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FROM LABORATORY TO FIELD–CRITICAL SCALING OF SINGLE
FRACTURES
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Abstract. Experimental work suggests that the flow-stiffness relationship in single fractures relies on the geom-
etry of the fracture, i.e. the size and spatial distributions of the void and contact areas. It is useful to understand
the scaling of these distributions in relation to the hydromechanical properties of fractures. This would allow studies
conducted on smaller laboratory samples to be understood on the field scale. In this study, the difficulties associated
with interpreting measurements taken in the laboratory are uncovered and it is shown that the scaling is in fact
fundamentally different. Finite-size scaling methods were used to extract critical thresholds for fractures under load
and flow exponents were extracted. This allows the full hydromechanical coupling to be understood in both Effective
Medium and Critical regimes.

1. Introduction. In today’s world, society rely upon the earth’s subsurface in many ways.
These include the extraction of drinkable water; production of oil and gas; nuclear waste disposal;
the storage of anthropogenic byproducts (e.g. CO2) in subsurface reservoirs; the construction of
subsurface structures, such as tunnels and underground buildings; and the foundations of dams and
bridges. To successfully plan for any of these projects, an understanding of the geologic structures in
the subsurface is required. This knowledge is very difficult to obtain because the earth’s subsurface
is composed of a hierarchy of processes which occur at scales that span many orders of magnitude.
In this paper, the authors use the term fracture to refer to mechanical discontinuities that range in
scale from lattice dislocations (10-9 m) to micro-cracks (10-6 m) to fractures (1 m) to the scale of
plate boundaries (104 m).

To study processes with this range of scales, many scientists turn to the framework provided
by Percolation Theory and more specifically finite-size scaling methods. Percolation Theory has
been successfully used to predict many other physical processes that occur at different scales, such
as, phase transitions, the spreading of forest fires, and the electrical conductance through random
mediums [15]. The first step is to understand when a physical process is in an Effective Medium
or Critical Scaling regime. Effective Medium scaling occurs when the scale of the system is not
a dominating factor in the physical process of interest. For example, when considering fluid flow
through two parallel plates, the flow is dominated by the “cubic law.” Critical scaling occurs when
the scale of the system becomes the dominating factor. So, if one randomly placed pillars between
the parallel plates, eventually the pillars would be so densely-packed that the flow paths would be
cut off. At and around this point, called a critical threshold, the “cubic law” no longer dominates
the flow rate, and a clear scale dependence emerges. Then the framework of finite-size scaling can
be used to remove this dependence so that the flow is understood at all scales within the critical
regime.

In this study, the authors wish to describe the scaling relationship between the mechani-
cal property–fracture specific stiffness–and the hydraulic property–permeability–in single fractures.
This study was conducted computationally, using a stratified percolation method to generate the
fracture geometries [11, 9, 10], a deformation model developed by Hopkins [6], and a fluid flow solver
which converted the fracture geometry to a network of elliptical pipes [17]. To begin understanding
the hydromechanical scaling the authors split the problem into three subproblems.

Firstly, the generation and flow codes were tested using geometries with constant aperture.
Secondly, the authors begin to distinguish the difference between taking stiffness measurements in
the laboratory and the field. Measurements taken in the lab usually involve small samples placed
under a constant displacement load. The consequence of this is having free boundary conditions
along the edge of the fracture plane, which can have large effects on the scaling of the permeability.
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Table 2.1
Parameters used to generate uncorrelated fractures in this scaling study.

L (pxl) L (m) NPTS

32 0.0625 146
64 0.125 590
128 0.23 2357
256 0.5 9445
512 1.0 37726

On the other hand, field measurements are usually extracted from seismic reflection data. This will
measure the stiffness in a localized region of a larger fracture. This difference in boundary conditions
had a large effect on the critical scaling regime and a critical threshold was only extracted for the
field-type fractures. Lastly, the hydromechanical scaling relationship is considered for field-type
fractures. The scale dependence was removed from the permeability with a standard finite-size
scaling approach and then used to collapse the full hydromechanical relationship.

2. Fracture Model. In this study, the simulated fracture void geometries were generated
using a stratified percolation method [11, 9, 10]. While many methods are based on bringing two
generated rough surfaces together, (Pietgen & Saupe, [12]; Brown, [1]; Glover et al., [4]; Borodich
& Onishchenko, [1]; Walsh et al., [18]) , the stratified percolation method enables the user to
control the void spaces directly, rather than indirectly. This method constructs a two-dimensional
hierarchical aperture distribution with a tunable spatial correlation. The construction begins with
a two-dimensional array set to zero. This initial array is termed the first tier. Within that tier,
NPTS (number of points per tier) points are selected and used to define the center of the next
tier. This next tier is scaled down by a scale factor, b. This process is repeated until the desired
number of tiers have been generated. Finally, within the final tiers, NPTS points of a given size are
randomly picked and the initial two-dimensional array is incremented by one unit. Overlapping tiers
result in spatially-correlated aperture distributions. In this work, the authors refer to uncorrelated
generations as fractures with only one tier, while correlated generations have the full hierarchical
structure. Examples of both specially uncorrelated and correlated fractures are shown in Figure 1. In
this study, only uncorrelated fractures were studied. Fractures were generated using the parameters
listed in Table 2.1. The five scales ranged from 0.0625m to 1.0m providing approximately an order
of magnitude range in scale. The parameters were chosen such that the initial contact area was
approximately 5% of the fracture plane.

3. Deformation Model. Understanding how a fracture deforms when subject to a load is
necessary when investigating the relationship between the mechanical and hydraulic properties of
fractures. In this study, fractures were deformed numerically under a normal load using a method
similar to that developed by Hopkins [6]. Hopkins’ model assumes a joint can be approximated by
two parallel half-spaces separated by an asperity distribution. This model is similar to Greenwood
& Williamson’s model [5] where the joint was modeled as an asperity distribution in contact with
a flat and rigid surface, and it’s later improvement by Brown and Scholtz [2] where the joint was
modeled as two rough surfaces in contact. Unlike these models, Hopkins’ included the interaction
between contact points by allowing each of the half-spaces to deform about the asperities as well as
the asperity deformation and it did not allow interpretation of the two rough surfaces like Brown
and Scholtz [2]. Each asperity is modeled as a cylinder arranged on a regular lattice. The height
of each cylinder is determined by the fracture generation model and is given a radius such that all
cylinders initially are in contact with neighboring cylinders.

A linear system of equations can be written for this system by noting that for each asperity, the
sum of the initial distance between the half-spaces, D, and the total deformation , Wi, must equal



FROM LABORATORY TO FIELD-CRITICAL SCALING OF SINGLE FRACTURES 297

Fig. 1. Example fractures generated on a 256 by 256 grid with a point size of 4 by 4. (Top row) Uncorrelated
synthetic fractures generated with NPTS = 3800, 5000, 6600, 9700, 12400. (Bottom row) Correlated synthetic
fractures generated with NPTS = 12, 14,16, 18, 20 and the scale factor is set such that the final tier is the size of a
point. The white areas are contact areas, while the color range blue to red are increasing apertures.

the length of the asperity, or

(3.1) D +Wi = hi +Δhi for i ∈ C,

where C is the set of all apertures in contact, and the change in height, Δhi is the unknown variable.
The total displacement is the superposition of the self-interaction, displacement of asperity i due to
the deformation of the half-space by asperity i, and the asperity-asperity interaction, displacement
of asperity i due to the deformation of the half-space by asperity j. The displacement of the half-
space, w0, is found by integrating the Boussinesq’s solution for a loaded circle [16]. The solution is
divided into two parts, the displacement within the loaded circle of radius a, (r ≤ a), and points
outside the radius (r > a).

w0 =

⎧⎪⎨⎪⎩
4(1−ν2)qa

πE

∫ π/2

0

√
1− (r2/a2) sin2 θdθ for r ≤ a

4(1−ν2)qr
πE ×

[∫ π
2

0

√
1− (a/r)2 sin2 θdθ −

[
1− a2

r2

] ∫ π
2

0
dθ√

1−(a/r)2 sin2 θ

]
for r > a

where,

ν = Poisson’s ratio

E = Young’s modulus

a = radius of the asperity

r = the distance from the center of the asperity

q =
f

πa2
= stress acting on the asperity

f = force over an asperity

This displacement can be written in terms of the change in height Δhi by using,

(3.2) Δhi =
fihi

πa2E
.

To solve this system of linear equations, the conjugate gradient method was chosen [13] because
it reduces the problem to a matrix-vector multiplication. The computation time for the solver
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Fig. 2. (Left) Example fracture geometry, where white is contact area and the range blue-red are increasing
apertures. (Right) The resulting pipe network generated using the elliptical pipe network method.

was reduced by recognizing that long range interactions can be approximated accurately by Taylor
expanding the half-space’s displacement for large radii. By using this approximation, the matrix-
vector product can be rapidly calculated by using the Fast Multipole Method (FMM), [13].

The method described above will compute the fracture deformation with free boundaries. This
will effectively simulate the deformation of a fracture in a laboratory setting. In the laboratory, the
fractured bulk rock is usually less than a meter in size and either cubic or cylindrical in shape. When
placed under a constant displacement load, contact points near the edges will have less support than
those near the center, leading to a non-uniform closure. This is fundamentally different than what
would be found in the field. Field measurements of fracture specific stiffness will probe local parts
of larger fractures. To simulate this scenario, periodic boundary conditions were introduced to the
linear system of equations (Equation 3.1) by introducing an “external” lattice of multipole moments
in the FMM calculation [8, 7].

4. Flow Model. To investigate the relationship between the mechanical and hydraulic prop-
erties of fractures, a flow model is also required. The hydraulic properties of the simulated fractures
considered in this study were calculated numerically using a network model similar to that of Yang
et al. [19, 20], Tran [17], and Cheng et al. [3]. In this model, the aperture distribution is replaced
by a connected graph starting from one inlet node and ending with one outlet node (see Figure 2).

This differs from other models in that it is not direction blind, i.e. global flow and local flow
are assumed to be in the same direction. Each row of aperture elements perpendicular to the flow
is considered in turn and the large regions of non-zero apertures are brought together into a single
large elliptical pipe (Figure 3). Between the rows, flow is calculated based on the analytic solution
to flow in an elliptical pipe with a hydraulic resistance based on the apertures,

R =
4fμΔl

√
K(K + 1)

πa4
with,

f =
πa1b1 + πa2b2

2Aavg
and

K = (a/h)
2
.

Above, ai and bi i = 1, 2, are the major and minor axes of the two ellipses between rows, a is the
average minor axis between the rows, h is half the maximum aperture of the larger ellipse, Δl is
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Fig. 3. Side view of multiple apertures being converted to larger elliptical cross sections. This represents a row
of a fracture geometry, perpendicular to the flow direction.

the distance between the center of the two elements, and finally Aavg is the average area of the two
ellipses.

This model is preferred over the bi-lattice grid method, used in [13], because it is computa-
tionally more efficient (run times are 4-10 times faster) and it was shown to model 2D micro-model
experimental data more accurately [3].

5. Results and Discussion.

5.1. Finite-size Scaling due to Fracture generation. This study begins by first investi-
gating the scaling properties due to the generation of synthetic fractures without the influence of
mechanical deformation. Fractures were generated at the five scales listed in Table 2.1 and the
range of NPTS was chosen such that the void area fraction varied from approximately 30% to 80%.
Firstly, the probability of a spanning cluster is shown in Figure 4. As expected, the sharp threshold
at large scales “smears” out as the scale decreases. The data is well approximated by an incomplete
Beta function and was used in the fit shown. When applying renormalization group theory, we were
attempting to find a point in which the renormalization, R, does not change the value of interest.
So, if x is a measured property of the system,

(5.1) R[x] = x.

When this is done, the fixed point at a given scale has been found. Applying this to the problem at
hand, the intersection between the fitted lines and the line y = x were found. Essentially, the right
hand side of Equation 5.1 was moved to the left hand side and the equation was solved for x at
each scale. These scale dependent fixed points were then extrapolated to find the threshold at the
infinite limit. It was found that the critical area fraction, Ac, was approximately 0.608. Secondly,
flow calculations were conducted on the generated fractures with constant aperture. The results are
shown in the right hand plot of Figure 4. It is clearly seen that there are two regions of interest. For
high area fractions, the scale effect cannot be seen and is viewed as an Effective Medium. As the
area fraction, Af , approaches the critical threshold, the flow rates enter the region labeled Critical
Region, where the scale of the system dominates the flow rate. This behaves much like the spanning
probability in that, as the scale decreases, the flow rate cutoff also smears out over the threshold.
The flow rate, q, can be written in a finite-size scaling form as follows,

(5.2) q(Af −Ac;L) = L−t/νF
(
(Af −Ac)L

1/ν
)
.

Where ν = 4/3, not to be confused with the Poisson ratio, is the correlation exponent in 2D
Percolation Theory and t is the flow exponent that must be found. The function F is called a
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Fig. 4. (Left) Finite-size scaling of percolation threshold solely due to geometry. (Right) Fluid flow critical
scaling near threshold, Ac ≈ 0.6, and the flow critical exponent is extracted.

universal function that holds the underlying physics of fluid flow. The elliptical pipe network,
described above, was used to obtained F computationally. Written in this form, the flow reduced
to a simple power law with respect to the scale of the system when at threshold, Af = Ac. By
extrapolating the flow rate at the infinite threshold, it was shown that the flow has the expected
power law dependance with respect to scale. The critical exponent for fluid flow was found by fitting
a power law to this extrapolation and was found to have an exponent of t/ν = 0.963. While this
case study is only for constant aperture fractures, it was used to test the finite-size methodology
on our flow codes. While flow exponents are not universal, this example is analogous to the 2D
random resistor network found in Stauffer [15], who found t/ν = 0.975, which gives confidence to
our implementations.

5.2. Mechanical Finite-size Scaling. After understanding the threshold associated with
fluid flow, due to fracture generation, scaling of the mechanical properties was investigated. Con-
ceptually, this was much more simple. In the case of fluid flow, the threshold occurs when the
fracture no longer supports flow. The analogous property for fracture stiffness is the force trans-
mitted through the fracture plane (into the page). The threshold is immediately realized as the
point when there is no contact between the two rough surfaces. At this point, no force can be
transmitted through the fracture, thereby setting the fracture specific stiffness to zero. As soon as
points come into contact, the fracture begins to resist deformation leading to a non-zero stiffness.
The question that arises concerns the criticality of this fixed point. Like with fluid flow, the fracture
specific stiffness is plotted as a function of the contact area fraction, shown in Figure 5. It is quickly
observed that there is in fact no critical scaling for both laboratory and field-type fractures. All of
the scales lie on the same curve. Again, deformation calculations for field-type fractures use periodic
boundary conditions and laboratory-type fractures use free boundary conditions.

The last item that was considered before analyzing the full hydromechanical scaling is under-
standing how the deformation affects the flow threshold. Before, the critical threshold was only
considered during the generation of a fracture; however, this was not the whole story. When a rock
is fractured, it has a maximum flow rate when no load is applied. As the normal load increases,
two changes occur: (1) apertures begin to shrink, and (2) apertures change to welded contact area
(as far as flow is concerned). This may seem quite similar to the generation setting in section 5.1,
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Fig. 5. Stiffness plotted as a function of contact area fraction for both laboratory (left) and field (right) scales.

but now a major difference between field and laboratory-type fractures becomes apparent. Field-
type fractures have support from both contact area inside and outside the area of interest, while
laboratory-type ones will only have support from inside. Because of this, the contact area will grow
uniformly across the fracture plane for field scale fractures. For the laboratory scales, the contact
area will grow from the edge of the fracture toward the center.

In this case study, fractures were generated using the parameters found in Table 2.1. The defor-
mation calculation was very expensive, so measuring the spanning probability over a given range of
area fractions directly was not feasible. Instead, the probability distribution function for the thresh-
old was estimated as was done by Reynolds et al. [14] for square lattice large-cell renormalization.
Specifically, the normal load applied was increased until the spanning cluster no longer extended
across the fracture. The load was then brought backward (or forward) half a step 10 times, halving
each step, depending on whether the fracture percolated or not. This allowed the solver to approx-
imate the exact load of the threshold up to less than 0.1 % contact area. The spanning probability
was the cumulative distribution function of this random variable and was analyzed in Figure 6. The
right hand side plot shows a clear scaling behavior similar to what was found earlier, as shown
in Figure 4, with a clear scale invariant fixed point. The infinite threshold value was extracted
as it was before and found to be Ac ≈ 0.568. The left hand side of Figure 6 shows the spanning
probability of laboratory-type fractures. Each scale still has a “smeared” threshold, but there is no
clear scale invariant threshold. The threshold appears to shift with scale. It fails because one of the
main assumptions in scaling theory is that, when dealing with a system of scale L, the moments of
any subsample of scale L′ = L/b are independent of the location from which the subsamples were
taken. Yet in this case, samples taken from the edges will have higher contact areas from those in
the center. Therefore, the threshold is dominated by edge effects.

5.3. Hydromechanical Scaling. Now that the threshold behavior of both the mechanical
and hydraulic properties are understood independently, the next step is to investigate the scaling
of the coupled system. Since laboratory samples do not have a well defined scaling threshold, only
field-type fractures were considered. One hundred samples were generated, using the parameters
in Table 2.1, and stressed to a load of 75 MPa in approximately 80 steps. The permeability was
then computed at each step in stress. Now, the apertures were not constant and the moments of
the fracture geometry depend on deformation rather then generation. Therefore, the flow exponent
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Fig. 6. Finite-size scaling of percolation threshold solely due to deformation of laboratory (left) and field (right)
type fractures.

must be recomputed. The fluid flow finite-size scaling relationship (Equation 5.2) became,

(5.3) q(Af (σ)−Ac;L) = L−t/νF
(
(Af (σ)−Ac)L

1/ν
)
,

where the only difference is that now the area fraction is a function of stress, σ. So now, each graph
will be plotted parametrically in stress. Plots of the average flow value as a function of area fraction
are shown on the left figure of Figure 7. The vertical dotted line shows the infinite threshold. Flow
values were pulled near threshold and plotted against their respective scales (small plot in Figure 7)
to extract the exponent. A power law fit calculated that the exponent t/ν is 2.384. Like in section
5.1, there is a clear Effective Medium and Critical regime. The scaled permeability is shown on the
right figure of Figure 7. It displays the expected data collapse at threshold.

Lastly, the permeability was plotted against the fracture specific stiffness in Figure 8 with
stress as a parametric variable. As the data indicates, there is an Effective Medium regime for low
stiffnesses (high area fractions). However, as the load increases the scale dependence appears. This
is expected since flow becomes critical. This spread is removed in the critical regime by scaling the
permeability by Lt/ν , as shown in the right hand side of Figure 8. The fixed point is then scale
invariant while the scale dependance is transferred to the Effective Medium regime.

6. Conclusions. Researchers have long sought the ability to predict permeability of rock
fractures in the subsurface. Difficulties arise in this prediction since the subsurface is made up of
processes that occur on many length and temporal scales. Renormalization group theory provides
a powerful framework to incorporate the scale of a system into its underlying statistical properties,
which in our case would be the hydrodynamic properties.

In this paper, the computational methods required to study the hydromechanics of single frac-
tures were described. The problem was then separated into three parts: (1) a standard 2D per-
colation theory description of fluid flow using the stratified percolation method for uncorrelated
constant aperture fractures; (2) the difference in threshold behavior between laboratory and field-
type fractures and their criticality; and lastly (3) the full hydromechanical scaling.

When describing the unit aperture flow near threshold, it was found that the critical exponent
is t/ν = 0.963. Next, the authors showed that the fracture specific stiffness does not contain
any critical scaling. However, the difference between laboratory and field-type fractures became
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Fig. 7. Plots illustrating the finite-size scale effect of permeability due to deformation. The left side shows the
raw data while the right plot removed the scatter near threshold, Af = Ac, by scaling the permeability by Lt/ν . The
inner plot on the left side shows the extraction of the exponent t/ν.
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Fig. 8. (Left) Permeability plotted against fracture specific stiffness with stress as a parametric parameter.
(Right) The same data as the left while scaling the perimability by Lt/ν .

quite clear. Field-type fractures displayed a clear scaling near threshold and were extrapolated to
the infinite limit, while laboratory-type fractures featured a shifting threshold. Lastly, the critical
exponents pertaining to permeability were extracted when the fractures were subject to normal
loads. It was found that the critical flow exponent is t/ν = 2.384. This was then used to collapse
the permeability-stiffness curves so that they became scale invariant at threshold.
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