
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2012) pp. 81-95.

MFRS: AN ALGORITHM FOR THE STRUCTURED MULTIFRONTAL
SOLUTION OF LARGE SPARSE MATRICES VIA RANDOMIZED SAMPLING

SHEN WANG∗, JIANLIN XIA† , MAARTEN V. DE HOOP‡ , AND XIAOYE S. LI§

Abstract. This paper presents strategies for the development of an efficient algorithm (MFRS) for the direct
solutions of large sparse linear systems. The algorithm is based on a structured multifrontal method with randomized
sampling. We propose data structures and access schemes for a type of rank structured matrices, called Hierarchically
SemiSeparable (HSS) forms. A data tree structure is used for HSS matrices. Similar strategies are built into a
multifrontal factorization method. This yields efficient nested data trees. The fast operations for certain important
operations in the factorizations are shown.

Key words. multifrontal method, sparse direct solver, randomized sampling, HSS structure

1. Introduction. Large sparse linear systems arise frequently in scientific and engineering
computations. Direct solutions of such systems are often found attractive due to their robustness
and suitability for multiple right-hand sides. However, the main disadvantage of direct solutions is
the fill-in, or loss of sparsity.

In recent years, rank structured direct methods are used to compute approximate direct solu-
tions. Examples include H- and H2-matrix methods [1, 13] and structured multifrontal methods
[18, 14]. In particular, the structured multifrontal methods combine various sparse matrix tech-
niques and structured matrix methods, and are suitable for parallel computing. A sparse matrix is
first ordered with nested dissection [4] to reduce fill-in, and is then factorized with the multifrontal
method [3]. In [18], the intermediate dense matrices, called frontal matrices and update matrices [3],
are approximated by rank structured forms called hierarchically semiseparable (HSS) forms [2, 19].
However, this is generally complicated due to an operation to assemble matrices (called extend-add
operation), and is limited to certain special problems. Simplifications are made in [14], where the
update matrices or intermediate Schur complements are kept dense. This is significantly easier to
implement.

Recently, a new structured multifrontal solver based on randomized sampling was proposed
in [17]. This work employs randomized techniques to perform HSS matrix operations. The HSS
structures are constructed following a scheme in [11]. Then HSS operations such as the extend-add
operation are replaced by those in terms of certain matrix-vector products. This avoids complicated
HSS matrix operations, and makes structured multifrontal methods more easily and generally ap-
plicable. Here, we focus on a series of techniques that utilize the method in [17]. We develop data
structures for both randomized HSS matrix methods and randomized sparse solutions.

A data structure is designed for HSS matrices, called a data tree, Here the data is stored in a
contiguous array, with pointers pointing to the locations of the individual blocks (called HSS gen-
erators) that define an HSS matrix. A similar data tree structure is used for the dense intermediate
matrices of the multifrontal method. Thus, the structured solver uses two levels of nested data tree
structures, which help the algorithm achieve high efficiency and scalability.

Two tall and skinny random matrices are generated, with row sizes equal to the size of the
matrix. The intermediate factorization steps only need to access the memory allocated to these
random matrices. One important operation used is to reconstruct certain entries of an HSS struc-
ture. This is expensive in a straightforward implementation. Here, we introduce a concept of data
ownership. Row and column indices of the desired entries are grouped so as to reuse the data as
much as possible.

∗Department of Mathematics, Purdue University, West Lafayette, IN 47907.
†Department of Mathematics, Purdue University, West Lafayette, IN 47907.
‡Center for Computational and Applied Mathemematics, Purdue University, West Lafayette, IN 47907

(mdehoop@purdue.edu).
§Computational Research Division, Lawrence Berkeley National Laboratory (LBNL).

81

82 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

The remaining sections are organized as follows. Section 2 reviews structured multifrontal meth-
ods and related applications. Section 3 discusses techniques for efficiently handling HSS representa-
tions and performing randomized HSS construction. The ideas for utilizing an efficient randomized
multifrontal algorithm is presented in detail in Section 4. Section 5 draws some conclusions.

2. Structured multifrontal solvers and their applications. In this section, we briefly
review some structured multifrontal methods for the approximate direct solutions of large sparse
matrices. Here, we focus on the approach adopted in [14, 16]. Applications of such methods to
practical problems such as Helmholtz equations are also described.

2.1. The discretization of the Helmholtz equation. We consider the scalar Helmholtz
equation in 3D:

(2.1)

[
−Δ− ω2

v(x)2

]
u(x, ω) = f(x, ω), x ∈ R3;

where Δ is the Laplace operator, ω is the angular frequency, v(x) is the longitudinal pressure wave
speed, f(x, ω) is the forcing term, and u(x, ω) denotes the time-harmonic pressure wavefield we
want to solve.

We discretize equation (2.1) on a 3D rectangular mesh N1 ×N2 ×N3 in which N1, N2 and N3

denote the number of grid points in each spatial direction, resorting to the finite difference method
equipped with the Perfect Matched Layer (PML) boundary condition (see [14]). This leads to the
following linear systems of equations:

(2.2) A(ω) X (ω) = B(ω),

where the number of unknowns is N1N2N3 ×N1N2N3. A(ω), X (ω) and B(ω) are discretizations of
the Helmholtz operator, pressure wavefield and the forcing term, respectively. We point out that
the matrix A(ω) is pattern symmetric but non-Hermitian, due to the incorporation of the absorbing
boundary condition. Moreover, A(ω) is ill-conditioned and indefinite especially in the scenario of
high frequencies.

2.2. A structured multifrontal solver. To solve the matrix system (2.2) on a large 3D
domain and for a large number of forcing terms, [14] proposed a massively parallel multifrontal
direct solver imbedding a scalable Hierarchically Semiseparable (HSS) matrix solver [15].

They first carry out the nested dissection reordering of the global matrix A(ω) by dividing
upper level domains into lower level subdomains and separators recursively. The mesh points are
reordered following a post-ordering tree structure called assembly tree, which is denoted as T. We
denote the total level of the assembly tree as lvl.

Secondly, after the nested dissection reordering, [14] conduct local partial LU factorizations, by
forming frontal matrices Fk and computing update matrices Uk locally on each node k of the T, by
taking advantage of the multifrontal method introduced by [8]. The mathematical relations can be
summarized in the following concise form:

Fk =

(
Fk,11 Fk,12

Fk,21 Fk,22

)
=

⎧⎪⎪⎨⎪⎪⎩
(
Ak,11 Ak,12

Ak,21 0

)
, if k is a leaf node;(

Ak,11 Ak,12

Ak,21 0

)
+ (Ud1 ↔� Ud2) , if k is a non-leaf node;

(2.3)

Uk = Fk,22 −Fk,21 F−1
k,11 Fk,12;

where Ak denotes the portion of the global matrix A(ω) associated with the node k of the assembly
tree. d1 and d2 are two children of the node k if k is non-leaf, satisfying d1 < d2 < k. The extend-add
operation is denoted by ↔� .

In the third place, for the sake of memory saving and numerical complexity reduction, [15]
proposed a parallel HSS technique to further compress off-diagonal blocks of each frontal matrix

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 83

(a)
0 1
2 3

parallel

level

switch
level

1 2

3

4 5

6

7

8 9 11 12

13

14

15

16

10

17

18

19 20

21

22

23 24

25

26 27

28

29

30

31

0 1 2 3

0 1 2 3

local multifrontal trees

parallel multifrontal tree

HSS trees

(b)

Fig. 1. (a): the illustration of the HSS representation of local factors, without compressing update matrices;
(b): the illustration of the conventional structured multifrontal direct solver proposed by [14] and [15].

Fk, by exploiting their low-rank properties. However, they only conduct HSS constructions and
factorizations on Fk,11, Fk,12 and Fk,21 blocks, leaving the dense Schur complement block Fk,22

untouched. Thus the extend-add operation still applies to dense matrices, which is illustrated
by Figure 1(a). They introduced another level called switch level, denoted as slvl, above which
partial HSS constructions and factorizations are carried out. Figure 1(b) illustrates the entire
classical structured multifrontal solver that incorporates a global assembly tree T and local HSS
trees denoted as Tk, which are associated with each node k. There is another level called parallel
level that is determined by the number of processes. We note that it is introduced only in the
parallel implementation, which is not the main topic of this paper.

Throughout this paper, for the sake of brevity and clarity, we use k to represent any node on the
assembly tree T, with its two children d1 and d2. On each local HSS tree Tk, we use i to represent
any node on it. Two children associated with i are denoted as c1 and c2. F , U and T without the
subscript k are to indicate a general frontal matrix, update matrix, and HSS tree, respectively.

3. An overview of HSS constructions and factorizations of dense frontal matrices
via randomized sampling. In this section, following the work of [10], [20] and [17], we develop
a different HSS construction technique by exploiting the randomized sampling idea. We focus on
the full HSS construction of each frontal matrix Fk without forming its dense form, only taking
advantage of its sampling matrices. Imbedding this technique into the global multifrontal solver
comprises the main result of section 4 and this paper. Other recent work on randomized sampling
can be found by [6], [12], [11] and [7].

3.1. The structure-preserving rank revealing factorization. We revisit the definition of
the HSS representation of a general frontal matrix F , whose associated update matrix and HSS tree
are U and T respectively, by exploiting the low rank properties of its off-diagonal blocks. The size
of F is assumed to be n× n. We say F is in its HSS form if and only if:

84 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

1. T is a post-ordering tree;
2. There exists an index set Ii associated with each node i on T , such that Ic1

⋂
Ic2 = ∅,

Ic1
⋃
Ic2 = Ii, and I = Iroot = {1, 2, ..., n}, where c1 and c2 are two children of the non-leaf

node i;
3. There exist a family of matricesDi, Ui, Ri, Bi, Wi and Vi (called HSS generators) associated

with each node i of T , such that
(3.1)

Di ≡ F|Ii×Ii =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
, Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
.

The maximum row and column size of all Bi is defined as the HSS rank of F . Off-diagonal blocks
of Di are called HSS blocks of F , which are defined as:

(3.2) F−
i = F|Ii×(I−Ii), F |

i = F|(I−Ii)×Ii ;

Here F−
i and F |

i are called HSS row block and HSS column block, respectively.

In order to obtain the HSS representation (3.1) of F , we need to compress F−
i and F |

i exploiting
their low-rank properties. [15] utilized the conventional rank revealing QR factorization with column
pivoting, by forming the dense matrices prior to compressing them. Here we are seeking a certain
compression without forming the dense matrices.

We follow the work of [5] and [20] to conduct the structure-preserving rank revealing (SPRR)
factorization of a general low-rank matrix G, seeking its most linearly independent rows and columns,
whose indices are Î and Ĵ respectively.

(3.3) G ≈ P

(
I
E

)
G|̂I×Ĵ

(
I, FT

)
QT , G = P

(
I
E

)
G|̂I, GT = Q

(
I
F

)
GT |Ĵ,

where P = diag (P1, P2) and Q = diag (Q1, Q2) are permutations. E and F are expansions of the
rest of rows and columns on the basis G|̂I and GT |Ĵ, respectively.

For the sake of brevity, We impose that indices in Î and Ĵ are monotonically increasing. If they
are not initially monotonically increasing, we can apply two permutations P and Q in the following
way:

(3.4) G|̃I×J̃ = P G|̂I×Ĵ Q
T ;

such that indices in Ĩ and J̃ are monotonically increasing. It yields that:

G ≈
(

P1

P2E

)
PTP G|̂I×Ĵ Q

TQ
(
QT

1 , (Q2F)T
)

(3.5)

=

(
P1PT

P2(EPT)

)
G|̃I×J̃

(
(Q1QT)T , (Q2(FQT))T

)
=

(
P̃1

P2Ẽ

)
G|̃I×J̃

(
Q̃T

1 , (Q2F̃)T
)
,

which implies that the only operation requires to be conducted is Ẽ = EPT and F̃ = FQT , after
sorting P1 and Q1 into P̃1 and Q̃1, respectively. We adopt the bubble sort approach to realize this
step.

Rather than from the original matrix G itself, [10] and [9] exploited the randomized sampling

approach to obtain Î, Ĵ, P , Q, E, F from two sampling matrices Y and Z which are defined below:

Y ≡ GX = P

(
I
E

)
G|̂IX = P

(
I
E

)
Y |̂I(3.6)

Z ≡ GTX = Q

(
I
F

)
GT |ĴX = Q

(
I
F

)
Z|Ĵ,

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 85

in which X is a random matrix. And we summarize the SPRR factorization into the concise form
below:

(3.7) G ≈ UBV T , U = P

(
I
E

)
, B = G|̂I×Ĵ, V = Q

(
I
F

)
.

3.2. Fast HSS constructions and factorizations of dense frontal matrices via ran-
domized sampling. In this subsection, We review the HSS construction and factorization of a
dense frontal matrix F via randomized sampling, which is proposed by [11] and [9]. Bear in mind
that U = F22 − F21F−1

11 F12 is the update matrix of F . The HSS tree T associated with F is
illustrated in Figure 2a, for an example of a block 8× 8 frontal matrix.

We start from formulating two sampling matrices Y and Z by multiplying the random matrix
X to both F and FT :

(3.8) Yn×r = Fn×nXn×r, Zn×r = FT
n×nXn×r;

where n is the size of the frontal matrix F , r is the estimated maximum numerical rank of all HSS
blocks of F . {X,Y, Z} comprises three n× r tall skinny matrices which are illustrated in Figure 2b.
Subtracting the diagonal information out of Y and Z (illustrated in Figure 2c), we obtain the HSS
block sampling information of each leaf node:

Di = F|Ii×Ji
,(3.9)

F−
i Xi = Φi = Yi −DiXi,

(F |
i)

TXi = Θi = Zi −DT
i Xi, i = leaf nodes;

in which Φ and Θ denote sampling matrices of HSS blocks of each node on T . We conduct the
SPRR compression:

Φi ≈ Pi

(
I
Ei

)
Φi |̂Ii = Ui Φi |̂Ii ,(3.10)

Θi ≈ Qi

(
I
Fi

)
Θi|Ĵi

= Vi Θi|Ĵi
, i = leaf nodes.

Then we move on to non-leaf nodes. The HSS generator Bi can be obtained via:

(3.11) Bc1 = F|̂Ic1×Ĵc2
, Bc2 = F|̂Ic2×Ĵc1

, i �= leaf nodes.

The sampling matrices of non-leaf node HSS blocks are:

F−
i Xi =

(
Φc1 − Fc1,c2Xc2

Φc2 − Fc2,c1Xc1

)
=

(
Uc1Φc1 |̂Ic1 − Uc1Bc1V

T
c2Xc2

Uc2Φc2 |̂Ic2 − Uc2Bc2V
T
c1Xc1

)
(3.12)

=

(
Uc1 0
0 Uc2

)(
Φc1 |̂Ic1 −Bc1V

T
c2Xc2

Φc2 |̂Ic2 −Bc2V
T
c1Xc1

)
=

(
Uc1

Uc2

)
Φi;

(F |
i)

TXi =

(
Θc1 − FT

c2,c1Xc2

Θc2 − FT
c1,c2Xc1

)
=

(
Vc1Θc1 |Ĵc1

− Vc1B
T
c2U

T
c2Xc2

Vc2Θc2 |Ĵc2
− Vc2B

T
c1U

T
c1Xc1

)

=

(
Vc1 0
0 Vc2

)(
Θc1 |Ĵc1

−BT
c2U

T
c2Xc2

Θc2 |Ĵc2
−BT

c1U
T
c1Xc1

)
=

(
Vc1

Vc2

)
Θi; i �= leaf nodes.

Then we further compress the residual blocks Φi and Θi via SPRR:

Φi ≡
(

Φc1 |̂Ic1 −Bc1V
T
c2Xc2

Φc2 |̂Ic2 −Bc2V
T
c1Xc1

)
≈ Pi

(
I
Ei

)
Φi |̂Ii =

(
Rc1

Rc2

)
Φi |̂Ii ,(3.13)

Θi ≡
(

Θc1 |Ĵc1
−BT

c2U
T
c2Xc2

Θc2 |Ĵc2
−BT

c1U
T
c1Xc1

)
≈ Qi

(
I
Fi

)
Θi|Ĵi

=

(
Wc1

Wc2

)
Θi|Ĵi

, i �= leaf nodes.

86 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

(a) (b)

12

1

2

4

5

8

9

11

12

1

2

4

5

8

9

11

(c) (d)

12

1

2

4

5

8

9

11

12

1

2

4

5

8

9

11

(e) (f)

Fig. 2. (a): the HSS tree T associated with a block 8 × 8 frontal matrix F ; (b): before HSS construction; (c):
first level HSS construction; (d): second level HSS construction; (e): third level HSS construction; (f): fourth level
HSS construction.

Figure 2d - 2f illustrate the HSS construction for non-leaf nodes.
We draw a key observation that only HSS generators Di and Bi come from the original F , while

the rest HSS generators Ui, Vi, Ri, Wi come from two sampling matrices Y and Z. Also we note
that for all i it holds that Îi ⊂ Ii and Ĵi ⊂ Ji. Moreover, Îi ⊂ (̂Ic1 ∪ Îc2) and Ĵi ⊂ (Ĵc1 ∪ Ĵc2) hold
for non-leaf node i.

Following [15], we conduct the fast HSS ULV factorization only for those nodes i belonging to
F11, at the same time when the HSS construction is carried out. [20] developed an efficient way to
introduce zeros to Ui:

(3.14)

(
−Ei I
I 0

)
PT
i Ui =

(
−Ei I
I 0

)
PT
i Pi

(
I
Ei

)
=

(
0
I

)

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 87

Now we summarize the entire HSS construction and factorization via randomized sampling into
the algorithm 1:

ALGORITHM 1: The HSS construction and factorization of F via randomized sampling.

generating Y = FX, Z = FTX;

do i = 1,length(T)

if (i is a leaf-node), then

1. extraction: Di = F|Ii×Ji;

2. subtraction: Φi = Yi −DiXi, Θi = Zi −DT
i Xi;

3. compression: Φi ≈ UiΦi |̂Ii, Θi ≈ ViΘi|Ĵi
;

else

1. extraction: Bc1 = F|̂Ic1×Ĵc2
, Bc2 = F|̂Ic2×Ĵc1

;

2. subtraction: Φi =

(
Φc1 |̂Ic1 −Bc1V

T
c2Xc2

Φc2 |̂Ic2 −Bc2V
T
c1Xc1

)
, Θi =

(
Θc1 |Ĵc1

−BT
c2U

T
c2Xc2

Θc2 |Ĵc2
−BT

c1U
T
c1Xc1

)
;

3. deallocation: Φc1, Φc2, Θc1 and Θc2;

4. compression: Φi ≈
(

Rc1

Rc2

)
Φi |̂Ii, Θi ≈

(
Wc1

Wc2

)
Θi|Ĵi

;

end if

if (i ∈ F22) then

continue;

else

HSS ULV factorization;

end if

end do

3.3. An efficient structured Schur complement update. After the HSS construction for
F and HSS ULV factorization for F11 are done, we need to compute the update matrix U by low
rank updating the Schur complement block F22 based on the formula proposed by [19] below. Here
we use a block 8× 8 frontal matrix as an example:

D̃14 = D14 − U14B14

(
V T
7 D−1

7 U7

)
B7V

T
14(3.15)

= D14 − U14B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7V

T
14

where D̃7, Ũ7 and Ṽ7 are residue blocks of D7, U7 and V7 respectively, after the HSS factorization
of F11 block. Being different from the classical structured solver by [15] that D14 block is dense,
now D14 block is fully represented by the HSS structure.

Here we draw an important conclusion that the low-rank update only updates the Di and Bi

blocks, without changing any Ui, Vi, Ri and Wi blocks for i ∈ F22. For instance:

(3.16) D̃8 = D8 − U8R8R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7W

T
10W

T
8 V T

8

F̃10,13 = U10B10V
T
13 − U10R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7W

T
13V

T
13(3.17)

= U10

(
B10 −R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7W

T
13

)
V T
13

= U10B̃10V
T
13;

88 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

F̃8,9 = U8B8V
T
9 − U8R8R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7W

T
10W

T
9 V T

9(3.18)

= U8

(
B8 −R8R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7W

T
10W

T
9

)
V T
9

= U8B̃8V
T
9 ;

We note that when we compute F̃8,9, R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7 is already included in the compu-

tation of F̃10,13. Similarly, when we compute D̃8, R8R10B14

(
Ṽ T
7 D̃−1

7 Ũ7

)
B7W

T
10 is already included

in the computation of F̃8,9. Thus we adopt a top-down approach to update Di and Bi belonging to
F22, by traversing the HSS tree T backward.

3.4. Implementation details. We now discuss implementation details that enable the HSS
construction and factorization of a dense frontal matrix F via randomized sampling to be conducted
in an efficient way, following MATLAB conventions of cell arrays, the counterpart of which in C
or Fortran is array of pointers.

From the definition (equation (3.1)) of HSS structures, we note that HSS generators are as-
sociated with each node i on the HSS tree T . Thus before the algorithm 1 starts, we first al-
locate cell arrays for each generator: D = cell(1, length(T)), B = cell(1, length(T)), U =
cell(1, length(T)), V = cell(1, length(T)), R = cell(1, length(T)), W = cell(1, length(T)),
in which each cell element D{i}, B{i}, U{i}, V {i}, R{i} and W{i} waits to be allocated to a
piece of memory storing each HSS generator. Furthermore, since the size of each Bi records nu-
merical ranks of each HSS block, we allocate two integer arrays rkR = zeros(1, length(T)) and
rkC = zeros(1, length(T)) where rkR and rkC stand for row and column numerical ranks, re-
spectively.

In addition, algorithm 1 indicates that during the process of HSS construction, intermediate
storage is required to store sampling matrices Φ and Θ, as well as index sets Îi and Ĵi of each HSS
block. We also note that at each loop i, UT

i Xi and V T
i Xi need to be evaluated. For a leaf-node i,

this becomes direct matrix-matrix multiplications. However, for a non-leaf node i, it is inefficient
to form Ui and Vi followed by the multiplication with Xi. On the contrary, we observe that by
taking advantage of the intrinsic recursion properties of the HSS structure (equation (3.1)), the
evaluation of UT

i Xi and V T
i Xi can be conducted in an efficient recursive way below, via defining

two intermediate variables:

Uxi ≡ UT
i Xi =

(
RT

c1U
T
c1 , R

T
c2U

T
c2

)(Xc1

Xc2

)
= RT

c1Uxc1 +RT
c2Uxc2 ;(3.19)

V xi ≡ V T
i Xi =

(
WT

c1V
T
c1 ,W

T
c2V

T
c2

)(Xc1

Xc2

)
= WT

c1V xc1 +WT
c2V xc2 .

Therefore, we allocate cell arrays for these intermediate variables: Φ = cell(1, length(T)), Θ =

cell(1, length(T)), Î = cell(1, length(T)), Ĵ = cell(1, length(T)), Ux = cell(1, length(T)),
V x = cell(1, length(T)). Being different from HSS generators, two children’s intermediate vari-
ables are deallocated once the parent one is formulated.

To summarize, from the implementation aspect of the entire HSS algorithm via randomized
sampling, we altogether have six cell arrays {D,B,U, V,R,W} associated with generators, two inte-

ger arrays {rkR, rkC} recording numerical ranks, and six cell arrays {Φ,Θ, Î, Ĵ, Ux, V x} associated
with intermediate variables, before the loop in algorithm 1 starts.

We combine the HSS construction and the HSS factorization together in a single loop displayed
in algorithm 1. At each node i, the first step is always extracting the information out of the original
matrix F . If i is a leaf node, D{i} is allocated, followed by the initiation of Φ{i} and Θ{i}. We
point out that three tall skinny matrices {X,Y, Z} enter the loop only through leaf nodes. If i
is a non-leaf node, B{c1} and B{c2} are allocated, followed by the generation of Φ{i} and Θ{i}
via merging two children’s counterparts. Φ{c1}, Φ{c2}, Θ{c1} and Θ{c2} are then deallocated.

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 89

After the SPRR compression is done, we need to collect the rank information into the rkR(i) and

rkC(i), to store index sets Î{i} and Ĵ{i}, as well as to allocate Ux{i} and V x{i}. The HSS ULV
factorization will not be carried out unless i belongs to the the Schur complement part. When the
root of T is reached, all intermediate variables are deallocated, leaving HSS generators and two
rank integer arrays containing the complete information of F . Eventually, the Schur complement is
efficiently updated via a top-down approach, which finalizes the HSS construction and factorization
of F .

4. Structured multifrontal solver via randomized sampling. In this section, we discuss
the imbedding of the randomized sampling approach of the HSS construction and factorization
studied in section 3 into the global multifrontal solver, which comprises the main result of this
paper.

4.1. Extend-add of sampling matrices of two update matrices. We revisit one obser-
vation made in section 3 that only D and B generators come from the original frontal matrix F ,
while the rest U , V , R, W generators are from the sampling information Y and Z. On the other
hand, equation (2.3) implies that the information contained in each frontal matrix Fk comes from
part of the original sparse matrix Ak, and two children’s update matrices Ud1

and Ud2
if k is a

non-leaf node. Therefore, to construct the full HSS representation of each frontal matrix Fk above
the switch level slvl, the complete information we need is:

1. part of the original sparse matrix Ak associated with the node k;
2. two update matrices in the HSS form Ud1 and Ud2 if k is a non-leaf node;
3. three tall skinny matrices {Xk, Yk = FkXk, Zk = FT

k Xk}.
It is noted that a big difference between the new structured solver with randomized sampling and
the conventional structured solver by [14] lies in that there is no dense frontal matrix Fk formulated
at each node k above slvl. In other words, {Xk, Yk, Zk} together with {Ak,Ud1

,Ud2
} is sufficient for

the HSS construction of Fk. Therefore, the key is how to obtain Yk and Zk efficiently without the
explicit formulation of Fk and hence the explicit multiplication with Xk, as against the conventional
multifrontal method.

We rewrite equation (2.3) into the following form, for a general non-leaf node k:

Fk = Ak +
[(
Fd1,22 − Ud1,2Bd1,2

(
Ṽ T
d1,1D̃

−1
d1,1

Ũd1,1

)
Bd1,1V

T
d1,2

)
(4.1)

↔�
(
Fd2,22 − Ud2,2Bd2,2

(
Ṽ T
d2,1D̃

−1
d2,1

Ũd2,1

)
Bd2,1V

T
d2,2

)]
Multiplying Xk on both sides, we obtain:

Yk ≡ FkXk = AkXk +
[(
Fd1,22Xd1,2 − Ud1,2Bd1,2

(
Ṽ T
d1,1D̃

−1
d1,1

Ũd1,1

)
Bd1,1V

T
d1,2Xd1,2

)
↔�

(
Fd2,22Xd2,2 − Ud2,2Bd2,2

(
Ṽ T
d2,1D̃

−1
d2,1

Ũd2,1

)
Bd2,1V

T
d2,2Xd2,2

)]
= AkXk +

{[
Yd1,2 − Ud1,2Bd1,2

(
V T
d1,1Xd1,1 +

(
Ṽ T
d1,1D̃

−1
d1,1

Ũd1,1

)
Bd1,1V

T
d1,2Xd1,2

)]
↔�

[
Yd2,2 − Ud2,2Bd2,2

(
V T
d2,1Xd2,1 +

(
Ṽ T
d2,1D̃

−1
d2,1

Ũd2,1

)
Bd2,1V

T
d2,2Xd2,2

)]}
= AkXk +

(
Ỹd1,2 ↔� Ỹd2,2

)
We can obtain similar results for Zk. To summarize, we have the following new extend-add formula
for sampling matrices Yk and Zk, which are counterparts of equation (2.3):

90 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

Yk =

(
Yk,1

Yk,2

)
≡ FkXk =

(
Ak,11 Ak,12

Ak,21 0

)(
Xk,1

Xk,2

)
+

(
Ỹd1,2 ↔� Ỹd2,2

)
(4.2)

Zk =

(
Zk,1

Zk,2

)
≡ FT

k Xk =

(
AT

k,11 AT
k,21

AT
k,12 0

)(
Xk,1

Xk,2

)
+

(
Z̃d1,2 ↔� Z̃d2,2

)
(4.3)

Ỹk,2 = Yk,2 − Uk,2Bk,2

(
V T
k,1Xk,1 +

(
Ṽ T
k,1D̃

−1
k,1Ũk,1

)
Bk,1V

T
k,2Xk,2

)
(4.4)

Z̃k,2 = Zk,2 − Vk,2B
T
k,1

(
UT
k,1Xk,1 +

(
ŨT
k,1D̃

−T
k,1 Ṽk,1

)
BT

k,2U
T
k,2Xk,2

)
(4.5)

Xk = Xd1,2

⋃
Xd2,2(4.6)

By taking advantage of equation (3.19), we note that UT
k,1Xk,1 and V T

k,1Xk,1 are efficiently computed
in a recursive manner. We also point out that AkXk can be computed with linear complexity due to
the sparsity of Ak. Figure 3 illustrates the new extend-add algorithm for three tall skinny matrices.

Fig. 3. The illustration of imbedding randomized sampling HSS construction and factorization into the global
multifrontal solver, via the extend-add of three tall skinny matrices.

4.2. Implementation details of the extend-add process. From the implementation per-
spective, the key is to compute the extend-add for three tall skinny matrices {Xk, Yk, Zk}.

Equation (4.6) implies that Xk is the union rather than the extend-add of Xd1,2 and Xd2,2,
which is different from Yk and Zk obtained via equation (4.2) and equation (4.3), respectively. This
is equivalent to say that any Xd,2 is a subset of its parent Xk. Furthermore, we note that there is
no computation on Xk during the HSS construction and factorization, which means Xk should be
pre-allocated prior to the entire structured multifrontal solver is started.

We start from revisiting the conventional extend-add for dense matrices. We introduce two
integer arrays ind{k} and map{k} associated with each node k. For the sake of clarity and con-
venience, we use ind and map without subscripts to represent general ind{k} and map{k}. The
parent frontal matrix and the child update matrix are denoted as Fk and Ud, respectively. and

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 91

length(ind) = Nd + 1, length(map) = Nd, where Nd denotes the number of diagonal blocks, or in
other words number of neighbors, in the update matrix Ud waiting for the extend-add.

Each element ind(j) stores the first row or column index of each diagonal block j, such that
the size of each diagonal block j is ind(j + 1) − ind(j), 1 ≤ j ≤ Nd. map(j) maps ind(j) to
the corresponding row or column index in the frontal matrix Fk. Thus we can summarize the
conventional extend-add of dense matrices into the algorithm 2.

ALGORITHM 2: Extend-add for dense matrices
do jj = 1,Nd

do ii = 1,Nd

hi = map(ii), ti = map(ii)+ind(ii+1)-ind(ii)-1;

hj = map(jj), tj = map(jj)+ind(jj+1)-ind(jj)-1;

Fk(hi:ti,hj:tj) + = Ud(ind(ii):ind(ii+1)-1, ind(jj):ind(jj+1)-1);

end do

end do

Rather than dense matrices, now we have tall skinny matrices to extend-add whose column size
is fixed to be the estimated rank mxrk, which makes it easier to implement since we only have the
row-wise extend-add. Algorithm 3 describes the strategy.

ALGORITHM 3: Extend-add for Y and Z
do jj = 1,Nd

hj = map(jj), tj = map(jj)+ind(jj+1)-ind(jj)-1;

Yk(hj:tj,:) + = Yd,2(ind(jj):ind(jj+1)-1,:);

Zk(hj:tj,:) + = Zd,2(ind(jj):ind(jj+1)-1,:);

end do

As for the pre-allocation of X, we adopt a top-down approach to realize it, which is illustrated
by Figure 4. Additionally we only store the pre-allocated random matrices Xk on the switch level
slvl. The details are studied in algorithm 4. The function we use to generate random matrices is
randn in MATLAB, or RANDOM SEED and RANDOM NUMBER in Fortran.

4.3. Efficient algorithms for obtaining D and B generators via matrix blocking
techniques. In algorithm 1, we note that at each node of the HSS tree, either D or B generator
requires to be evaluated, given their index sets of the frontal matrix F . If F is in its dense form,
this is just by straightforward extraction. However, in the global structured multifrontal solver via
randomized sampling, there is no dense frontal matrix Fk ever formulated above the switch level
slvl, which makes such an extraction operation non-trivial and deserve to be deeply investigated.

To generalize our discussion, we use D|I×J ≡ Fk|IF×JF to represent any D and B generators,
in which I = {1, 2, ..., NI}, J = {1, 2, ..., NJ}. IF and JF are row and column index sets of the
frontal matrix Fk, respectively. Remind that indices in IF and JF are monotonically increasing.
Furthermore, NI and NJ are numbers of indices in IF and JF , respectively. There are two parts
of contributions of Fk|IF×JF : one is from Ak|IF×JF , which is by straightforward summation; the
other one is from the extend-add of two children’s update matrices, on which our investigations are
focused.

Thus we formally propose our problem to solve in the following statement: given IF and JF ,
how to efficiently find the contribution Ud|IU×JU in which d = d1 or d2, such that

D|I×J ≡ Fk|IF×JF �−→ Ud|IU×JU ,(4.7)

IU = indxF2U (IF) , JU = indxF2U (JF) .

92 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

ALGORITHM 4: Top-down generation of X

do k = length(T),1,-1

if (level(k) < slvl), then

continue;

else

1. Xk,1 = randn(size(Fk,11), mxrk);

2. Xk = [Xk,1;Xk,2];

3. if (level(k) == slvl), then

continue;

else

do d = d1 and d2

do jj = 1,Nd

hj = map(jj), tj = map(jj)+ind(jj+1)-ind(jj)-1;

Xd,2(ind(jj):ind(jj+1)-1,:) = Xk(hj:tj,:);

end do

end do

4. deallocate(Xk);

end if

end if

end do

switch
level

to
p

d
o

w
n

Fig. 4. The illustration of the top-down generation process of random matrices Xk. Only Xk on the switch
level slvl are stored before the structured multifrontal factorization is carried out.

Here we define a subroutine called indxF2U, which utilizes the extend-add process to map the index
sets [IF ,JF] of the frontal matrix Fk to the index sets [IU ,JU] of the update matrix Ud. Because
indices in IF and JF are monotonically increasing, correspondingly the mapped indices in IU and
JU are also monotonically increasing. If the mapping of some indices of Fk are not in the range of
Ud, we evaluate the mapping to be -1. Figure 5 illustrates the function indxF2U. Implementation
details can be summarized in the algorithm 5 below. JU is obtained in exactly the same way.

After obtaining IU and JU , we know that the contribution of Ud to Fk|IF×JF is purely the

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 93

ALGORITHM 5: Function IU = indxF2U (IF).

do ii = 1,length(IF)

IU(ii) = -1 % initialized to be -1

do jj = 1,Nd

hj = map(jj), tj = map(jj)+ind(jj+1)-ind(jj)-1

if (IF(ii) >= hj .and. IF(ii) <= tj), then

IU(ii) = IF(ii) - hj + ind(jj);

break;

end if

end do

end do

1

2

4

5

8

9

11

12

1 2 4 5 8

9

9 1112

1

2

4

5

8

9

11

12

1 2 4 5 8 9 11 12
data ownership !!
LR = {1, 1, 2, 4, -1, 8, 9}
LC = {-1, 11, 12, -1, 12 }

update matrix frontal matrix

Fig. 5. The illustration for recovering D and B generators through index mapping.

submatrix Ud|IU×JU . Therefore, the problem has been converted to how to efficiently compute the
submatrix Ud|IU×JU . We point out that if Ud is a dense matrix as appears in the conventional
multifrontal solver, to evaluate Ud|IU×JU is a straightforward process by extraction. However, since
Ud is currently in its HSS representations, to evaluate Ud|IU×JU we need to use matrix-matrix
multiplications to recover its off-diagonal values.

A naive way to compute Ud|IU×JU is to loop over all points in IU ×JU and evaluate them point-
wise. Bear in mind that there is an HSS tree and layout associated with Ud. If some points belong to
a particular diagonal block Di, the evaluation is just by extraction. Otherwise, the extraction will
be a series of matrix-vector multiplications via traversing the HSS tree T . We note that point-wise
evaluation of Ud|IU×JU is a BLAS2 operation, which is considered to be inefficient compared with
BLAS3 operations. Thus we adopt a block-wise (BLAS3) computation strategy, by taking advantage
of the intrinsic HSS structure.

We revisit the HSS structure introduced in equation (3.1) that off-diagonal blocks are repre-
sented hierarchically by HSS generators which are associated with nodes on the HSS tree T , and
upper level generators are represented by lower level ones. Thus by resorting to the concept of data
ownership, we want to seek which leaf node owns a portion of indices contained in IU and JU , rather
than only one point. This is where blocking technique comes into play. Thus we consider another

94 S. WANG, J. XIA, M. V. DE HOOP, AND X. S. LI

mapping named indx2leaf, which maps indices in IU and JU to the leaf node that owns it:

(4.8) LR = indx2leaf (IU) , LC = indx2leaf (JU) .

where LR and LC are collections of the mapped leaf nodes that own indices in IU and JU . If there
is no leaf node that own a particular index, the mapped leaf node is labeled −1. An example of
mapping LR and LC is illustrated by Figure 5. Algorithm 6 summarizes implementation details of
indx2leaf, in which range(i) is a function which returns the first and the last index that the node
i owns.

ALGORITHM 6: Function LR = indx2leaf (IU).

LR = −1;

do i = 1,length(T)

if (i is a leaf node), then

do jj = 1,length(IU)

if (IU (jj) ∈ range(i)), then

LR(jj) = i;

end if

end do

end if

end do

By exploiting LR and LC, we can group indices together that a particular leaf node i owns,
which enables us to use BLAS3 rather than BLAS2. The strategy can be summarized into the following
algorithm 7.

ALGORITHM 7: Computing Ud|IU×JU .

do i = 1,length(T)

if (i is a leaf-node), then

1. determine [Ii,Ji] out of [IU ,JU] that i owns, by exploiting LR and LC;

2. evaluate Ud|Ii×Ji = Di |̂Ii×Ĵi
(Îi and Ĵi are local indices within Di);

3. extract Ûi = Ui |̂Ii and V̂i = Vi|Ĵi
;

else

1. evaluate Ud|Ic1×Jc2
= Ûc1Bc1 V̂

T
c2 and Ud|Ic2×Jc1

= Ûc2Bc2 V̂
T
c1;

2. merge Ûi =

(
Ûc1Rc1

Ûc2Rc2

)
and V̂i =

(
V̂c1Wc1

V̂c2Wc2

)
;

end if

end do

5. Conclusions. We present the framework of the structured multifrontal solver via random-
ized sampling, which successfully avoids the extend-add operation on dense update matrices. In-
stead, we only conduct the extend-add on three tall skinny matrices that consist of one random
matrix and two sampling matrices. By resorting to the randomized sampling approach, we do not
form dense frontal matrices at each stage to carry out the HSS construction, which plays a key role
in the memory reduction. We develop an efficient algorithm by retrieving D and B generators from
update matrices that are in HSS forms, via matrix blocking techniques. Data ownership is the key
concept for developing this new algorithm.

MFRS: A RANDOMIZED STRUCTURED MULTIFRONTAL SOLVER 95

Acknowledgements. The authors thank the members, ConocoPhillips, ExxonMobil, Total,
BGP, PGS and Statoil, of the Geo-Mathematical Imaging Group (GMIG) for partial financial sup-
port. J. Xia was supported in part by NSF grants DMS-1115572 and CHE-0957024, M.V. de Hoop
was supported in part by NSF CMG grant DMS-1025318, and X.S. Li was supported in part by
the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. De-
partment of Energy under the contract DE-AC02-05CH11231. The authors thank the National
Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory
(LBNL) for providing the computing resources.

REFERENCES

[1] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications, Eng.
Anal. Bound. Elem, 27 (2003), pp. 405–422.

[2] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically semiseparable
representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[3] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Trans. Math. Software, 9 (1983), pp. 302–325.

[4] J.A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973), pp. 345–363.
[5] M. Gu and S.C. Eisenstat, Efficient algorithms for computing a strong rank-revealing qr factorization, SIAM

J. Sci. Comput., 17 (1996), pp. 848–869.
[6] S. Li, M. Gu, C. Wu, and J. Xia, New efficient and robust HSS Cholesky factorization of SPD matrices,

submitted to SIAM J. Matrix Anal. Appl., (2011).
[7] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from matrix-vector multi-

plication, Journal of Computational Physics, to appear (2012).
[8] J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Review, 34 (1992),

pp. 82–109.
[9] P.G. Martinsson, A fast randomized algorithm for computing a hierarchically semi-separable representation

of a matrix, submitted, (2011).
[10] P.G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the approximation of matrices,

Tech. Report 1361, Department of Computer Science, Yale University, New Haven, CT, 2006.
[11] , A randomized algorithm for the decomposition of matrices, Applied and Computational Harmonic

Analysis, 30 (2011), pp. 47–68.
[12] V.Y. Pan and G. Qian, Randomized preprocessing of homogeneous linear systems of equations, Linear Algebra

Appl., 432 (2010), pp. 3272–3318.
[13] L. Grasedyck W. Hackbusch and S. Börm, An introduction to hierarchical matrices, Math. Bohem., 127

(2002), pp. 229–241.
[14] S. Wang, M.V. de Hoop, and J. Xia, On 3D modeling of seismic wave propagation via a structured parallel

multifrontal direct Helmholtz solver, (2011).
[15] S. Wang, X.S. Li, J. Xia, Y.C. Situ, and M.V. de Hoop, Efficient scalable algorithms for hierarchically

semiseparable matrices, submitted to SIAM Journal of Scientific Computing, (2011).
[16] J. Xia, Efficient structured multifrontal factorization for large sparse matrices, preprint,

http://www.math.purdue.edu/∼xiaj/work/mfhss.pdf, (2010).
[17] , Randomized sparse direct solvers, preprint, to be submitted to SIAM J. Matrix Anal. Appl., (2011).
[18] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li, Superfast multifrontal method for large structured linear

systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–1411.
[19] , Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 2010 (2010),

pp. 953–976.
[20] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via randomized sampling,

submitted to SIAM J. Matrix Anal. Appl., (2011).

