Fermi-Dirac function with applications in density

functional theory, Tech. Rep. umsi-2008-279, Minnesota Supercomputer Institute, University of Minnesota,
(2008).

[25] Y. Xi, J.Xia, V.Balakrishnan, and S.Cauley, Superfast solutions for Toeplitz least squares via randomized
sampling, SIAM J. Matrix Anal. Appl., submitted, 2012.

[26] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via randomized sampling,
SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.

[27] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix Anal. Appl., 33
(2012), pp. 388–410.

[28] J. Xia, E�cient structured multifrontal factorization for general large sparse matrices, SIAM J. Sci. Comput.,
35 (2013), pp. A832–A860.

[29] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.

SUPERFAST SPARSE ARBITRARY INVERSION AND GAUSS-NEWTON 169

[30] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large structured linear
systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–1411.

[31] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semiseparable matrices,
Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[32] J. Xia, Y.Xi, V.Balakrishnan, and S.Cauley, Superfast structured selected inversion for large sparse matri-
ces, SIAM J. Sci. Comput., to be submitted, (2013).

[33] Y. Xi, J. Xia and R. Chan, A fast structured eigensolver for symmetric Toeplitz matrices and more via adaptive
randomized sampling, SIAM J. Matrix Anal. Appl., submitted, (2013).

