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RECONSTRUCTION OF THE METRIC OF A RIEMANNIAN MANIFOLD
FROM LOCAL BOUNDARY DIFFRACTION

TRAVEL TIMES II. A DIX-TYPE ALGORITHM ∗

MAARTEN V. DE HOOP† , SEAN F. HOLMAN‡ , EINAR IVERSEN§ , MATTI LASSAS¶, AND BJøRN

URSIN‖

Abstract. We consider a region M in Rn with boundary ∂M and a metric g on M conformal to the Euclidean
metric. We analyze the inverse problem, originally formulated by Dix [7], of reconstructing g from boundary mea-
surements associated with the single scattering of seismic waves in this region. In our formulation the measurements
determine the shape operator in a subset of an extension of M which does not intersect M . We develop an explicit
reconstruction procedure which consists of two steps: In the first step we reconstruct the directional curvatures and
the metric in what are essentially Riemmanian normal coordinates; in the second step we develop a conversion to
Cartesian coordinates. We admit the presence of conjugate points. In dimension n ≥ 3 both steps involve the solution
of a system of ordinary differential equations. In dimension n = 2 the same is true for the first step, but the second
step requires the solution of a Cauchy problem for an elliptic operator which is unstable in general.
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1. Introduction. We consider a region, M , in Rn with a smooth boundary ∂M . We assume
that there is a Riemannian metric, g, on M that is conformal to the Euclidean metric with conformal
factor v−2 where v ∈ C∞(M) is strictly positive. This means that g(x) = v−2e, where e is the
Euclidean metric, or, in Cartesian coordinates x = (x1, . . . , xn), gij(x) = v(x)2δij . We analyze the
inverse problem, originally formulated by Dix [7], aiming at reconstructing g (or equivalently v)
from boundary measurements associated with the single scattering (reflections) of seismic waves in
M . Geodesics are rays following the propagation of singularities by a parametrix corresponding for
the wave operator on (M, g). In the seismic context v is the wavespeed. Dix developed a procedure,
with a formula, for reconstructing one-dimensional wavespeed profiles in a half space, which we
generalize here to the case of higher dimensional regions with Riemannian metrics conformal to the
Euclidean metric. The method is different in the cases of n = 2 and n ≥ 3 and in fact we expect
better results in the case n ≥ 3.

Assuming that we know v and all of its derivatives on ∂M , we may extend v to a complete
manifold, M̃ , with Riemannian metric g̃, compactly containing M , so that g̃|M = g. We denote,
for simplicity, g̃ = g. (Then we are also able to relate measurements on ∂M with measurements

in M̃ \M .) As described below, we measure the curvature of the intersection of certain geodesic

spheres centered at “diffraction” points with an open subset of M̃ \M . From these data we show
an explicit method to determine the function v in the Cartesian coordinates x = (x1, . . . , xn) along
geodesics of g which connect the diffractions points to the measurement region. This method can
we viewed as a generalization of the work of Iversen and Tygel [12]. Since Dix, various adaptions
have been considered to admit more general wavespeed functions in a half space. We mention the
work of Shah [18], Hubral & Krey [11], Dubose, Jr. [8], and Mann [15].
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For the moment, we fix (x0, η0) ∈ Ω(M̃ \M) (Ω indicates the unit sphere bundle with respect
to g), and consider the geodesic γx0,η0 with initial data, γx0,η0(0) = x0, γ̇x0,η0(0) = η0. For r in
the domain of γx0,η0

, we let Cr denote the set of times t such that γx0,η0
(r) is conjugate to γx0,η0

(t)
along γx0,η0

. When t > r is in the domain of γx0,η0
and t /∈ Cr there is a small portion of the

geodesic sphere of radius t− r centered at yt = γx0,η0
(t) that contains γx0,η0

(r) and is an embedded

submanifold Σr,t of M̃ . Indeed, in this case we can define a vector field νr,t in a neighborhood of

γx0,η0
(r) by writing for ξ ∈ TytM̃ in a small neighborhood of −(t− r)γ̇x0,η0

(t):

νr,t(expyt
(ξ)) =

1

|ξ|g
∂

∂s

∣∣∣∣
s=1

expyt
(sξ).

Geometrically, νr,t gives the outward pointing normal vector fields to a part of the geodesic spheres

centered at yt near γx0,η0(r). The shape operator Sr,t ∈ (T 1
1 )γx0,η0

(r)M̃ of Σr,t at γx0,η0(r) is then
given by

Sr,tX = ∇Xνr,t

for all X ∈ Tγx0,η0 (r)
M̃ , where ∇ is the Levi-Civita connection for g. For the reconstruction of v we

assume that S0,t is known for all t > 0 such that t /∈ C0. In reflection seismology one refers to Σr,t

as the (partial) front of a point diffractor located at yt.
We now introduce a set of coordinates in which we will perform our initial calculations. We

begin with picking a large t0 > 0 in the domain of γx0,η0 such that t0 /∈ C0. Next, let us take
arbitrary coordinates x̂ = (x̂1, . . . , x̂n−1) on Σ0,t0 such that x̂ = 0 defines x0. We let γx̂ be the
geodesic with a special choice of initial data: γ̇x̂(0) = −ν0,t0(x̂). Then we define coordinates, (x̂, r),
on some set W by the inverse of the map

(x̂, r) �→ γx̂(r);

sometimes we use the notation x̂n = r. The (x̂, r) coordinates, basically, are Riemannian nor-
mal coordinates centered at yt0 , but parametrized in a particular way: x̂ can be thought of

as a parametrization of part of the geodesic sphere of radius t0 in Tyt0
M̃ , and then r corre-

sponds to the radial variable in Tyt0
M̃ . We note that the domain W of these coordinates includes

γx0,η0
([0, t0)) \ {γx0,η0

(r) : r ∈ Ct0}. Also, we note that along γx0,η0
the coordinate vectors are Ja-

cobi fields, and are defined even at the conjugate points. Finally, we introduce frames {Fj(x̂, r)}nj=1

defined by parallel translation along γx̂ such that

Fj(x̂, 0) =
∂

∂x̂j

∣∣∣∣
(x̂,0)

,

and also write {f j(x̂, r)}nj=1 for the corresponding dual frame; that is1

〈f j(x̂, r), Fk(x̂, r)〉 = δjk.

Thus,

Fn(x̂, 0) = γ̇x̂(0)

points towards the interior of M .
In the sequel will also consider the shape operators Sr,t when x0 is replaced in the above

construction by another point in Σ0,t0 represented in the coordinates by x̂. We thus have for each

1Here, 〈., .〉 denotes the usual pairing of Tγx̂(r)
˜M and T ∗

γx̂(r)
˜M .
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x̂ and 0 ≤ r < t ≤ t0 such that γx̂(r) and γx̂(t) are not conjugate along γx̂ a tensor Sr,t(x̂) ∈
(T 1

1 )γx̂(r)M̃ . We represent Sr,t(x̂) using the frames constructed above as

Sr,t(x̂) = skj (x̂, r, t)f
j(x̂, r)⊗ Fk(x̂, r).

We will also we the notation skj (r, t) = skj (0, r, t). Note that immediately from the definition we

have snj (x̂, r, t) = sjn(x̂, r, t) = 0 for all j and because of this in what follows when we write s(x̂, r, t)
(respectively s(r, t)) without indices we will actually be referring to the (n − 1) × (n − 1) matrix
skj (x̂, r, t) (respectively skj (r, t)) with j, k = 1, ... , n − 1. The data for our recovery are the matrix

elements skj (x̂, 0, t), and their first three derivatives with respect to t, for 0 < t < t0 and γx̂(t) not
conjugate to γx̂(0) along γx̂.

In a companion paper, we obtained the following result: We can uniquely determine the Rie-
mannian metric in a neighborhood of γx0,η0([0, t0)) in Riemannian normal coordinates having the
origin at the point yt0 . Here, we cast this result into an algorithm, and construct a conversion from
the mentioned coordinates to Cartesian coordinates, which is the main contribution of this paper.
Essentially, we generalize the time-to-depth conversion in Dix’ original method to multi-dimensional
manifolds with Riemannian metrics conformal to the Euclidean metric. The construction comprises
solving a system of n+ 3n2 + n3 nonlinear differential equations. The discretization of this system
is directly related to the available “density” of scatterers.

2. Preliminaries. We summarize the basic differential equations from Riemannian geometry
that we will use. We mention some general references to Riemannian geometry [9, 16, 17]. In this
work we will use the conventions from [16] for the curvature tensor and related quantities in local
coordinates.

2.1. Geodesics. We evaluate the geodesics by solving

(2.1)
d2γi

d t2
+ Γi

kl

dγk

dt

dγl

dt
= 0,

where

Γi
kl =

1

2
gpi

( ∂gkp
∂xl

+
∂glp
∂xk

− ∂gkl
∂xp

)
are the Christoffel symbols. It is also possible to find the solutions of (2.1) using the Hamiltonian flow
for the Hamiltonian H(x, p) = 1

2pjpkg
jk(x). Although we will not use the Hamiltonian formulation

here, we note that it gives the system{
d
dtγ

i = gijpj
d
dtpi = −

1
2pjpk

∂gjk

∂xi

for the geodesics. From this, we see that, in terms of seismic ray tracing, the geodesics may be
identified with generalized image rays.

In our case, assuming isotropy, we have

Γl
qm = −

(
δlqδ

k
m + δlmδkq − δqmδkl

) ∂f

∂xk
, f = log(v).

To make the notation more concise below we introduce the shorthand

Θlk
qm = δlqδ

k
m + δlmδkq − δqmδkl.
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2.2. A frame, parallel transport. As mentioned above, Fj(x̂, r) denotes the parallel trans-
lation of ∂/∂x̂j along γx̂ from 0 to r. Thus, for every x̂ and r > 0, {F1(x̂, r), . . . , Fn(x̂, r)} forms a

basis for Tγx̂(r)M̃ . The invariant formula for parallel translation is

∇γ̇x̂(r)Fk(x̂, r) = 0.

If we introduce matrices which give the frames Fj(x̂, r) in Cartesian coordinates

Fj(x̂, r) = F k
j (x̂, r)

∂

∂xk

∣∣∣∣
γx̂(r)

then the invariant formula implies that these satisfy

(2.2)
∂

∂r
F l
j + γ̇k

x̂(r) Γ
l
kmFm

j = 0 or
∂

∂r
F l
j(x̂, r) + F k

n (x̂, r) Γ
l
km(γx̂(r))F

m
j (x̂, r) = 0,

and since the coordinates x̂ on Σ0,t0 are known, we also know the initial conditions, F l
p(x̂, 0).

2.3. Curvature. The Riemannian curvature tensor in any coordinate system is given as a
(1, 3) tensor by

Rp
jkl =

∂

∂xj
Γp
kl −

∂

∂xk
Γp
jl + Γi

klΓ
p
ji − Γi

jlΓ
p
ki,

or as a (0, 4) tensor as

gipR
i
jkl = Rjklp.

The Ricci curvature tensor is given by

Ricij = Rk
kij

and the scalar curvature is scal = gijRicij . In the Cartesian coordinates the Riemmanian and Ricci
curvature tensors are given respectively by the following formulae in terms of f :

R = e−2f

(
δ �

(
−Hess(f)−∇f · ∇f +

1

2
|∇f |2δ

))
where � is the Kulkarni-Nomizu product (in coordinates, see [16] for the invariant formula), Hess(f)
is the Hessian matrix of second derivatives, ∇f is the (Euclidean) gradient, and |∇f | is the Euclidean
norm of ∇f ;

(2.3) Ric = (n− 2) (Hess(f) +∇f · ∇f) + δij

(
Δf + (2− n) |∇f |2

)
.

Also, when the dimension is n = 2 the scalar curvature satisfies the so-called scalar curvature
equation

(2.4) Δgf = −2 scal

where Δg is the Laplace-Beltrami operator corresponding to g given in any coordinate system
{yj}2j=1 by

Δg = g(y)−1/2 ∂

∂yj
g(y)1/2gjk(y)

∂

∂yj
.

Here g = det([gjk]
2
j,k=1) and [gjk]2j,k=1 is the inverse matrix of [gjk]

2
j,k=1. From these formulae we see

a fundamental difference between the two dimensional case and the case of three or more dimensions.
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In two dimensions the Ricci curvature and scalar curvature essentially give the Laplacian of f , and
so to find f from these curvature tensors would require the solution of an elliptic equation. On the
other hand, in three or more dimensions the Ricci curvature tensor depends on all the second partial
derivatives of f , and in general we can recover a formula Hess(f) in terms of the Ricci curvature
and ∇f . Indeed, if we define

(2.5) G = Ric− (n− 2)
(
∇f · ∇f − |∇f |2 δ

)
then from (2.3) we may calculate

(2.6) Hess(f) =
1

n− 2

(
G− 1

2(n− 1)
tr (G) δ

)
.

This is possible in three dimensions, but not in two dimensions, and is the reason we must consider
the two cases separately.

We will also write the Riemannian curvature on the geodesic γx̂ in the frame obtained by parallel
transport as

R̂p
jkl(x̂, r)Fp(x̂, r) = Rγx̂(r)(Fj(x̂, r), Fk(x̂, r))Fl(x̂, r),

or

R̂p
jkl(x̂, r) = 〈fp(x̂, r), Rγx̂(r)(Fj(x̂, r), Fk(x̂, r))Fl(x̂, r)〉.

Recalling that Fn(x̂, r) = γ̇x̂(r), we also write

rpj (x̂, r) = R̂p
jnn(x̂, r),

or

(2.7) rpj (r) := rpj (0, r) =
〈
fp(0, r), Rγx̂(r)(Fj(0, r), γ̇x0,η0

(r))γ̇x0,η0
(r)

〉
,

for the directional curvature operator which we reconstruct in the first step of our procedure. Note
that as with s, for any j rnj (r) = rjn(r) = 0, and so when we write r without indices we will actually
be referring to the corresponding (n− 1)× (n− 1) matrix.

We continue in the next sections to describe the actual reconstruction algorithm.

3. Reconstruction procedure – Step 1: Determination of the metric in (x̂, r) coor-
dinates. The reconstruction procedure consists of two steps. In the first step we consider only the
single geodesic γx0,η0 and reconstruct rpj (r), and then the metric g as a function of r for x̂ = 0. In
the second step, we determine v in W by also varying x̂.

Following the geometric analysis of the companion paper we now describe the first step of the
procedure which is itself broken up into a number of substeps below.

1. Let V j = V j(r, t), j = 0, . . . , 3 represent (n−1)×(n−1) matrices. We solve the autonomous
system of ordinary differential equations for V (r, t) = (V j(r, t))3j=0,

∂

∂r
V 0 = −I + 1

2
V 0(T V 3)V 0,(3.1)

∂

∂r
V 1 =

1

2
(V 1(T V 3)V 0 + V 0(T V 3)V 1),

∂

∂r
V 2 =

1

2
(V 2(T V 3)V 0 + V 0(T V 3)V 2 + 2V 1(T V 3)V 1),

∂

∂r
V 3 =

1

2
(V 3(T V 3)V 0 + V 0(T V 3)V 3 + 3V 2(T V 3)V 1 + 3V 1(T V 3)V 2),
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t

r

t
1

t
2

Line 1

Line 2

Line 3

Region 2

Region 3

Region 1

Fig. 1. A depiction of how the first step of the algorithm proceeds. The original data give s on line 1. Then
substep 1 recovers {V j}3j=1 in region 1 by solving (3.1). Next substep 2 gives r(r) for 0 ≤ r ≤ t1 by (3.3), and then

substep 3 gives s on line 2. Returning to substep 1 again gives {V j}3j=1 in region 2. Then as before substep 2 gives

r(r) for t1 ≤ r ≤ t2, and substep 3 gives s on line 3. Continuing in this way we reconstruct r as far along γx0,η0 as
we like.

in which

(T V 3)(r) = V 3(r, r),

for 0 ≤ r ≤ t ≤ t0. This system is supplemented with initial data,

(3.2) V j(0, t) = {∂j
t (s(0, t))

−1}3j=0.

We may use a Runge-Kutta method to solve the system numerically for 0 ≤ r ≤ t ≤ t1 for
some time t1. The system will not generally have a solution all the way up to t0; in this
case, we must divide the interval [0, t0] into several subintervals, and reconstruct on each of
these in turn as described below in substep 3.

2. We extract the directional curvature operator,

(3.3) r(r) =
1

2
(T V )(r).

Note that this matrix r(r) is (n− 1)× (n− 1), but recall that from this we can recover the
full directional curvature operator rjp(r) since the nth row and column of rjp(r) are both
equal to zero.

3. In general the first two steps only reconstruct rjk(r) for 0 ≤ r ≤ t1 where t1 < t0 since we

may not able to solve (3.1) all the way up to t0. Here, we describe how to find rjk(r) for
r in the entire interval [0, t0]. The idea is to replace 0 by t1, and then use knowledge of
skj (t1, t) for t > t1. Indeed, let us fix t > t1. Now we find the coordinates of the Jacobi
fields along γx0,η0

that agree with {Fj(0, 0)}nj=1 at x0 and vanish at γx0,η0
(t) with respect

to the parallel frame. These can be found by solving the system

(3.4)
∂

∂r

(
jjk(r, t)

j̇jk(r, t)

)
=

(
0 δjp

−rjp(r) 0

)(
jpk(r, t)

j̇pk(r, t)

)
,

with initial conditions

(3.5)

(
jjk(0, t)

j̇jk(0, t)

)
=

(
δjk

−sjk(0, t)

)
.
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We can then recover s(t1, t) by the equation

∂j

∂r
(t1, t) (j

−1)(t1, t) = −s(t1, t).

Now we may return to substep 1. and solve (3.1) with (3.2) replaced by

V j(t1, t) = {∂j
t (s(t1, t))

−1}3j=0.

This then allows us to use (3.3) to recover r(r) for r up another time t2 say with t1 < t2 ≤ t0.
If t2 is less than t0 we repeat this same procedure again with t1 replaced by t2, and so on.
By results in the companion paper there is a lower bound on the size of each step we take
(i.e. a lower bound on ti − ti−1), and so by induction we eventually recover rjk(r) for r on
the entire interval [0, t0]. For a visual depiction of how the first three substeps proceed see
Figure 1.

4. We now obtain the metric in the (x̂, r) coordinates along γx0,η0
, which we write as ĝjk(0, r),

by the formula

ĝjk(0, r) = jpj (r, t0)j
q
k(r, t0) g̊pq,(3.6)

where g̊pq = g(Fp(0, 0), Fq(0, 0)) which is known. By adjusting the choice of x0 we also find
the metric with respect to the (x̂, r) coordinates where they are defined (i.e. on all of W ).

4. Reconstruction procedure – Step 2: Transformation of coordinates. By the pro-
cedure described in the previous section we can reconstruct the metric ĝjk(x̂, r) in the coordinates
(x̂, r) everywhere in the domain W of those coordinates. Thus we can also reconstruct the Ricci
curvature tensor in these coordinates and also the scalar curvature, which we will use below. In
this section, we show how to determine the velocity function v(γx̂(r)) and the geodesics γx̂(r) in the
Cartesian coordinates from this information.

As observed above, the coordinates vectors in the (x̂, r) coordinates are Jacobi fields along γx̂;
in particular, if

∂

∂x̂k

∣∣∣∣
γx̂(r)

= jlk(x̂, r)Fl(x̂, r) = jlk(x̂, r)F
p
l (x̂, r)

∂

∂xp

∣∣∣∣
γx̂(r)

,

then the matrix jlk(x̂, r) satisfies

(4.1)
∂

∂r

(
jlk(x̂, r)

j̇lk(x̂, r)

)
=

(
0 δlp

−rlp(x̂, r) 0

)(
jpk(x̂, r)

j̇pk(x̂, r)

)
,

supplemented with the initial data(
jlk(x̂, 0)

j̇lk(x̂, 0)

)∣∣∣∣
r=0

=

(
δlk

−slk(x̂, 0, t0)

)
.

In fact, here we are simply adding the dependence on x̂ to the same quantities already considered
in the previous section, and suppressing the dependence on t0 which is now considered to be fixed.
Since parallel translation preserves the metric, we also have the relation

v(γx̂(0))
−2F l

j(x̂, 0)F
q
k (x̂, 0)δlq = v(γx̂(r))

−2F l
j(x̂, r)F

q
k (x̂, r)δlq.

By taking determinants of the matrices on each side and then the natural log, we obtain the following
formula

(4.2) f(γx̂(r)) =
1

n
log

(
v(γx̂(0))

n

∣∣∣∣∣det(F l
j(x̂, r))

det(F l
j(x̂, 0))

∣∣∣∣∣
)
.
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Also, combining some of the previous formulas we have

(4.3)
∂

∂x̂k
f(γx̂(r)) = jpk(x̂, r)F

l
p(x̂, r)

∂f

∂xl
(γx̂(r)).

Away from conjugate points along γx̂, we may invert to obtain

(4.4)
∂f

∂xl
(γx̂(r)) = (F−1)pl (x̂, r)(j

−1)jp(x̂, r)
∂

∂x̂j
f(γx̂(r))

which may further be combined with (4.2) to show

(4.5)
∂f

∂xl
(γx̂(r)) =

1

n
(F−1)pl (x̂, r)(j

−1)jp(x̂, r)

(
∂σ

∂x̂j
(x̂) + (F−1)cb(x̂, r)

∂F b
c

∂x̂j
(x̂, r)

)
where we use the notation

σ(x̂) := log

(
v(γx̂(0))

n∣∣det(F l
j(x̂, 0))

∣∣
)
.

A “stepping” recovery procedure in the spirit of Dix’ original method may now be presented. We
introduce a step size h in r, and for α ∈ N we label rα = αh. If we know f(γx̂(rα−1)), F

l
j(x̂, rα−1),

and jlk(x̂, rα−1), then we approximate the same quantities at rα by the following strategy. First we
numerically estimate the derivatives

∂

∂x̂k
f(γx̂(rα−1)).

Then we use (4.4) to estimate the derivatives

∂f

∂xk
(γx̂(rα−1)).

We then have an estimate of Γl
km(γx̂(rα−1)). Next, we use this estimate to perform a forward

Euler step in (2.2) and get an approximation of F l
j(x̂, rα). Then, finally, we use (4.2) to obtain

the approximation for f(γx̂(rα)). We note that jlk(x̂, rα) may be obtained through a completely
independent calculation using (4.1). Because F l

n(x̂, r) = γ̇l
x̂(r), we can then approximate γl

x̂(rα) as
well. This essentially completes the generalization of Dix’ method.

A closed system of ordinary differential equations for n ≥ 3. The above technique is
not very satisfying, and in fact we seek a single system of ordinary differential equaitons that could
be solved using any numerical scheme to give all the desired quantities. This is possible, although
the method we present here works in 3 or higher dimensions only. The reason for this limitation,
as explained above already, comes from our use of formulas (2.5) and (2.6) to express the Hessian
of f in terms of the Ricci curvature and the first order derivatives of f in Cartesian coordinates.
Since we actually know the Ricci curvature in (x̂, r) coordinates, which we will label as R̂icpq, we
also need the formula for the tensorial change

(4.6) Ricij(γx̂(r)) = R̂icpq(x̂, r)(j
−1)pl (x̂, r)(F

−1)li(x̂, r)(j
−1)qm(x̂, r)(F−1)mj (x̂, r).

Now we can describe how to get the closed system of ordinary differential equations.
We differentiate (2.2) and use (4.3) to get

(4.7)
∂

∂r

∂F l
j

∂x̂a
=

∂F q
n

∂x̂a
Fm
j Θlk

qm

∂f

∂xk
+ F q

n

∂Fm
j

∂x̂a
Θlk

qm

∂f

∂xk
+ F q

nF
m
j Θlk

qmjpaF
c
p

∂2f

∂xk∂xc
.

where we have suppressed the dependence on (x̂, r). We may use (2.5), (2.6), (4.5), and (4.6) to
express the right-hand side of (4.7) only in terms of j, F , derivatives of F , and the Ricci curvature
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R̂icpq. Combining all the previous equations we now have a system of ordinary differential equations
that may be solved. In the next paragraph, we summarize the entire method for convenience.

As claimed above we have now produced a system of ordinary differential equations that may be
solved to obtain v and γx̂ in Cartesian coordinates. The system is nonlinear and contains n+3n2+n3

equations. It may be written as

(4.8)
∂

∂r

⎛⎜⎜⎜⎜⎜⎜⎝

γl

jlk

j̇lk
F l
k

∂F l
k

∂x̂p

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

W l
γ(r, x̂, j, j̇, F,

∂F
∂x̂ )

W l
j;k(r, x̂, j, j̇, F,

∂F
∂x̂ )

W l
j̇;k
(r, x̂, j, j̇, F, ∂F

∂x̂ )

W l
F ;k(r, x̂, j, j̇, F,

∂F
∂x̂ )

W l
∂F
∂x̂ ;kp

(r, x̂, j, j̇, F, ∂F
∂x̂ )

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We describe how each of the “W” functions on the right-hand side is to be evaluated. W l
γ and W l

j;k

are the simplest. Recalling that Fn(x̂, r) = γ̇x̂(r) and using (4.1) they are given by

W l
γ = F l

n and W l
j;k = j̇lk.

Next, again according to (4.1), W l
j̇;k

is given by

W l
j̇;k

= −rljj
j
k.

Since x̂n = r, W l
F ;k is given by

W l
F ;k =

∂F l
k

∂x̂n
.

Finally, W l
∂F
∂x̂ ;kp

is given by (4.7) where we calculate ∂f
∂xj using (4.5), and calculate ∂2f

∂xi∂xj in several

steps using the values of ∂f
∂xj already calculated, (4.6), (2.5), and then (2.6). We may now use a

Runge-Kutta method to solve the system numerically for r up to any conjugate point. Note that
at the conjugate points the matrix j−1 will blow up, and we will not be able to continue.

We note that we do not explicitly solve for v in this system, but after we have found F l
k, then

f and therefore v may be calculated from (4.2).

The presence of conjugate points. It will be possible to solve the system (4.8) up to
conjugate points of yt0 along γx0,η0

. Thus we can recover everything if there is no conjugate point.
However, if there is a conjugate point, then we must follow a more sophisticated strategy. Note
that once we are able to calculate the matrix j(x̂, r) after Step 1, then we can identify all of the
conjugate points. If we pick an alternate value of t0, t

′
0 say, such that yt0 and yt′0 do not have any

of the same conjugate points, and also consider the system (4.8) with t0 replaced by t′0, then we can
find v and γ in Cartesian coordinates along the entire geodesic γx0,η0

by switching back and forth
between the systems corresponding to t0 and t′0.

5. Two-dimensional case. The method of the previous section, step 2 in the reconstruction
procedure, will not work in two dimensions. The basic reason for this is that we cannot determine
all of the second partial derivatives of f from the curvature of g, but rather can only obtain the
Laplacian of f as shown in (2.4). Therefore in the two-dimensional case we are forced to recover
f by solving (2.4). We discuss this in more detail below, but first we will also revisit step 1 in the
two-dimensional case where the formulae can be simplified.

The main simplification comes from the fact that in the two dimensional case the trace of Sr,t(x̂)
contains all of the same information as Sr,t(x̂) itself, and so it is actually easier to consider this
trace. Indeed, let us define

α(x̂, r, t) = tr (Sr,t(x̂)) .
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In this case we have the following simple method of calculating α(x̂, r, s) away from conjugate points.
If γx̂(r) is not conjugate to γx̂(t) along γx̂, then there is a distance function defined for (ẑ, s) in a
neighborhood of (x̂, r) by

dx̂,r,t(ẑ, s) =
∣∣∣exp−1

γx̂(t)
(γẑ(s))

∣∣∣
g
.

In the seismic context this is nothing other than the local travel time along rays close to γx̂ from
γx̂(t) to points near γx̂(r). By [16, p.46] we have

α(x̂, r, t) = Δgdx̂,r,t.

We continue to review step 1 in the two dimensional case.

5.1. Step 1 redux: The two dimensional case. We note that the {V j}3j=0 which appear

in equation (3.1) are actually all scalars and the only nonzero component of rkj is r11 which is what

we recover in (3.3). Note also that in the two dimensional case, r11 contains the same information
as the sectional curvature (if F1 is chosen to have unit length with respect to g then in fact r11 is
the sectional curvature).

The other simplification occurs in substep 4. In the two dimensional case the metric must have
the form

ĝjk = ϕ(x̂, r)2dx̂2 + dr2,

Now by [16, p.46], ϕ(x̂, r) satisfies the equation

∂2

∂r2
ϕ(x̂, r) + r11(x̂, r)ϕ(x̂, r) = 0(5.1)

where r11(x̂, r) is already known. Since the metric is also known in a neighborhood of Σ0,t0 we may
simply solve this equation with the known initial data ϕ(x̂, 0) and ∂rϕ(x̂, 0) in order to find the
metric in the (x̂, r) coordinates. We see that it is not necessary in this case to compute the matrix
j corresponding to the Jacobi fields.

Now we continue to show how step 2 may be accomplished in the two dimensional case. The
method makes use of the scalar curvature rather than the Ricci curvature.

5.2. Step 2 redux: The two dimensional case via the scalar curvature equation. In
step 2 we must take a slightly different strategy for the two dimensional case. The difference is that
we cannot express the second derivatives of f which appear in (4.7) in terms of j, F , derivatives of
F , and the Ricci curvature. Instead we use a method inspired by the treatment from [13, Section
4.5.6] of a different problem. After we recover the metric g in the coordinates (x̂, r) we use the
scalar curvature equation (2.4) to directly solve for f in these coordinates. Indeed, we assume that

(5.2) v|Σ0,t0
and ν0,t0(v)|Σ0,t0

are known, and so in fact we have Cauchy data for f on Σ0,t0 . Thus f satisfies a Cauchy problem
for the elliptic operator Δg (see (2.4)) expressed in (x̂, r) coordinates which has a unique solution
by the unique continuation principal (for a modern review of Cauchy problems for elliptic operators
see [2]). Thus we can reconstruct f on the connected component of W (recall W is the domain
of the coordinates (x̂, r)) containing Σ0,t0 in the coordinates (x̂, r). We note, however, that this
reconstruction is generally unstable (once again see [2] for a detailed review of the stability of this
type of problem).

Now once we have recovered f in (x̂, r) coordinates the system (4.8) can be replaced by a
significantly simpler system. Indeed, if we combine the equation (4.1) for the Jacobi field matrix
with (2.2) and (4.4), then we have a closed system of ordinary differential equations which may be
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solved just like (4.8) for the higher dimensional case. For convenience we write this system down
explicitly. The system is

(5.3)
∂

∂r

⎛⎜⎜⎜⎜⎝
γl

jlk

j̇lk
F l
k

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
W l

γ(r, x̂, j, j̇, F )

W l
j;k(r, x̂, j, j̇, F )

W l
j̇;k
(r, x̂, j, j̇, F )

W l
F ;k(r, x̂, j, j̇, F )

⎞⎟⎟⎟⎟⎠ .

Here W l
γ(r, x̂, j, j̇, F ), W l

j;k(r, x̂, j, j̇, F ), and W l
j̇;k
(r, x̂, j, j̇, F ) are given by the same formulae shown

below (4.8). The last entry on the right hand side is given, according to (2.2) and (4.4), by

W l
F ;k(r, x̂, j, j̇, F ) = Θlj

pqF
p
nF

q
k (F

−1)ij(j
−1)ai

∂

∂x̂a
f(γx̂(r)).

Solving these equations we can recover f in Cartesian coordinates on the connected component of
W containing Σ0,t0 using the map (x̂, r) �→ γx̂(r). In the case that W is not connected (i.e. there
are conjugate points) we must do the recovery in steps as described at the end of Section 4.

6. Conclusion. We generalized the method of Dix for reconstructing a depth varying velocity
in a half space, where depth is the Cartesian coordinate normal to the boundary, to a procedure
for reconstructing a metric conformal to the Euclidean metric on a region of Rn from expansions
of diffraction travel times generated by scatterers in the region and measured on its boundary.
Our procedure consists of two steps: In the first step, we reconstruct the directional curvature
operator along geodesics as well as the metric in Riemannian normal coordinates. Riemannian
normal coordinates can be thought of as “time” coordinates as they appear in so-called seismic
time migration. We note that the directional curvature operator did not appear in the method
of Dix because of the class of velocity models he considered. In the second step, the velocity
and the geodesics on which the velocity is reconstructed are obtained through a transformation to
Cartesian coordinates; this can be thought of as a generalization of the “time-to-depth” conversion
in the framework of Dix’ original formulation. In dimension three or more both steps are essentially
formulated in terms of solving a closed system of nonlinear ordinary differential equations, for
example, by application of the Runge-Kutta method. In dimension two the second step requires
the solution of a Cauchy problem for an elliptic operator which may suffer from stability issues.
Through the associated discretization, we accommodate the case of a finite number of scatterers in
the manifold. We admit the formation of caustics.
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