
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2012) pp. 305-318.

ON TIME-HARMONIC SEISMIC DATA AND BLENDING IN FULL WAVEFORM
INVERSION

SUNYOUNG PARK∗, LINGYUN QIU† , MAARTEN V. DE HOOP‡ , AND CHANGSOO SHIN§

Abstract. In this paper, we study the relationship between the acquisition of time-harmonic seismic data and the
Dirichlet-to-Neumann map for the Helmholtz equation in dimension n ≥ 3. This relationship is established through
the introduction of a single-layer potential operator. We analyze its properties with a view to so-called iterative full
waveform inversion based on the Hilbert-Schmidt norm, that is, its (conditional) convergence on the one hand and a
sparse, spectral source blending approach with controlled error on the other hand.

1. Introduction. In this paper, we study the relationship between the acquisition of time-
harmonic seismic data and the Dirichlet-to-Neumann map in dimension n ≥ 3. This relationship is
established through the introduction of a single-layer potential operator. This single-layer potential
operator is directly related to what seismologists refer to as source blending. We analyze its prop-
erties with a view to so-called full waveform inversion based on the Hilbert-Schmidt norm. In the
process, we also review the equivalent data types.

The properties we are interested in, concern the difference of two single-layer potential operators
evaluated in distinct wave speed models while the configuration is the same. We address (i) the
stability of the inverse problem using the single-layer potential operator as the data. To this end,
we relate this stability to the corresponding stability using the Dirichlet-to-Neumann map as the
data. The latter stability is conditionally Lipschitz, see Beretta, De Hoop and Qiu [3], which
is the counterpart of a similar result in electrical impedance tomography (EIT), see Alessandrini
and Vesella [1]. Moreover, we (ii) estimate the singular spectrum of the mentioned difference of
operators. We carry out this estimate in the case that the two wave speed models coincide and
are smooth in a small neighborhood of the acquisition surface. This is relevant in full waveform
inversion when the wave speed model is known in the vicinity of the source and receiver arrays, for
example, in marine acquisition. The relationship between the single-layer potential operator and
the Dirichlet-to-Neumann map can be found in Nachman [18].

The (conditional) stability property provides a convergence criterion for full waveform inversion
(De Hoop, Qiu and Scherzer [12]). The estimate for the singular spectrum of the difference of
two single-layer potential operators, specifically the rapid decay of the singular values, justifies the
introduction of a Schatten norm for the objective functional. In fact, the mentioned difference of
single-layer potential operators is a trace-class operator. With the estimated decay, we truncate the
singular spectrum and then use the corresponding singular functions in the blending process. The
number of significant singular values is relatively small, and hence, relatively few experiments are
needed for the full waveform inversion to be effective.

The process of source blending has appeared in various acquisition and imaging strategies.
Perhaps the most basic form involves synthesizing source plane waves from point source data in
plane-wave migration [25]. So-called controlled illumination [21]) can also be viewed as a particular
blending strategy. In blended acquisition, typically, time-overlapping shot records are generated in
the field by using incoherent source arrays; for simultaneous source firing see Beasley, Chambers
and Jiang [2] and for near simultaneous source firing see Stefani, Hampson and Herkenhoff [22].
Berkhout, Blacquire and Verschuur [6, 5] considered simple time delays for the blending process,
allowing the use of conventional sources in acquisition. The use of simultaneous random sources
have been proposed, further, by [20] and others.

The use of simultaneous sources in linearized inverse scattering was studied by Dai and Schuster
[11], and in full waveform inversion, for example, by Vigh and Starr [23] (synthesizing source plane
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waves), Krebs el al. [17] (random source encoding) and Gao, Atle and Williamson [13] (deterministic
source encoding). In global tomography, source “stacking” was introduced by Capdeville, Gung and
Romanowicz [8].

For general references to the nonlinear inverse problems for the Helmholtz equations and layer
potentials, see Colton & Kress [10] and Isakov [16].

Our functional in the optimization is expressed in terms of the operator norm of the single-layer
potential operator. In general, however, the estimation of this norm is a significant computational
effort. Hence, to improve efficiency, we relate the operator norm of the residual (the difference of two
single-layer potential operators) to the Schatten p-norm, and, in practice, to the Hilbert-Schmidt
norm (that is, p = 2). These norms are expressed in terms of the singular spectrum of the residual
operator, and, then, we truncate the spectrum exploiting its rapid decay. The singular functions
corresponding with these significant singular values then represent important blending functions
mentioned above. This idea is motivated by the work of Gisser, Isaacson and Newell [15] in EIT, who
designed an approach to construct a current density which gives optimal resolution of the nonlinear
inverse conductivity problem. As an alternative approach, using a set of prescribed currents, we
mention the variationally constrained iterative reconstruction method for EIT developed by Borcea,
Gray and Zhang [7].

In the full waveform inversion, considered here, multiple scattered waves are naturally accounted
for. We point out that the kernels of the single-layer potential operator and of its inverse, which
play a role in our study, were, essentially, used by Berkhout [4] in his method to remove multiple
scattering from the boundary.

The outline of the paper is as follows. In the next section, we discuss the modelling of seismic
reflection data and introduce the single-layer potential operator. We establish the boundedness of
this operator and its inverse. In Section 3, we introduce the Dirichlet-to-Neumann map, also in
terms of the Dirichlet eigenfunctions (normal modes) of the Helmholtz operator. We discuss its
relation with the single-layer potential operator. We then show that (conditional) stability of the
inverse problem with the single-layer potential operator as the data follows from the (conditional)
stability with the Dirichlet-to-Neumann map as the data. In Section 4, we estimate the decay of
the singular values of the difference of two single-layer potential operators under certain conditions
of the underlying wave speed models. We then introduce the Schatten norm and an optimization
strategy based on singular functions. In Section 5, we show a numerical example illustrating the
decay of the mentioned singular spectrum using a direct structured Helmholtz solver [24].

2. Modelling the data: The single-layer potential operator. We consider time-harmonic
waves, described by solutions, u say, of the Helmholtz equation on a bounded open domain Ω ⊂ R

n.
The boundary, ∂Ω is in C(1,1), and Ω′ = R

n\Ω̄ is connected. We write

q̃(x) = −ω2c−2(x),

and keep ω ∈ R fixed; we assume that c−2 ∈ L∞(Ω). We have the general formulation

(2.1)

{
(−Δ+ q̃(x))u = f, x ∈ Ω,

u = g, x ∈ ∂Ω.

Here, f represents sources, and g boundary values.
We mention the existence and uniqueness of solutions in (see Gilbarg & Trudinger [14])

Proposition 2.1. Assume that 0 is not a Dirichlet eigenvalue for −Δ+ q̃ in Ω, q̃ is a function
in L∞(Ω), f ∈ Lp(Ω) and g ∈ W 2−1/p,p(∂Ω), 1 < p < ∞. Then there is a unique solution
u ∈ W 2,p(Ω) of (2.1). Moreover

(2.2) ‖u‖W 2,p(Ω) ≤ C
(
‖g‖W 2−1/p,p(∂Ω) + ‖f‖Lp(Ω)

)
,

where C depends only on p, Ω and ‖q̃‖L∞(Ω).
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We apply this theorem for p = 2, assuming sufficient regularity for f and g. (We note that
W 2,2, W 3/2,2, coincide with H2, H3/2, respectively.) Seismic reflection data are generated by point
sources on ∂Ω and observed at points on ∂Ω. In preparation of a description of the data in terms
of fundamental solutions in R

n, we extend q̃(x) to a function with value

(2.3) −k2 = −ω2c−2
0

in Ω′. Let G+
k (x, y) be the outgoing Green’s function for the Helmholtz equation with constant

coefficient, c−2
0 , in R

n, which is given by

G+
k (x, y) =

1

(2π)n

∫
ei(x−y)ξ

ξ2 − k2 − i0
dξ(2.4)

=
i

4

(
|k|

2π|x− y|

)(n−2)/2

H
(1)
(n−2)/2(|k||x− y|).

We set

q(x) = q̃(x) + k2,

which is compactly supported. We assume that k2 is not an eigenvalue of −Δ + q on Ω. We let
Gq,k(x, y) be the solution of

(2.5) (−Δx + q − k2)Gq,k(x, y) = δ(x− y), x, y ∈ R
n,

satisfying the Sommerfeld radiation condition as |x| → ∞. Restricting x and y to ∂Ω yields the
seismic reflection, or Cauchy, data:

A = {Gq†,k(x, y) | x, y ∈ ∂Ω, x �= y},
if q†(x) signifies the “true” model.

In the constant “background” model with wave speed c0, we introduce the operator,

S+
k : H1/2(∂Ω) → H3/2(∂Ω),

by

(2.6) S+
k w(x) =

∫
∂Ω

G+
k (x, y)w(y) dσ(y), x ∈ ∂Ω,

which is bounded. Here, dσ is the natural area element on ∂Ω. In a general heterogeneous model,
we introduce

Sq,k : H1/2(∂Ω) → H3/2(∂Ω),

with

(2.7) Sq,kw(x) =

∫
∂Ω

Gq,k(x, y)w(y) dσ(y), x ∈ ∂Ω,

which is bounded also [18, Theorem 1.6]. The (source) blended data are then represented by

B = {Sq†,kw | w ∈ H1/2(∂Ω)}.

Proposition 2.2. Assume that k2 is not a Dirichlet eigenvalue of −Δ + q or of −Δ in Ω.
Then the inverse, (S+

k )−1, of operator S+
k exists and is bounded, H3/2(∂Ω) → H1/2(∂Ω). Moreover,

the inverse, S−1
q,k , of operator Sq,k exists and is bounded, H3/2(∂Ω) → H1/2(∂Ω).

For a proof of this Proposition, see [18, Section 6]. Essentially, it follows that

Sq,k = S+
k [I + (S+

k )−1(Sq,k − S+
k )]

is invertible by showing that −1 cannot be an eigenvalue of (S+
k )−1(Sq,k − S+

k ). It is possible to
express S−1

q,k in terms of the difference of an interior and an exterior Dirichlet-to-Neumann map,
which are both bounded.
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3. Stability analysis.

3.1. Dirichlet-to-Neumann map. A well-known approach for inverse scattering problems
is to enclose all inhomogeneities in an artificial bounded domain Ω. Then one imposes a boundary
condition on the boundary ∂Ω, which gives the same solution in Ω as in the original problem of the
larger domain. One considers the Dirichlet-to-Neumann map as the data. We will re-express these
data in terms of the single-layer potential operator.

To capture realistic acquisition geometries, we may consider partial boundary data. That is,
we generate data on Σ, an open portion of ∂Ω.

Definition 3.1. Let Σ be a open portion of ∂Ω. We define H
1/2
co (Σ) as

H1/2
co (Σ) = {g ∈ H1/2(∂Ω) | supp g ⊂ Σ}

and H
−1/2
co (Σ) as the topological dual of H

1/2
co (Σ); we denote by 〈·, ·〉 the dual pairing between H

1/2
co (Σ)

and H
−1/2
co (Σ).

Definition 3.2. Let Σ be a open portion of ∂Ω and q be a real-valued function in L∞. Assume

that 0 is not a Dirichlet eigenvalue of (−Δ+ q̃) in Ω. For any g ∈ H
1/2
co (Σ), let u ∈ H1(Ω) be the

weak solution to the Dirichlet problem

(3.1)

{
(−Δ+ q̃(x))u = 0, x ∈ Ω,

u = g, x ∈ ∂Ω.

We define the local Dirichlet-to-Neumann map Λ
(Σ)
q as

Λ
(Σ)
q̃ : H

1/2
co (Σ) → H

−1/2
co (Σ)

g �→ ∂u

∂ν

∣∣∣∣
Σ

,

where ν is the exterior unit normal vector to ∂Ω.

The Dirichlet-to-Neumann map is analytic in frequency. We note that Λ
(Σ)
q̃ is contained in the

Banach space L(H1/2
co (Σ), H

−1/2
co (Σ)); we will take Σ = ∂Ω from now on. This follows from the fact

that Λq̃ is bounded H3/2(∂Ω) → H1/2(∂Ω) and that H−1/2(∂Ω) is dense in H−1/2(∂Ω) through an
extension of Λq̃.

Normal modes of the Helmholtz operator. Here, we summarize the representation of the
Dirichlet-to-Neumann map in terms of eigenfunctions of the Helmholtz operator; see [19, 9]. We set
λ = k2 and consider the Dirichlet boundary problem in (3.1):

(3.2)

{
(−Δ+ q − λ)u = 0, x ∈ Ω,

u = g, x ∈ ∂Ω.

The eigenfunctions with Dirichlet boundary condition are denoted by φj(q), j = 1, 2, . . . correspond-
ing with eigenvalues λj(q).

The Dirichlet-to-Neumann map, Λq−λ, can be represented with spectral data:

(3.3) Λq−λg “ = ”

∞∑
j=1

1

λ− λj(q)

∂φj(q)

∂ν

(
g,

∂φj(q)

∂ν

)
L2(∂Ω)

.

Since the series on the right-hand side does not absolutely converge in some cases, one uses [ref ]
some high order derivative of the Dirichlet-to-Neumann map,

(3.4) Λ
(m)
q−λ :=

dm

dλm
Λq−λ.
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The series for this map converges absolutely for m � 1, because λj(q)
−m−1 ∼ j−2(m+1)/n decays

rapidly for m � 1. If m > n/2 + 3/4, then

(3.5) Λ(m)g = −m!
∑
j≥1

1

(λj(q)− λ)m+1

(∫
∂Ω

g
∂φj(q)

∂ν
dσ

)
∂φj(q)

∂ν

converges absolutely in H1/2(∂Ω). From this, we obtain

Λq−λg =

∫ λ

−∞
dλ1

∫ λ2

−∞
dλ2 · · ·

∫ λm−1

−∞
dλm(3.6)

(−m!)
∑
j≥1

1

(λj(q)− λm)m+1

(∫
∂Ω

g
∂φj(q)

∂ν
dσ

)
∂φj(q)

∂ν
.

3.2. From single-layer potential operator to Dirichlet-to-Neumann map. From S+
k ,

we can build the relation between Sq,k and the Dirichlet-to-Neumann map. We have

(3.7) Λq−k2 = Λ−k2 + S−1
q,k − (S+

k )−1,

or

(3.8) Sq,k − S+
k = −S+

k (Λq−k2 − Λ−k2)Sq,k.

This identity is defined on H1/2(∂Ω), and can be derived from the resolvent equation,

(3.9) Gq,k(x, y) = G+
k (x− y)−

∫
Ω

G+
k (x− z)q(z)Gq,k(z, y) dz.

For w ∈ H1/2(∂Ω), we the find that

(3.10) Sq,kw(x)− S+
k w(x) = −

∫
Ω

G+
k (x− z)q(z)(Sq,kw)(z) dz.

From (3.7) we straightforwardedly obtain

(3.11) Λq−k2 − Λq†−k2 = S−1
q,k − S−1

q†,k,

or

Λq−k2 − Λq†−k2 = −S−1
q†,k(Sq,k − Sq†,k)S−1

q,k

It is immediate that

‖Sq,k − Sq†,k‖ ≤ ‖Sq,k‖ ‖Sq†,k‖ ‖Λq−k2 − Λq†−k2‖,

but using Proposition 2.2, it also follows that

(3.12) ‖Λq−k2 − Λq†−k2‖ ≤ ‖S−1
q,k‖ ‖S

−1
q†,k‖ ‖Sq,k − Sq†,k‖.

As a consequence, (conditional) Lipschitz stability for the Dirichlet-to-Neumann map implies (con-
ditional) Lipschitz stability for the single-layer potential operator:

‖q − q†‖L∞(Ω) ≤ C ‖Sq,k − Sq†,k‖.

Here, C depends on parameters determining the class of functions guaranteeing the Lipschitz sta-
bility.
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Fig. 1. The domain Ω and point sources on its boundary. The models, q and q†, are smooth and coincide in
the grey boundary layer. The blending described by w is applied in the boundary.

4. Objective functional for full waveform inversion. We consider the nonlinear operator,

F : L∞ → L(H1/2, H3/2), q → Sq,k

and the functional

J (q) = 1
p‖F (q)− F (q†)‖p = 1

p‖Sq,k − Sq†,k‖p,

with the usual definition,

‖Sq,k − Sq†,k‖ = sup
w∈H1/2(∂Ω), ‖w‖=1

‖(Sq,k − Sq†,k)(w)‖H3/2(Ω).

Using the conditional stability, as in De Hoop, Qiu and Scherzer [12], we can generate a convergent
Landweber iteration to recover q† starting from an admissible initial choice of q.

Here, we introduce a different operator norm for the difference, Sq,k −Sq†,k, namely in terms of
its singular spectrum. We assume that q, q† are smooth at and near the boundary, ∂Ω. Moreover,
we assume that q and q† coincide at and near the boundary. We illustrate the configuration in
Figure 1.

The kernel of Sq,k−Sq†,k is the difference of Green’s functions with “end” points on the boundary.
The difference of the Green’s functions solves

(−Δx + q(x)− k2)(Gq,k − Gq†,k)(x, y) = 0,

for points x near the boundary, where q is either of the potentials (they are equal there). Then
Gq,k − Gq†,k is smooth in x by elliptic regularity with values distributions in the y variable. We
can even say that Gq,k − Gq†,k is smooth in (x, y) since it is in the kernel of the elliptic operator
Δx+Δy+q(x)+q(y)−2k2. It follows that the difference operator is smoothing. Hence, its singular
values will decay rapidly. We note that the difference operator is a Hilbert-Schmidt operator.
Moreover, it now follows that this operator is a trace-class operator.

Given the decay of the singular spectrum, we can take as the operator norm the Schatten
p-norm:

(4.1) ‖Sq,k − Sq†,k‖ :=

[ ∑
j≥1

σp
j (Sq,k − Sq†,k)

]1/p

, p ∈ [1,∞).

The (right) singular values are ordered according to

σ1(Sq,k − Sq†,k) ≥ σ2(Sq,k − Sq†,k) ≥ σ3(Sq,k − Sq†,k) ≥ · · · ≥ 0,
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and are obtained as the eigenvalues of [(Sq,k − Sq†,k)
∗(Sq,k − Sq†,k)]

1/2. We note that p = 2
coincides with the Hilbert-Schmidt norm and that p = 1 coincides with the trace-class norm. The
right singular functions associated with σj(Sq,k − Sq†,k) are denoted by ψj . Because

‖(Sq,k − Sq†,k)ψj‖ = σj(Sq,k − Sq†,k),

we have the alternative representation

(4.2) ‖Sq,k − Sq†,k‖ =

[ ∑
j≥1

‖(Sq,k − Sq†,k)ψj‖p
]1/p

.

For the purpose of iterative optimization, we can threshold this expansion,

‖Sq,k − Sq†,k‖ ≈
[

N∑
j=1

‖(Sq,k − Sq†,k)ψj‖p
]1/p

.

In this case, the right singular functions, ψ1, . . . , ψN , become the natural choice of blending functions.
We have reduced the operator norm to a finite sum of terms with a (common) Hilbert space

(H3/2(∂Ω)) norm. This simplifies the formulation of the Landweber iteration: For given (ψj)
N
j=1,

we define the nonlinear Hilbert-space valued operator,

FN : q → (Sq,k(ψj))
N
j=1.

For the sake of completeness we give this iteration in the Appendix. In practice, one takes p = 2.
In the iteration, one would not re-evaluate the right singular functions at each update. Instead,
one would, for example, determine these functions for the initial model and use them as blending
functions throughout the iteration.

5. A numerical experiment. We consider n = 3. We use a finite-difference approximation
to solve the Helmholtz equation, that is, to compute the kernel, Gq,k, of Sq,k, on ∂Ω × ∂Ω off its
diagonal, for q = q† and q given by a smoothed version of q†, which is representative of an initial
model in the iteration. As a model for q† we use a part of SEAM3D, and we set the frequency to
4 Hz. The size of the model is 201× 201× 201 with a stepsize of 20 m. We choose source (yj) and
receiver (xi) points on a lattice with a spacing of 80 m, which samples Σ ⊂ ∂Ω; i, j = 1, . . . , 31. We
flatten the residual “data” matrix in the usual way to obtain a 961× 961 matrix.

We show the models for q and q† in Figure 2. In Figure 3 we illustrate Gq,k(xi, yj)−Gq†,k(xi, yj)
for i, j = 1, . . . , 31. In Figure 4 we illustrate the singular spectrum of Sq,k − Sq†,k. We confirm the
asymptotic rapid decay. We also observe a “knee”, which may be used a guide to truncating the
spectrum. The constants in the decay estimate naturally depend on frequency.

In Figure 5 we illustrate the right singular vector associated with the largest singular value, and
in Figure 6 we show the interior solution of the Hemholtz equation generated by this singular vector
as a boundary source. This singular vector is expected to recover the most signicifant component
that the acquisition surface (Σ) has resolution for.

Acknowledgment. The authors would like to thank Plamen Stefanov for his invaluable sug-
gestions, and Shen Wang for generating the numerical example. This research was funded in part by
the members, BGP, ConocoPhillips, ExxonMobil, PGS, Statoil and Total, of the Geo-Mathematical
Imaging Group at Purdue University.
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Fig. 2. Illustrations of c and c†; the models are ω2c−2 (top) and ω2(c†)−2 (bottom). We set ω/2π = 4 Hz.
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Appendix A. Nonlinear Landweber iteration with blending.
We consider time-harmonic waves, described by solutions, u say, of the Helmholtz equation on

R
n, n ≥ 3. We write

q(x) = −ω2c−2(x)

(which is q̃(x) in the main text by abuse of notation); ω ∈ R. We introduce a bounded open
(computational) domain Θ ⊂ R

n with boundary in C(1,1). We assume that Θ ′ = R
n\Θ is connected.

We consider the problem,

(A.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−Δ− k2)u = 0, x ∈ Θ ′ ,

(−Δ+ q(x))u = f, x ∈ Θ ,

lim
r→∞ r(n−1)/2

(
∂u

∂r
− iku

)
= 0 .

Here, q ∈ L∞(Θ) while −k2 = −ω2c−2
∞ , where c∞ is constant.

We replace (A.1) by the equivalent problem on Θ ,

(A.2)

⎧⎨⎩
(−Δ+ q(x))u = f, x ∈ Θ ,

∂u

∂ν
= −Λeu, x ∈ ∂Θ ,

where Λe is the exterior Dirichlet-to-Neumann map for the Helmholtz equation on Θ ′. We introduce
an open bounded domain, D, with D ⊂ Θ and a boundary in C(1,1), and D′ = R

n\D being
connected. Let Σ be an open portion of ∂D. In the above, furthermore, f represents volume
sources supported in ∂D; this property will be implicit through the introduction of an appropriate
Dirac measure and factoring out ψ (defined on ∂D) in f .

The solution, u, of (A.2), in H1(Θ), also solves the variational equation

(A.3) b(q;u, v) = s(v) for all v ∈ H1(Θ),

where

(A.4) b(q;u, v) =

∫
Θ

(∇u · ∇v̄ − q uv̄) dx,

and

(A.5) s(v) =

∫
Θ

f v̄ dx−
∫
∂Θ

(Λeu) v̄ dσ.

We consider the one-parameter family of models, qt, with q0 = q, and a set of source functions,
(fk(x))

N
k=1; we collect (uk,t(x))

N
k=1 satisfying

(A.6) b(qt;uk,t, v) = sk(v) for all v ∈ H1(Θ),

with

(A.7) sk(v) =

∫
Θ

fk v̄ dx−
∫
∂Θ

(Λeu) v̄ dσ.

(The first integral on the right-hand side is effectively an integral over ∂D.) We write the solution,
uk,t, restricted to ∂D as an operator, S(qt) (which can be identified with Sqt−k2,k), acting on fk,
and introduce the functional,

(A.8) J (qt) =
1

2

N∑
k=1

‖P (S(qt)fk − df,k)‖2L2(∂D);
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here, (df,k(x))
N
k=1 represents the data, and P is an elliptic operator such that ‖P d‖L2(∂D) =

‖d‖H3/2(∂D).
Taking the derivative with respect to t yields

(A.9)
d

dt
J (qt)

∣∣∣∣
t=0

=

N∑
k=1

Re

∫
Σ

[P∗P(S(qt)fk − df,k)]
d

dt
S(qt)fk

∣∣∣∣
t=0

dσ.

We introduce v = (vk(x))
N
k=1, Lagrange multipliers (wk(x))

N
k=1 and a family of functionals,

(A.10) L(qt; v, w) = J (qt) +

N∑
k=1

Re (b(qt; vk, wk)− sk(wk)),

where S(qt)fk in J (qt) is replaced by vk. If vk = uk,t is the solution of the direct problem (A.6),

L(qt;ut, w) = J (qt) for all wk ∈ H1(Θ), k = 1, . . . , N,

then

d

dt
L(qt;ut, w)

∣∣∣∣
t=0

=

N∑
k=1

Re

{ [ ∫
Σ

[P∗P(S(qt)fk − df,k)]
d

dt
S(qt)fk

∣∣∣∣
t=0

dσ

+ b

(
q;

d

dt
S(qt)fk

∣∣∣∣
t=0

, wk

) ]
+

d

dt
b(qt;uk, wk)

∣∣∣∣
t=0

}
for all wk ∈ H1(Θ). If wk solves

(A.11) b(q; v, wk) = −
∫
Σ

[P∗P(S(qt)fk − df,k)] v dσ for all v ∈ H1(Θ), k = 1, . . . , N,

then

(A.12)
d

dt
L(qt, ut, w)

∣∣∣∣
t=0

=

N∑
k=1

Re
d

dt
b(qt;uk, wk)

∣∣∣∣
t=0

.

We can write (A.11) in the form of the direct problems:

(A.13) b(q; w̄k, v) = −
∫
Σ

[P∗P(S(qt)fk − df,k)] v̄ dσ for all v ∈ H1(Θ), k = 1, . . . , N ;

here, (w̄k)
N
k=1 is the so-called adjoint state, with w̄k ∈ H1(Θ) being the solution to

(A.14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−Δ− k2)w̄k = 0, x ∈ Θ ′ ,

(−Δ+ q(x))w̄k = [P∗P(S(qt)fk − df,k)] δΣ, x ∈ Θ ,

lim
r→∞ r(n−1)/2

(
∂w̄k

∂r
− ikw̄k

)
= 0 .

Again, we have the equivalent problems

(A.15)

{
(−Δ+ q(x))w̄k = [P∗P(S(qt)fk − df,k)] δΣ, x ∈ Θ ,

∂w̄k

∂ν
= −Λew̄k, x ∈ ∂Θ .

We have made use of the fact that Λ∗
e(w̄k) = Λewk. We then evaluate

(A.16)
d

dt
b(qt;uk, wk)

∣∣∣∣
t=0

= −
∫
Θ

ukw̄k
d

dt
qt

∣∣∣∣
t=0

dx.
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We identify

d

dt
qt

∣∣∣∣
t=0

with γ.

Thus

(A.17) dJ (q, γ) = −
N∑

k=1

Re

∫
Θ

ukw̄k γ dx =: (ρ, γ)L2(Θ).

The gradient flow can be chosen to optimize the functional. In general, we can introduce a duality
pairing, V ′,V, defined by 〈., .〉, a bilinear (continuous and coercive) form. We then let γ ∈ V ′ be the
solution to

〈γ, γ̃〉 = −(ρ, γ̃)L2(Θ) for all γ̃ ∈ V.

If B is an elliptic operator such that (Bγ, γ̃)L2(Θ) = 〈γ, γ̃〉, then the gradient flow is called a B-
gradient flow.

We shift this equation in t from 0 to discrete values, tn:

〈γn, γ̃〉 = −(ρn, γ̃)L2(Θ) for all γ̃ ∈ V

and use a forward Euler scheme to get

qn+1 = qn + τγn,

which represents the nonlinear Landweber iteration with stepsize τ .
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