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FAST STRUCTURED EIGENSOLVER FOR DISCRETIZED PARTIAL

DIFFERENTIAL OPERATORS ON GENERAL MESHES∗

JIANLIN XIA† , YUANZHE XI‡ , AND MAARTEN V. DE HOOP§

Abstract. In this work, we show a fast structured method for finding the eigenvalues of some discretized PDEs

on general meshes, as well as symmetric sparse matrices. A fast structured multifrontal factorization scheme is

considered, and the organization and partition of the separators in nested dissection for a general graph is considered

for the purpose of efficient structured matrix operations. This structured factorization is used to compute the inertia

of the matrix, and is then combined with the bisection scheme to quickly look for the eigenvalues. This method is

especially useful in finding selected eigenvalues of discretized operators. Moreover, unlike some rank structured direct

solvers, our method does not require related off-diagonal numerical ranks to be small for given tolerances. Numerical

experiments show the costs and accuracies.
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1. Introduction. In mathematical and engineering computations, it often needs to find the

eigenvalues and eigenvectors of large sparse matrices. In particular, sparse eigensolutions provide

important quantitative descriptions of the behaviors of PDEs in practical applications. Classical

iterative methods such as Arnoldi type methods can take good advantage of the sparsity. However,

the convergence may be slow. Moreover, they generally cannot find selected eigenvalues in given

intervals.

Among various eigensolvers, the bisection method [9, 11] has some useful properties. It uses

inertia computations which only need to estimate the signs of the eigenvalues. It can be used to find

eigenvalues in arbitrary intervals. Sometimes, LDL factorizations are used to estimate the inertia.

However, such factorizations are often expensive for sparse matrices.

In this paper, we propose a structured sparse eigensolver using bisection and approximate LDL

factorizations. Rank structured matrices are used in a sparse matrix factorizations scheme called

the multifrontal method [8] to yield structured multifrontal solvers as in [24, 26, 27]. Under certain

conditions, such solvers have costs around O (n) flops in 2D and from about O (n) to O
(
n4/3

)
in

3D. This uses a low-rank property. That is, during the direct factorization of certain discretized

matrices, the intermediate dense matrices have small off-diagonal numerical ranks, or the numerical

ranks follow certain patterns.

Here, for problems where only finite number of eigenvalues are desired, we further use an idea

of aggressive low-rank truncation. That is, even if the intermediate dense matrices have relatively

high off-diagonal ranks, we can still aggressively truncate off-diagonal singular values. That is, we

can manually set a numerical rank that is related to the number of eigenvalues desired. This is

especially useful for different problems and 3D ones where the low-rank property do not exist.

1.1. Preliminaries. The structured matrix we use is called hierarchically semiseparable (HSS)

form [4, 5, 19, 29], which is a special case of H- and H2- matrices [1, 2, 12]. In an HSS matrix, the

off-diagonal blocks appear in compressed forms, given by a sequence of smaller matrices, called HSS

generators. The generators are defined hierarchically so as to improve efficiency. The operations of
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the matrices are then replaced by those on the generators. If the off-diagonal block of the matrix

have small (numerical) ranks, many matrix operations can be performed in nearly linear time via

the HSS form. Examples include HSS matrix-vector multiplication, HSS matrix factorization, and

HSS inversion.

In [27, 26], HSS forms are built into the multifrontal method to represent or approximate dense

matrices. The multifrontal method converts a sparse factorization into a sequence of intermedi-

ate dense factorizations. This is thus very suitable for parallelization and for structured matrix

algorithms.

1.2. Outline. The remaining sections are organized as follows. Section 2 discusses a matrix

reordering method for general meshes in structured factorizations. A structured LDL factorization

method is then shown in Section 3. Our eigensolver is then presented in Section 4, followed by some

numerical tests in Section 5.

2. Matrix reordering with nested dissection and separator partitioning. In our sparse

eigensolver for a symmetric matrix A, we first order with nested dissection [10] so as to reduce fill-in

in the factorization of A or A with diagonal shifts.

2.1. Nested dissection for general meshes. Since A is symmetric, we can construct an

adjacency graph for it. The following definition is commonly used.

Definition 2.1. (Adjacency graph) The adjacency graph G = (V,E) for an n × n matrix A

is defined by a vertex set (or set of grid points) V and an edge set E given as follows:

V = {1, 2, · · · , n}, E = {(i, j)|ai,j �= 0, i, j ∈ V.

In nested dissection, separators or small sets of vertices in V are used to recursively partition

G into subgroups. As in [26], we handle general graphs or meshes. Here, we present the detailed

strategies. Graph partition algorithms and packages such as METIS [14] can be used to construct

a bipartition. We then derive a separator from the partition. See Figure 1 for an example.

(i) One level (ii) Two levels (iii) Three levels

Fig. 1. Nested dissection ordering of an irregular mesh, where the images are based on a matrix in [7].

Then a separator tree T is generated, where each separator corresponds to a node of T. As in

[22], we build a binary tree T. The root of T (denoted root (T )) represents the top-level separator

which divides G into two subgraphs. The child nodes can then similarly be decided. The recursive

partition stops when the numbers of nodes in each subgraph are smaller than a given minimum. T

is also called the assembly tree in the multifrontal method we use [8, 18], and can be conveniently

represented by a vector. Later, we denote the vertices in a separator (or a node of T) i by ti.
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2.2. Separator partition and connectivity. As discussed in [27], different ordering of the

nodes in the separators and the neighbors of a separator can highly affect the performance of the

structured factorizations. Neighbor separators of a separator i are defined as follows.

Definition 2.2. (Neighbor separators) For the graph G = (V,E) and the separator tree T of

A, a separator j is a neighbor of a separator i if

1. j is at the same level as i or at an upper level in T.

2. There exists some edge in E connecting nodes in ti and tj.

In our structured factorizations, we need to partition some upper level separators into pieces

that are used to decide the HSS partition of the intermediate dense matrices. Denote the set of all

neighbors of i (including i itself) by Ni and the set of all ascendants of i in T by Pi. Also let t̂ij be

a subset of tj containing all vertices in tj connected to i.

Define

Si =
⋃
j∈Ni

t̂ij,

and assume the nodes in Si are ordered. We call t̂ij a separator piece in tj and also Si. The purpose

of this step is to decide Si. Here, we impose the following rules.

Definition 2.3. (Separator pieces ordering rules) We say Si is properly ordered if:

1. Each piece of a separator contains vertices that are closely connected.

2. The pieces of a separator that are close to each other are also close in the ordering.

3. Additional levels of partition are applied to the separators for high dimensional problems

[6].

These rules have been shown to be useful in avoiding unnecessarily increasing the intermediate

off-diagonal numerical ranks [27]. That is, it is desired to maintain the connectivity of the separators

as much as possible in the partitioning of the separators.

Such partition strategy is utilized as follows to find a proper ordering for Si. Assume ls is the

starting level in the bottom-up traversal of T where structured factorizations are used. ls is called

a switching level [27].

If i is at level ls, traverse the nodes in Pi to find j ∈ Ni and t̂ij. Order all t̂ij following the above

rules. Each t̂ij corresponds to a desired separator piece.

If i is a non-leaf separator, use the partition information Sc1 and Sc1 associated with the children

c1 and c2 of i, respectively. The procedure involves these steps:

1. Remove vertices in Sc1\tc1 and Sc2\tc2 which are not connected to i.

2. Find vertices in tj for j ∈ Ni which are not in Sc1\tc1 or Sc2\tc2 .

3. Merge the results.

Notice that we can use this method to handle general separator orientations and connectivity.

Figure 2 shows some separators in Figure 1. These separators have arbitrary shapes, and a separator

may consist of multiple disjoint pieces.

With the partition information from Si, we also compute the HSS tree for the local matrix

associated with the matrix.

3. Structured sparse LDL factorization. The method in [27] can be modified to compute

an approximate LDL factorization

(3.1) A ≈ LΛLT .

Here we use the supernodal version of the multifrontal method following the traversal of the separator

or assembly tree T obtained above.
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Fig. 2. Zoomed figure for Figure 1.

3.1. HSS LDL factorization. We first briefly describe an HSS LDL factorization scheme

which is needed in the intermediate steps of the multifrontal factorizations. Given a symmetric HSS

matrix F with generators Di, Ui, Ri, Bi and the corresponding HSS tree T , the structured Cholesky

factorization scheme in [5, 29] can be modified to compute an HSS LDL factorization.

Consider the nodes i of T . If i is a leaf, introduce zeros into F−
i by setting

(3.2) QT
i Ui =

(
0

Ũi

)
,

where Qi is obtained by a QL factorization of Ui. Then compute an LDLT factorization of D̂i ≡
QT

i DiQi:

D̂i =

(
Li

Xi I

)(
Λi

D̃i

)(
LT
i XT

i

I

)
.

If i is a non-leaf node, remove its children c1 and c2 from T , so that i becomes a leaf. Redefine

Di =

(
D̃c1 Ũc1Bc1Ũ

T
c2

Ũc2B
T
c1Ũ

T
c1 D̃c2

)
, Ui =

(
Ũc1Rc1

Ũc2Rc2

)
.

Then the process repeats for i until reaching the root node. For the root node Di, apply

an LDLT factorization for the entire matrix. At the end, a structured LDL type factorization is

computed:

(3.3) F = LΛLT

3.2. Structured multifrontal LDL factorization. The multifrontal method can be easily

modified to compute an LDL factorization. We use the structured multifrontal methods in [24, 25,

27] to compute an approximate LDL factorization (3.1). We describe the main steps.

In the multifrontal factorization of A, two main types of intermediate dense matrices are in-

volved, called frontal matrices and update matrices. They are formed following the flow of the

factorization.

If a node i of T is a leaf, define a frontal matrix

(3.4) Fi ≡ F0
i =

(
A|ti×ti (A|Si×ti)

T

A|Si×ti 0

)
.
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For convenience, rewrite Fi as

(3.5) Fi =

(
Fii FT

Si,ti

FSi,ti FSi,Si

)
,

where the partition follows that in (3.4). Partially factorize Fi as

(3.6) Fi =

(
Li

Xi I

)(
Λi

Ui

)(
LT
i XT

i

I

)
,

where Ui is the update matrix associated with step i:

(3.7) Ui = FSi,Si
− FSi,tiF

−1
ii FT

Si,ti
.

If i is a non-leaf node with children c1 and c2, then the frontal matrix Fi is formed by an

assembly operation called extend-add operation:

(3.8) Fi = F0
i↔� Uc1

↔� Uc2
,

where F0
i is given in (3.4). This operation aligns the indices of the matrices on the right-hand side

of (3.8) following the corresponding indices of the vertices. Then we can partition Fi as in (3.5) and

repeat (3.6).

In the structured factorization, Fi is an HSS matrix. (This HSS matrix is either constructed

from a dense Fi or is accumulated bottom-up as in [27].) The HSS tree T of Fi has q + 1 nodes,

and the root q + 1 has left child k and right child q, so that T [k] and T [q] are the HSS trees for Fii

and FSi,Si
, respectively.

The computation of LiΛiL
T
i is then replaced by (3.6). Similarly, Xi is a low-rank form obtained

by updating the block FSi,ti of the HSS form of Fi. See [26]. The computation of Ui can also be

quickly done as a low-rank update or an HSS update [26]. For example, it is shown in [26] that

Ui ≈ FNi,Ni
−ΘkD̃

−1
k ΘT

k ,

where Θk = Uk+1B
T
k Ũ

T
k and Ũk is given in (3.2) when the node k is reached.

As shown in [26], under certain conditions, the structured LDL factorization can be computed

in about O (n) flops in 2D, and from O (n) to O
(
n4/3

)
in 3D, while the exact factorization costs in

2D and 3D are at least O
(
n1.5

)
and O

(
n2

)
, respectively [13].

4. Structured sparse eigenvalue solution.

4.1. Overall structure. Our sparse eigensolver is based on the bisection method together

with inertia estimations. Introductions of such an idea can be founds in [9, 11], which also give a

definition of the inertia as follows.

Definition 4.1. The inertia of a symmetric matrix A is the triple of integers

Inertia(A) ≡ (n−, n0, n+),

where n−, n0, and n+ are numbers of positive, zero and negative eigenvalues of A, respectively.

A basic result we use is Sylvester’s Inertia Theorem [21].

Theorem 4.2. (Sylvester’s inertia theorem) For a symmetric matrix A, the following result

holds for any invertible matrix L:

Inertia(A) = Inertia(LTAL).
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Clearly, once we have the LDL factorization (3.1), we can get Inertia(A) by counting the positive,

zero, and negative diagonal entries of Λ. Based on the bisection algorithm in [9], we show the overall

structure of our method in Algorithm 1, where n− (A) represents the number of negative eigenvalues

of A.

Algorithm 1 Structured bisection for finding all the eigenvalues of a symmetric sparse matrix A

inside [a, b)

1: procedure bisection(a, b, τ)

� τ may be decided based on the number of eigenvalues desired (Theorem 4.3)

2: A− aI ≈ LaΛaL
T
a , A− bI ≈ LbΛbL

T
b � Compute structured LDL factorizations

3: na = n− (Λa) , nb = n− (Λb)

4: if na = nb then

5: Stop � There is no eigenvalue in [a, b)

6: end if

7: Push [a, na, b, nb] onto a stack S

8: while S �= ∅ do

9: Pop
[
ã, nã, b̃, nb̃

]
from the stack S

10: if b̃− ã < τ then � τ : error tolerance

11: There are nb̃ − nã eigenvalues in [ã, b̃)

12: else � Recursion for subintervals

13: c = ã+b̃
2

14: bisect(ã, c, τ)

15: bisect(c, b̃, τ)

16: end if

17: end while

18: end procedure

If the eigenvectors are also needed, we can use the computed eigenvalues as the shifts and apply

inverse iterations to find the eigenvectors. In general, the convergence is fast.

4.2. Fast inertia computation and aggressive low-rank truncation. To improve the

efficiency of the eigensolution, we use an idea of aggressive low-rank truncation. This is especially

useful for problems where the number of eigenvalues desired is small. This idea is first studied in

[28] for a dense symmetric positive definite (SPD) matrix F .

Theorem 4.3. [28] Assume an SPD matrix F is partitioned into a block 2× 2 form as

F =

(
F11 F12

F21 F22

)
.

Let F11 = L1L
T
1 and F22 = L2L

T
2 be the Cholesky factorizations of the diagonal blocks. Assume r

largest eigenvalues of F is desired. Approximate F by an approximate factorization

F ≈ F̃ =

(
L11

L21 L22

)(
I U1B1U

T
2

U2B
T
1 U

T
1 F22

)(
LT
11 LT

21

LT
22

)
.

Then

Inertia (F ) = Inertia
(
F̃
)
.
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This theorem indicates that, if only few eigenvalues of F are desired, then it is possible to choose

a small numerical rank when truncating appropriate off-diagonal blocks. For the study of general

symmetric cases, see [28].

Here, this idea can be roughly applied to the frontal matrices in the structured multifrontal

method. Overall, we may manually set a numerical rank which is much smaller than the maximum

of the intermediate off-diagonal numerical ranks for a small tolerance τ .

The eigenvector computation may need a smaller τ . However, the number of iterations is usually

small.

5. Numerical experiments. We have implemented our algorithm in Matlab. We choose ap-

proximate levels of multifrontal factorizations. The computations are done on casey.math.purdue.edu

with 32GB DDR3 RAM.

Example 1. We first test the efficiency and accuracy of our algorithm with the 2D SEAM (SEG

Advanced Modeling) velocity model.

The size of the discretized matrix ranges from 4095 to 259, 852. We compute 3 eigenvalues in a

given interval for each matrix size. The storage, number of iterations, and maximum error for the

eigenvalues are shown in Table 5.1. The code is in Matlab and the timing is not shown. It is clear

that, when the matrix size n quadruples, the storage roughly quadruples. This indicates the benefit

of compression in the factorization. We also use a relatively large tolerance for the bisection so as to

improve the efficiency. Then we use few steps of inverse iterations to further improve the accuracy

of the eigenvalues.

n Level Storage Iteration Inv iteration Interval e

4095 8 2.92E4 7 3 [2.9166, 2.9175] 4.99E − 7

16, 380 10 2.06E6 4 5 [2.9166, 2.9180] 1.73E − 13

64, 963 12 9.57E6 5 5 [2.9166, 2.9170] 2.63E − 9

259, 852 14 4.13E7 7 5 [2.9168, 2.9169] 4.01E − 8

Table 5.1

Performance of bisection for finding the eigenvalues of the 2D SEAM model, including the total number of levels

in nested dissection, the storage (number of nonzeros in the factors), the number of bisection iterations, the number

of inverse iterations, the interval for the eigenvalues, and the maximum error e = ‖Ax − λx‖2 for the eigenvalues,

where the compression tolerance is τ = 10−7 and the inverse iteration tolerance is 10−12.

Example 2. Next, we show the performance of the algorithm for different compression tol-

erances. Two problems are considered, one originates from a diffusion problem in 2D (denoted

2Dd), and the other arises from the simulation of the electromagnetic wave propagating across some

non-homogeneous media in 3D (denoted 3De). See Figures 3 and 4.

First, we test the convergence of the bisection algorithm for different tolerances. For 2Dd, we

look for the eigenvalues less than 100. For tolerances τ vary from 10−9 to 10−1, our algorithm find

5023 eigenvalues, which is equal to the exact number. Similarly, for 3De, we find the correct number

of eigenvalues less than 3 to be 1327.

Then we use our algorithm to compute some interior eigenpairs for the two matrices. Table

5.2 shows the computational cost and errors for the computed eigenpairs. We only compute the

eigenvalues within small intervals After finding the approximate eigenvalues with bisection, we use

3 steps of inverse iteration to find the eigenvectors and to further improve the accuracies of the
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(i) Mesh (ii) Matrix nonzero pattern (iii) After nested dissection

Fig. 3. A matrix (2Dd) from a 2D diffusion problem.

(i) Mesh (ii) Matrix nonzero pattern (iii) After nested dissection

Fig. 4. A matrix (3De) from a 3D electromagnetic wave propagation problem.

eigenvalues.

Problem Interval Eigenvalues Iterations e

2Dd [188, 189]

λ5379 14 3.16e− 9

λ5380 14 3.16e− 9

λ5379 14 3.16e− 9

λ5381 14 3.16e− 9

λ5382 14 3.16e− 9

λ5383 14 3.16e− 9

3De [256, 257] λ42987 14 2.06e− 9

Table 5.2

Performance of bisection for finding the eigenvalues and eigenvectors of 2Dd and 3De, where e = ‖Ax − λx‖2
and the compression tolerance τ = 10−4.

6. Conclusions. In this work, we propose a fast sparse eigensolver based on a structured

multifrontal method. Strategies for handling general meshes are shown, so as to perform nested

dissection and decide separator connectivity that are suitable for our factorization method. This

method provides an approximate LDL factorization, which is used to decide the inertia of the matrix.

Related work show that only modest accuracies are needed to accurately estimate the inertia. Then

we combine the inertia estimation with bisection to find the eigenvalues. This eigensolver is especially

useful for finding selected eigenvalues for a specified interval. Numerical experiments for several

important PDEs are included to illustrate the efficiency and accuracy. Our future work includes
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further analysis of the dependence of the accuracies on the tolerances, the implementation of fast

codes, and the application to various practical problems.
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