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LOCAL INVERSE PROBLEMS: HÖLDER STABILITY AND ITERATIVE

RECONSTRUCTION∗

MAARTEN V. DE HOOP† , LINGYUN QIU‡ , AND OTMAR SCHERZER§

Abstract. We consider a class of inverse problems defined by a nonlinear map from parameter or model functions
to the data. We assume that solutions exist. The space of model functions is a Banach space which is smooth and
uniformly convex; however, the data space can be an arbitrary Banach space. We study sequences of parameter
functions generated by a nonlinear Landweber iteration and conditions under which these strongly converge, locally,
to the solutions within an appropriate distance. We express the conditions for convergence in terms of Hölder stability
of the inverse maps, which ties naturally to the analysis of inverse problems.
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1. Introduction. In this paper, we study the convergence of certain nonlinear iterative recon-
struction methods for inverse problems in Banach spaces.

We consider a class of inverse problems defined by a nonlinear map from parameter or model
functions to the data. The parameter functions and data are contained in certain Banach spaces,
or Hilbert spaces. A stable reconstruction involves regularization techniques. We analyze these
inverse problems locally, that is, in a neighborhood of their solutions if they exist. In particular,
we explicitly construct sequences of parameter functions by a modified Landweber iteration. Our
analysis pertains to obtaining natural conditions for the strong convergence of these sequences
(locally) to the solutions in an appropriate distance associated with the relevant spaces.

Extensive research has been carried out to study convergence of the Landweber iteration [22]
and its modifications. In the case of model and data Hilbert spaces, see Hanke, Neubauer & Scherzer
[16]. An overview of iterative regularization methods for inverse problems in Hilbert spaces can be
found, for example, in Engl, Hanke & Neubauer [15]. Schöpfer, Louis & Schuster [28] presented a
nonlinear extension of the Landweber method to Banach spaces using duality mappings. We use
this iterative method in the analysis presented here. Duality mappings also play a role in iterative
schemes for monotone and accretive operators (see Alber [2], Chidume & Zegeye [12] and Zeidler
[33, 34]). The model space needs to be smooth and uniformly convex, however, the data space can
be an arbitrary Banach space. Due to the geometrical characteristics of Banach spaces other than
Hilbert spaces, it is more appropriate to use Bregman distances instead of Ljapunov functionals to
prove convergence (Osher et al. [24]). For convergence rates, see Hofmann et al. [18]. Schöpfer,
Louis & Schuster [29] furthermore considered the solution of convex split feasibility problems in
Banach spaces by cyclic projections. Under the so-called tangential cone condition, pertaining to
the nonlinear map modelling the data, convergence has been established; invoking a source condition
results in a convergence rate. Here, we build on the work of Kaltenbacher, Schöpfer and Schuster
[19] and revisit these conditions with a view to stability properties of the inverse problem.

Our main result establishes convergence of the modified Landweber iteration if the inverse
problem ensures a Hölder stability estimate. We prove this result both for the case of Hilbert spaces
and Banach spaces. Moreover, we prove monotonicity of the residuals defined by the sequence
induced by the iteration. We also obtain the convergence rates. Hence, the stability condition is
the natural one in the framework of iterative reconstruction.

In many inverse problems one probes a medium, or an obstacle, with a particular type of
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field and measures the response. From these measurements one aims to determine the medium
properties and/or (geometrical) structure. Typically, the physical phenomenon is modeled by partial
differential equations and the medium properties by variable, and possibly singular, coefficients. The
interaction of fields is usually restricted to a bounded domain with boundary. Experiments can be
carried out on the boundary. The goal is thus to infer information on the coefficients in the interior
of the domain from the associated boundary measurements. The map, solving the partial differential
equations, from coefficients or parameter functions to the measurements or data is nonlinear. Its
injectivity is studied in the analysis of inverse problems. As an example, we discuss Electrical
Impedance Tomography, where the Dirichlet-to-Neumann map represents the data, and summarize
the conditions leading to Lipschitz stability.

Traditionally, the Landweber iteration has been viewed as a fixed-point iteration. However, in
general, the underlying fixed point operator is not a contraction. There is an extensive literature
of iterative methods for approximating fixed points of non-expansive operators. Hanke, Neubauer
& Scherzer [16] replace the condition of non-expansive to a local tangential cone condition, which
guarantees a local result. In the finite-dimensional setting, in which, for example the model space
is Rn, non-convex constraint optimization problems admitting iterative solutions have been studied
by Curtis et al. [14]. Under certain assumptions, they obtain convergence to stationary points of
the associated feasibility problem. In the context of inverse problems defined by partial differential
equations, this setting is motivated by discretizing the problems prior to studying the convergence
(locally) of the iterations. Inequality constraints are necessary to enforce locality. The non-convexity
is addressed by Hessian modifications based on inertia tests.

The paper is organized as follows. In the next section, we summarize certain geometrical aspects
of Banach spaces, including (uniform) smoothness and (uniform) convexity, and their connection to
duality mappings. Smoothness is naturally related to Gâteaux differentiability. We also introduce
the Bregman distance. We then define the nonlinear Landweber iteration in Banach spaces. In
Section 3 we introduce the basic assumptions including Hölder stability and analyze the convergence
of the modified Landweber iteration in Hilbert spaces. In Section 4 we adapt these assumptions and
generalize the analysis of convergence of the modified Landweber iteration to Banach spaces. We
also establish the convergence rates. In Section 5 we give an example, namely, the reconstruction of
conductivity in Electrical Impedance Tomography, and show that our assumptions can be satisfied.

2. Landweber iteration in Banach spaces. Let X and Y be both Banach spaces. We
consider the nonlinear operator equation

(2.1) F (x) = y, x ∈ D(F ), y ∈ Y,

with domain D(F ) ⊂ X. In applications, F : D(F ) → Y models the data. In the inverse problem
one is concerned with the question whether y determines x. We assume that F is continuous, and
that F is Fréchet differentiable, locally.

We couple the uniqueness and stability analysis of the inverse problem to a local solution
construction based on the Landweber iteration. Throughout this paper, we assume that the data y
in (2.1) is attainable, i.e., that (2.1) has a solution x† (which need not be unique).

2.1. Duality mappings. Throughout this paper, X and Y are real Banach spaces with duals
X∗ and Y ∗, respectively. Their norms are denoted by � ·�. We denote the space of continuous linear
operators X → Y by L(X,Y ). Let A ∈ L(X,Y ); if A is Fréchet differentiable, DA : X → L(X,Y ).
For x ∈ X and x∗ ∈ X∗, we write the dual pair as �x, x∗� = �x∗, x� = x∗(x). We write A∗ for the
dual operator A∗ ∈ L(Y ∗, X∗) and �A� = �A∗� for the operator norm of A. We let 1 < p, q < ∞
be conjugate exponents, i.e.,

(2.2)
1

p
+

1

q
= 1.
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For p > 1, the subdifferential mapping Jp = ∂fp : X → 2X
∗

of the convex functional fp : x �→
1
p�x�p defined by

(2.3) Jp(x) = {x∗ ∈ X∗ | �x, x∗� = �x� �x∗� and �x∗� = �x�p−1}

is called the duality mapping of X with gauge function t �→ tp−1. Generally, the duality mapping
is set-valued. In order to let Jp be single valued, we need to introduce the notion of convexity and
smoothness of Banach spaces.

One defines the convexity modulus δX of X by

(2.4) δX(�) = inf
x,x̃∈X

{1− � 1
2 (x+ x̃)� | �x� = �x̃� = 1 and �x− x̃� ≥ �}

and the smoothness modulus ρX of X by

(2.5) ρX(τ) = sup
x,x̃∈X

{ 1
2 (�(x+ τ x̃�+ �(x− τ x̃� − 2) | �x� = �x̃� = 1}.

Definition 2.1. A Banach spaces X is said to be
(a) uniformly convex if δX(�) > 0 for any � ∈ (0, 2],

(b) uniformly smooth if limτ→0
ρX(τ)

τ
= 0,

(c) convex of power type p or p-convex if there exists a constant C > 0 such that δX(�) ≥ C�p,
(d) smooth of power type q or q-smooth if there exists a constant C > 0 such that ρX(τ) ≤ Cτ q.

Example 2.2.
(a) A Hilbert space X is 2-convex and 2-smooth and J2 : X → X is the identity mapping.
(b) The Banach spaces Lp, p > 1 are uniformly convex and uniformly smooth, and

δLp(�) �
�

�2, 1 < p < 2,
�p, 2 ≤ p < ∞;

ρLp(τ) �
�

τp, 1 < p < 2,
τ2, 2 ≤ p < ∞.

(c) For X = Lr(Rn), r > 1, we have

Jp : Lr(Rn) → Ls(Rn)

u(x) �→ �u�p−r
Lr |u(x)|r−2u(x),

where 1
r + 1

s = 1.
For a detailed introduction to the geometry of Banach spaces and the duality mapping, we refer

to [13, 28]. We list the properties we need here in the following theorem.
Theorem 2.3. The following statements hold true:

(a) For every x ∈ X, the set Jp(x) is not empty and it is convex and weakly closed in X∗.
(b) If a Banach space is uniformly convex, it is reflexive.
(c) A Banach space X is uniformly convex (resp. uniformly smooth) iff X∗ is uniformly smooth

(resp. uniformly convex).
(d) If a Banach space X is uniformly smooth, Jp(x) is single valued for all x ∈ X.
(e) If a Banach space X is uniformly smooth and uniformly convex, Jp(x) is bijective and the

inverse J−1
p : X∗ → X is given by J−1

p = J∗
q with J∗

q being the duality mapping of X∗ with
gauge function t �→ tq−1, where 1 < p, q < ∞ are conjugate exponents.
Throughout this paper, we assume that X is p-convex and q-smooth, hence it is is uniformly

smooth and uniformly convex. Furthermore, X is reflexive and its dual X∗ has the same properties.
Y is allowed to be an arbitrary Banach space; jp will be a single-valued selection of the possibly
set-valued duality mapping of Y with gauge function t �→ tp−1, p > 1. Possible further restrictions
on X and Y will be indicated in the respective theorems below.
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2.2. Bregman distances. Due to the geometrical characteristics of Banach spaces different
from those of Hilbert spaces, it is often more appropriate to use the Bregman distance instead of the
conventional norm-based functionals �x − x̃�p or �Jp(x) − Jp(x̃)�p for convergence analysis. This
idea goes back to Bregman [9].

Definition 2.4. Let X be a uniformly smooth Banach space and p > 1. The Bregman distance
∆p(x, ·) of the convex functional x �→ 1

p�x�p at x ∈ X is defined as

(2.6) ∆p(x, x̃) =
1

p
�x̃�p − 1

p
�x�p − �Jp(x), x̃− x�, x̃ ∈ X,

where Jp denotes the duality mapping of X with gauge function t �→ tp−1.
In the following theorem, we summarize some facts concerning the Bregman distance and its

relationship to the norm [1, 2, 10, 32].
Theorem 2.5. Let X be a uniformly smooth and uniformly convex Banach space. Then, for

all x, x̃ ∈ X, the following holds:
(a)

∆p(x, x̃) =
1

p
�x̃�p − 1

p
�x�p − �Jp(x), x̃�+ �x�p(2.7)

=
1

p
�x̃�p + 1

q
�x�p − �Jp(x), x̃�.

(b) ∆p(x, x̃) ≥ 0 and ∆p(x, x̃) = 0 ⇔ x = x̃.
(c) ∆p is continuous in both arguments.
(d) The following statements are equivalent

(i) limn→∞ �xn − x� = 0,
(ii) limn→∞ ∆p(xn, x) = 0,
(iii) limn→∞ �xn� = �x� and limn→∞�Jp(xn), x� = �Jp(x), x�.

(e) If X is p-convex, there exists a constant Cp > 0 such that

(2.8) ∆p(x, x̃) ≥
Cp

p
�x− x̃�p.

(f) If X∗ is q-smooth, there exists a constant Gq > 0 such that

(2.9) ∆q(x
∗, x̃∗) ≤ Gq

q
�x∗ − x̃∗�q,

for all x∗, x̃∗ ∈ X∗.
Remark 2.6. The Bregman distance ∆p is similar to a metric, but does not satisfy the triangle

inequality nor symmetry. In a Hilbert space, ∆2(x, x̃) =
1
2�x− x̃�2.

2.3. Modified Landweber iteration. In this subsection, we introduce an iterative method
for minimizing the functional

(2.10) Φ(x) =
1

p
�F (x)− y�p.

For regularization, Tikhonov proposed to minimize the functional

(2.11) Φ(x) = φ(F (x), y) + βR(x)

assuming that φ is a functional measuring the error between F (x) and y, β > 0 and R is a non-
negative functional, see for instance [23]. In this paper, we only consider the case with φ(F (x), y) =
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1
p�F (x) − y�p and R(x) = 1

pfp(x − x0) = 1
p�x − x0�p. The iterates are generated by iterative

calculating

xk+1 = arg minΦ(k)(xk),

Φ
(k)(xk) =

1
p�F (xk)− y�p + βk

µp�xk − x0�p, k = 0, 1, . . .

with the steepest descent flow given by

(2.12) ∂Φ(k)(xk) = DF (xk)
∗jp(F (xk)− y) +

βk

µ
Jp(xk − x0).

To be more precisely, we study the iterative method in Banach spaces,

(2.13)
Jp(xk+1) = Jp(xk)− µDF (xk)

∗jp(F (xk)− y)− βkJp(xk − x0),

xk+1 = J∗
q (Jp(xk+1)),

where Jp : X → X∗, J∗
q : X∗ → X and jp : Y → Y ∗ denote duality mappings in corresponding

spaces. When X and Y are Hilbert spaces and p = 2, this reduces to the modified Landweber
iteration in Hilbert spaces [26], which consists with the quadratic Tikhonov regularization in Hilbert
space. We specify µ and the βk below. Equation (2.13) defines a sequence (xk).

If F (x†) = y, the so-called tangential cone condition [19],

(2.14) �F (x)− F (x̃)−DF (x)(x− x̃)� ≤ cTC �F (x)− F (x̃)� ∀x, x̃ ∈ B∆

ρ (x†),

for some 0 < cTC < 1, is critical to obtain convergence of (xk) to x† [17, 18, 19]; B∆
ρ (x†) =

{x ∈ X | ∆p(x, x
†) ≤ ρ} ⊂ D(F ). A source condition controls the convergence rate. Here, we

study convergence and convergence rates in relation to a single, alternative condition replacing the
tangential cone and source conditions, namely, Hölder type stability,

∆p(x, x̃) ≤ Cp
F �F (x)− F (x̃)�p ∀x, x̃ ∈ B∆

ρ (x†).

This condition implies the tangential cone condition, and, hence, convergence is guaranteed; how-
ever, it also implies a certain convergence rate.

3. Convergence rate – Hilbert spaces. In this section, we assume that X and Y are Hilbert
spaces. Then the mappings Jp, jp and J∗

q are all identity mappings. Let Bρ(x0) denote a closed ball

centered at x0 with radius ρ, such that B = Bρ�(x0) ⊂ D(F ), ρ� > ρ. As before, let x† generate the
data y, that is

(3.1) F (x†) = y.

We assume that x† ∈ Bρ(x0).
Assumption 3.1.

(a) The Fréchet derivative, DF , of F is Lipschitz continuous locally on B.
(b) F is weakly sequentially closed, i.e.,

xn � x,
F (xn) → y

�

⇒
�

x ∈ D(F ),
F (x) = y.

(c) The inversion has the uniform Hölder type stability, i.e., there exists a constant, CF > 0, such
that

(3.2) �x− x̃� ≤ CF �F (x)− F (x̃)� 1+ε

2 ∀x, x̃ ∈ B

for some ε ∈ (0, 1]
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The modified Landweber iteration in Hilbert spaces [26] is given by

(3.3) xk+1 = xk − µDF (xk)
∗(F (xk)− y)− βk(xk − x0),

cf. (2.13). In the remainder of this section, we discuss the convergence criterion and convergence
rate for the modified Landweber iteration (3.3), with βk ∈ [0, 1

4 ] and (βk) converges to 0.
Theorem 3.2. Assume there exists a solution x† to (3.1) and that Assumption 3.1 holds. We

further assume that

(3.4) �DF (x)� ≤ L̂ ∀x ∈ B

and that

(3.5) �DF (x)−DF (x̃)� ≤ L�x− x̃� ∀x, x̃ ∈ B.

Let βk ∈ [0, 1
4 ], βk → 0 as k → ∞ and the positive stepsize, µ, be such that

(3.6)
µ ≤ 1

2L̂2
,

µ(1− µL̂2) < C
4

1+ε

F

Let

ρ = (LL̂εC2
F )

−2/ε.

If

(3.7) �x0 − x†�2 ≤ 2

3
ρ,

then the iterates satisfy

(3.8) �xk − x†�2 ≤ ρ, k = 1, 2, . . .

and xk → x† as k → ∞. Moreover, let

(3.9) c = µ(1− µL̂2)C
− 4

1+ε

F .

The convergence rate is given by

(3.10) �xk − x†�2 ≤ 2ρ

3
((1− c)k + (1 + µL̂2)

k−1�

j=0

(1− c)jβk−1−j),

if ε = 1. For ε ∈ (0, 1), if

(3.11) βk ≤ 3C̃

4(1 + µL̂2)ρ
(k + 2)−

1+ε

1−ε
−1,

with

(3.12) C̃ = max

�
2

3
ρ, 2

�
3 + ε

2c(1− ε)

� 1+ε

1−ε

�

the convergence rate is given by

(3.13) �xk − x†�2 ≤ C̃(k + 2)−
1+ε

1−ε , k = 0, 1, . . . .
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Proof. From (3.3), we obtain the sequence of residuals,

(3.14) xk+1 − x† = (1− βk)(xk − x†)− βk(x
† − x0)− µDF (xk)

∗(F (xk)− y).

We have

(3.15)

�xk+1 − x†�2 ≤ (1− βk)
2�xk − x†�2 + β2

k�x† − x0�2 + µ2L̂2�F (xk)− y�2

− 2βk(1− βk)�xk − x†, x† − x0�
− 2µ(1− βk)�DF (xk)(xk − x†), F (xk)− y�
+ 2µβk�DF (xk)(x

† − x0), F (xk)− y�.

The fourth term is estimated as

(3.16) −2βk(1− βk)�xk − x†, x† − x0� ≤ βk(1− βk)(�xk − x†�2 + �x† − x0�2).

Using the Hölder type stability (3.2), we estimate the fifth term as

(3.17)

−2µ(1− βk)�DF (xk)(xk − x†), F (xk)− y�
= −2µ(1− βk)(�F (xk)− y�2 − �F (xk)− y −DF (xk)(xk − x†), F (xk)− y�)
≤ −2µ(1− βk)�F (xk)− y�2 + µ(1− βk)L�xk − x†�2�F (xk)− y�
≤ −2µ(1− βk)�F (xk)− y�2 + µ(1− βk)LC

2
F �F (xk)− y�2+ε.

The sixth term satisfies the estimate

(3.18) 2µβk�DF (xk)(x
† − x0), F (xk)− y� ≤ µβk(L̂

2�x† − x0�2 + �F (xk)− y�2).

Using the notation

γk = �xk − x†�2,

combining (3.16), (3.17) and (3.18), we find that

(3.19)

γk+1 ≤ (1− βk)γk + (1 + µL̂2)βkγ0

+ (−µ+ 2µβk + µ2L̂2)�F (xk)− y�2

−µ(1− βk)�F (xk)− y�2 + µLC2
F (1− βk)�F (xk)− y�2+ε.

We claim that the sequence (γk) is bounded,

(3.20) γk+1 ≤ ρ, k = 0, 1, . . .

which we prove by induction. Assume that

(3.21) γk ≤ ρ

holds. With this assumption, the mean value inequality yielding

(3.22) �F (xk)− y� ≤ sup
t∈[0,1]

�DF ((1− t)xk + tx†)� �xk − x†�,

and (3.4), it follows that

�F (xk)− y�ε ≤ (L̂ρ1/2)ε = (LC2
F )

−1.
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Therefore,

−µ(1− βk)�F (xk)− y�2 + µLC2
F (1− βk)�F (xk)− y�2+ε ≤ 0.

Dropping this non-positive term in (3.19), we obtain

(3.23)
γk+1 ≤ (1− βk)γk + (1 + µL̂2)βkγ0

+ µ(2βk + µL̂2 − 1)�F (xk)− y�2.

Now, we choose a stepsize µ > 0 which satisfies (3.6). Noting that with βk ≤ 1
4 the factor 2βk +

µL̂2 − 1 ≤ 0, we drop the last term in (3.23) and, with (3.7) and (3.21), obtain that

(3.24)

γk+1 ≤ (1− βk)γk + (1 + µL̂2)βkγ0

≤ (1− βk)γk + 3
2βkγ0

≤ ρ,

whence the claim holds true.
To prove convergence, we reorder the terms in (3.23),

(3.25)
γk+1 ≤ γk − µ(1− µL̂2)�F (xk)− y�2 + (1 + µL̂2)βkγ0

− βkγk + 2µβk�F (xk)− y�2.

We note that with (3.22), −βkγk + 2µβk�F (xk)− y�2 ≤ βk(2µL̂
2 − 1)γk, whence this term by the

choice of µ is non-positive. Hence, we drop it in the above inequality. Then, by the Hölder type
stability (3.2), we have that

(3.26)

γk+1 ≤ γk − µ(1− µL̂2)�F (xk)− y�2 + (1 + µL̂2)βkγ0

≤ γk − µ(1− µL̂2)C
− 4

1+ε

F
� �� �

=c

γ
2

1+ε

k + (1 + µL̂2)βkγ0.

By letting k go to infinity on both sides of the above inequality, we conclude that

γk → 0 as k → ∞.

In the rest of the proof, we obtain the convergence rate. Note that, with the choice of µ (3.6),

(3.27) 0 < c < 1.

With ε = 1, We have

(3.28)
γk+1 ≤ ((1− c)k+1 + (1 + µL̂2)

�k
j=0(1− c)jβk−j)γ0

≤ 2ρ
3 ((1− c)k+1 + (1 + µL̂2)

�k
j=0(1− c)jβk−j),

which expresses the convergence rate (3.10). We note that

k+1�

j=0

(1− c)jβk+1−j − (1− c)
k�

j=0

(1− c)jβk−j = βk+1.

Using (3.27), this implies that

lim
k→∞

k�

j=0

(1− c)jβk−j = 0.
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For the convergence rate with ε ∈ (0, 1), we claim that

(3.29) γk+1 ≤ C̃(k + 2)−
1+ε

1−ε , k = 0, 1, . . .

which we prove by induction. Assume that

(3.30) γk ≤ C̃(k + 1)−
1+ε

1−ε

holds. If

γk ≤ C̃

2
(k + 2)−

1+ε

1−ε ,

by (3.26) and (3.11),

(3.31) γk+1 ≤ γk(1− cγ
1−ε

1+ε

k ) + (1 + µL̂2)βkγ0 ≤ C̃(k + 2)−
1+ε

1−ε ;

otherwise

(3.32)
C̃

2
(k + 2)−

1+ε

1−ε < γk ≤ C̃(k + 1)−
1+ε

1−ε .

Then, we obtain that

(3.33)

γk+1 ≤ γk(1− cγ
1−ε

1+ε

k ) + (1 + µL̂2)βkγ0

≤ C̃(k + 1)−
1+ε

1−ε

�

1− c
�

C̃
2

� 1−ε

1+ε

(k + 2)−1

�

+ C̃
2 (k + 2)−

1+ε

1−ε
−1.

Note that (3.12) implies

(3.34) c

�
C̃

2

� 1−ε

1+ε

≥ (k + 2)

�

1−
�

k + 1

k + 2

� 1+ε

1−ε

�

+
1

2

�
k + 1

k + 2

� 1+ε

1−ε

, k = 0, 1, . . . .

Plugging (3.34) into (3.33), we get

(3.35) γk+1 ≤ C̃(k + 2)−
1+ε

1−ε ,

whence the claim holds true.
The convergence is sublinear if 0 < ε < 1 and speed up with ε → 1 refers to the fact that it

switches to a linear convergence.
Remark 3.3. The convergence radius condition (3.7) can be replaced by the condition on the

data,

(3.36) �F (x0)− y� 1+ε

2 ≤ 2√
6

�
1

2LL̂εC2+ε
F

�1/ε

.

4. Convergence rate – Banach spaces. In this section, we discuss the convergence and
convergence rate of the modified Landweber iteration (2.13) in Banach spaces. Let Bρ(x0) denote a
closed ball centered at x0 with radius ρ, and B = B∆

ρ (x†) denote a ball with respect to the Bregman

distance centered at some solution x†. We assume that B∆
ρ (x†) ⊂ D(F ).

Assumption 4.1.
(a) The Fréchet derative, DF , of F is locally Lipschitz continuous.
(b) F is weakly sequentially closed, i.e.,

xn � x,
F (xn) → y

�

⇒
�

x ∈ D(F ),
F (x) = y.
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(c) The inversion has the uniform Hölder type stability, i.e., there exists a constant CF > 0 such
that

(4.1) ∆p(x, x̃) ≤ Cp
F �F (x)− F (x̃)� 1+ε

2 p ∀x, x̃ ∈ B.

Remark 4.2. Note that the nonemptyness of the interior (with respect to norm) of D(F ) is
sufficient for B ⊂ D(F ).

Remark 4.3. With the assumption that X is p-convex, (4.1) with (2.8) implies the regular
notion of Hölder stability in norm.

Remark 4.4. Under the Lipschitz type stability assumption, i.e., (4.1) with ε = 1, we have that

�Jp(x†), x− x†� ≤ �x†�p−1�x− x†�
≤ C∆p(x, x

†)1/p

≤ CCF �F (x)− F (x†)�, ∀x ∈ B

for some constant C > 0. It has been show in [27] that this implies the source-wise condition

Jp(x
†) = DF (x†)∗ω

with some ω satisfying �ω� ≤ 1.
Theorem 4.5. Assume there exists a solution x† to (3.1) and that Assumption 4.1 holds. We

further assume that

(4.2) �DF (x)� ≤ L̂ ∀x ∈ B

and that

(4.3) �DF (x)−DF (x̃)� ≤ L�x− x̃� ∀x, x̃ ∈ B.

Let the positive stepsize, µ, be such that

(4.4)

µq−1 ≤ q

2qGqL̂q
,

µ

�

1− 2qGqL̂
q

q
µq−1

�

< 2C
2p
1+ε

F

and let (βk) satisfy

(4.5)
p

Cp
(1 + 2−1/p)p−1

�

(1 + 2−1/p)
2q−1Gq

q

k�

m=0

βq
m +

k�

m=0

βm

�

<
1

2

Let

ρ = L̂−p(LC2
F )

− p
ε

�
Cp

p

�1+ 2
ε

.

If

(4.6) ∆p(x0, x
†) ≤ ρ

2
,

then the iterates satisfy

(4.7) ∆p(xk, x
†) ≤ ρ, k = 1, 2, . . .
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and ∆p(xk, x
†) → 0 as k → ∞. Moreover, let

(4.8) c = C
− 2p

1+ε

F

�
1

2
µ− 2q−1Gq

q
µqL̂q

�

and

(4.9) αk =
p

Cp
(1 + 2−1/p)p−1

�

(1 + 2−1/p)
2q−1Gq

q
β
q
k + βk

�

.

The convergence rate is given by

(4.10) ∆p(xk, x
†) ≤ ρ




1

2
(1− c)k +

k−1�

j=0

(1− c)jαk−1−j



 ,

if ε = 1. For ε ∈ (0, 1), if

(4.11) αk ≤ C̃

2ρ
(k + 2)−

1+ε

1−ε
−1

with

(4.12) C̃ = max

�
ρ

2
, 2

�
3 + ε

2c(1− ε)

� 1+ε

1−ε

�

,

the convergence rate is given by

(4.13) ∆p(xk, x
†) ≤ C̃(k + 2)−

1+ε

1−ε , k = 0, 1, . . . .

Proof. Using (2.7) and (2.3), we obtain, for the sequence of residues,

(4.14)
∆p(xk+1, x

†) = ∆p(xk, x
†) +

1

q
(�xk+1�p − �xk�p)− �Jp(xk+1)− Jp(xk), x

†�

= ∆p(xk, x
†) +

1

q
(�Jp(xk+1)�q − �Jp(xk)�q)− �Jp(xk+1)− Jp(xk), x

†�.

Applying (2.7) and (f) of Theorem 2.5 with x∗ = Jp(xk+1) and x̃∗ = Jp(xk), we get

(4.15)
1

q
(�Jp(xk+1)�q − �Jp(xk)�q) ≤

Gq

q
�Jp(xk+1)− Jp(xk)�q + �Jp(xk+1)− Jp(xk), xk�.

Substituting (2.13) and using this inequality in (4.14) yields

(4.16) ∆p(xk+1, x
†)−∆p(xk, x

†) ≤ Gq

q
�µDF (xk)

∗jp(F (xk)− y) + βkJp(xk − x0)�q

− �µDF (xk)
∗jp(F (xk)− y), xk − x†� − βk�Jp(xk − x0), xk − x†�.

We estimate each term in (4.16) separately. By Jensen’s inequality, the first term satisfies the
estimate

(4.17)

Gq

q
�µDF (xk)

∗jp(F (xk)− y)− βkJp(xk − x0)�q

≤ 2q−1Gq

q
(�µDF (xk)

∗jp(F (xk)− y)�q + �βkJp(xk − x0)�q)

≤ 2q−1Gq

q
(µqL̂q�(F (xk)− y)�p + β

q
k�xk − x0�p).
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For the second term, using (2.8) and stability (d) of Assumption 4.1, we have

(4.18)

−�µDF (xk)
∗jp(F (xk)− y), xk − x†�

= −µ�jp(F (xk)− y), DF (xk)(xk − x†)�
= −µ(�jp(F (xk)− y), F (xk)− y�

−�jp(F (xk)− y), F (xk)− y −DF (xk)(xk − x†)�)
= −µ�F (xk)− y�p + µ�jp(F (xk)− y), F (xk)− y −DF (xk)(xk − x†)�

≤ −µ�F (xk)− y�p + µ

2
L�(F (xk)− y)�p−1�xk − x†�2

≤ −µ�F (xk)− y�p + µ

2
LC2

F

�
p

Cp

�2/p

�F (xk)− y�p+ε.

For the third term, by the definition of duality mapping,

(4.19) |− βk�Jp(xk − x0), xk − x†�| ≤ βk�xk − x0�p−1�xk − x†�.

Combining these estimates and using the notation

γk = ∆p(xk, x
†),

we obtain

(4.20)

γk+1 − γk ≤
�
2q−1Gq

q
µqL̂q − 1

2
µ

�

�F (xk)− y�p

− 1

2
µ�F (xk)− y�p + µ

2
LC2

F

�
p

Cp

�2/p

�F (xk)− y�p+ε

+
2q−1Gq

q
β
q
k�xk − x0�p + βk�xk − x0�p−1�xk − x†�.

We claim that

(4.21) γk+1 = ∆p(xk+1, x
†) ≤ ρ,

which we prove by induction. Assume that

(4.22) ∆p(xm, x†) ≤ ρ

holds for m = 0, 1, . . . , k. With the mean value inequality, it follows that

(4.23) �F (xm)− y�ε ≤ L̂ε

�
p

Cp
ρ

� ε

p

=
1

LC2
F (p/Cp)2/p

, m = 0, 1, 2, . . . , k.

Therefore,

(4.24) − 1
2µ�F (xm)− y�p + 1

2µLC
2
F (p/Cp)

2/p�F (xm)− y�p+ε ≤ 0, m = 0, 1, 2, . . . , k.

Dropping this non-positive term, we obtain

(4.25)
γk+1 − γk ≤

�
2q−1Gq

q
µqL̂q − 1

2
µ

�

�F (xk)− y�p

+
2q−1Gq

q
β
q
k�xk − x0�p + βk�xk − x0�p−1�xk − x†�.
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Then, by (4.4), we drop the non-positive term (
2q−1Gq

q µqL̂q − 1
2µ)�F (xk)− y�p and, with the aid of

(2.8), (4.5), (4.6) and (4.22), obtain that

(4.26)

γk+1 − γ0 ≤ 2q−1Gq

q

k�

m=0

βq
m�xm − x0�p +

k�

m=0

βm�xm − x0�p−1�xm − x†�

≤ ρ
p

Cp
(1 + 2−1/p)p−1

�

(1 + 2−1/p)
2q−1Gq

q

k�

m=0

βq
m +

k�

m=0

βm

�

≤ ρ

2
.

Hence

(4.27) ∆p(xk+1, x
†) ≤ ρ,

which establishes the claim.
Now, we return to (4.25) and use (4.22) to obtain that

(4.28)
γk+1 ≤ γk +

�
2q−1Gq

q
µqL̂q − 1

2
µ

�

�F (xk)− y�p

+ ρ
p

Cp
(1 + 2−1/p)p−1

�

(1 + 2−1/p)
2q−1Gq

q
β
q
k + βk

�

.

Then, by the Hölder type stability (4.1), we have that

(4.29) γk+1 ≤ γk − cγ
2

1+ε

k + ραk

Note that, by the conditions on µ and βk, we have 0 < c < 1 and limk→∞ αk = 0. By letting k
go to infinity on both sides of the above inequality, we conclude that

γk → 0 as k → ∞.

The convergence rate (4.6) and (4.13) could be deduced from (4.29) by using the same argument
in the proof of the Hilbert space case.

Remark 4.6. The convergence radius condition (4.6) can be replaced by the condition on data

(4.30) �F (x0)− y� 1+ε

2 p ≤ ρC−p
F .

Remark 4.7. Concerning the conditions (4.4) and (4.5), for given p, q, Cp, Gq, L̂, CF and ε = 1,
we may choose

(4.31) µ = min(Cp
F ,

�

q

2q+1GqL̂q

� 1
q−1

)

and

(4.32) βk = (Cζ(1 + s))−1k−(1+s),

for any s > 0, where

(4.33) C = 2p
p

Cp

�
2q−1Gq

q
+ 1

�
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and ζ(s) is the Riemann zeta function.
Remark 4.8. In Hilbert spaces, after rescaling the operator F such that max(L, L̂) < 1

4 ,
Scherzer [26] obtain the convergence with βk < 1

2 and
�

βk < C for some constant C. In Banach

space, Hein & Kazimierski [17] suggest a posteriori choice βk ∼
�

Rk

q2q−1Gq�Jp(xk)�q+C

�p−1

, where

one chooses R0 ≥ ∆p(x0, x
†) and Rk is given by

Rk+1 = (1− βk

q
)Rk + (2q−1Gq�Jp(xk)�q + C)βq

k.

5. Example: Electrical Impedance Tomography. In this section, we discuss an example
of the electrical impedance tomography (EIT) problem. The current formulation of this problem is
essentially due to Calderón [11]. For the uniqueness results, we refer to Kohn & Vogelius [20, 21],
Sylvester & Uhlmann [30] and Astala & Päivärinta [7] and a recent review [31] by Uhlmann. For
the stability issue, we refer to Alessandrini [3, 4, 5]. Especially, Alessandrini & Vesella [6] and
Beretta & Francini [8] show that one has a Lipschitz type stability estimate if the conductivity is
piecewise constant with jumps on a finite number of subdomains for real and complex conductivities,
respectively.

5.1. Forward operator. Let Ω ⊂ R
n be a bounded domain with smooth boundary. The

electrical conductivity of Ω is represented by a bounded and positive function γ(x). Given a potential
f ∈ H1/2(∂Ω) on the boundary, the induced potential u ∈ H1(Ω) solves the Dirichlet problem

�
∇ · (γ∇u) = 0, in Ω

u = f, on ∂Ω.

The Dirichlet-to-Neumann map, or voltage-to-current map, is given by

Λγ(f) =

�

γ
∂u

∂ν

��
�
�
�
∂Ω

,

where ν denotes the unit outer normal vector to ∂Ω.
The forward operator F is defined by

(5.1)
F : X ⊂ L∞(Ω) → L(H1/2(∂Ω), H−1/2(∂Ω)),

γ �→ Λγ .

The Fréchet derivative DF of F at γ = γ0 is given by

(5.2)
DF (γ0) : X ⊂ L∞(Ω) → L(H1/2(∂Ω), H−1/2(∂Ω))

δγ �→ DF (γ0)(δγ),

and DF (γ0)(δγ) is given by

(5.3) �DF (γ0)(δγ) f, g� =
�

Ω

δγ∇u ·∇vdx, f, g ∈ H1/2(∂Ω)

where
�

∇ · (γ0∇u) = ∇ · (γ0∇v) = 0, in Ω,
u = f, v = g on ∂Ω.

Note that L∞(Ω) is neither smooth nor convex. Furthermore, to get the Hölder type stability, the
preimage space need to be narrowed. We will specify the proper space X in subsection 5.3.

Remark 5.1. For n = 2, Astala and Päivärinta proved that Λγ can uniquely determine γ

under the assumption γ ∈ L∞(Ω). For n ≥ 3, Päivärinta, Panchenko and Uhlmann [25] proved the
uniqueness under the assumption γ ∈ W 3/2,∞(Ω). It is a open problem to understand whether, in
dimension n ≥ 3, uniqueness holds in general for γ ∈ L∞(Ω).
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5.2. Lipschitz stability. Roughly speaking, to achieve the Lipschitz type stability, we need
assume that the domain Ω could be divided into known subdomains {Dk} of C1,α class and the
conductivity γ is in a finite dimensional space. The precise mathematical description is the following.

For every x ∈ R
n, let us set x = (x�, xn) where x� ∈ R

n−1 for n ≥ 2. With BR(x), B
�
R(x

�)
and QR(x) we denote respectively the open ball in R

n centered at x of radius R, the ball in R
n−1

centered at x� of radius R and the cylinder B�
R(x

�)× (xn−R, xn+R). For simplicity, BR(0), B
�
R(0)

and QR(0) are denoted by BR, B
�
R and QR.

Definition 5.2. Let Ω be a bounded domain in R
n. We say that ∂Ω is of Lipschitz class with

constants r0, L > 0 if, for any P ∈ ∂Ω, there exists a rigid transformation of coordinates such that
P = 0 and

Ω ∩Qr0 = {(x�, xn) ∈ Qr0 | xn > φ(x�)}

where φ is a Lipschitz continuous function on B�
r0 with φ(0) = 0 and

�φ�C0,1(B�

r0
) ≤ Lr0.

Definition 5.3. Let Ω be a bounded domain in R
n. Given α ∈ (0, 1), we say that ∂Ω is of C1,α

class with constants r0, L > 0 if, for any P ∈ ∂Ω, there exists a rigid transformation of coordinates
such that P = 0 and

Ω ∩Qr0 = {(x�, xn) ∈ Qr0 | xn > φ(x�)}

where φ is a C1,α function on B�
r0 with φ(0) = |∇φ(0)| = 0 and

�φ�C1,α(B�

r0
) ≤ Lr0.

Assumption 5.4. Ω ⊂ R
n is a bounded domain satisfying

|Ω| ≤ A|Br0 |.

Here and in the sequel |Ω| denotes the Lebsgue measure of Ω. We assume that ∂Ω is of Lipscitz
class with constants r0 and L.

Assumption 5.5. The conductivity γ is a piecewise constant of the form

γ(x) =

N�

j=1

γjχDj (x),

satisfying the ellipticity condition

K−1 ≤ γ ≤ K

for some constant K, where γj , j = 1, . . . N are unknown real numbers and Dj are known open sets
in R

n which satisfy the following assumption.
Assumption 5.6. Dj , j = 1, . . . , N are connected and pairwise non-overlapping open sets such

that ∪N
j=1Dj = Ω and ∂Dj are of C1,α class with constants r0 and L for all j = 1, . . . , N. We also

assume that there exists one region, say D1 such that ∂D1∩∂Ω contains an open portion Σ1 of C1,α

class with constants r0 and L. For every j ∈ {2, . . . , N} there exist j1, . . . , jM ∈ {1, . . . , N} such
that

Dj1 = D1, DjM = Dj

and, for every k = 1, . . . ,M ,

∂Djk−1
∩ ∂Djk
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contains a open portion Σk of C1,α class with constants r0 and L.
Alessndrini and Vessella [6] show the following Lipschitz stability estimate.
Theorem 5.7 (Lipschitz type stability). Let Ω satisfy Assumption 5.4 and γ(k), k = 1, 2 be

two real piecewise constant functions satisfy Assumption 5.5 and Dj , j = 1, . . . , N satisfy Assump-
tion 5.6. Then, there exists a constant C = C(n, r0, L,A, ,K,N) such that

(5.4) �γ(1) − γ(2)�L∞(Ω) ≤ C�Λγ(1) − Λγ(2)�L(H1/2(∂Ω),H−1/2(∂Ω)).

5.3. Convergence. Now, we specify our preimage space as

(5.5) X = span{χD1 , . . . ,χDN
}

with Lp-norm, p > 1. With aid of this particular basis of X, we could show that F and DF are
Lipschitz continuous. Moreover, assume that γ1, γ2 satisfy Assumption 5.5 and Ω satisfy Assump-
tion 5.4, we have the following estimates.

(5.6)

�F (γ1)− F (γ2)�L(H1/2(Ω),H−1/2(Ω)) ≤ C�γ1 − γ2�Lp(Ω),

�DF�L(X,L(H1/2(Ω),H−1/2(Ω))) ≤ L̂,
�DF (γ1)−DF (γ2)�L(H1/2(Ω),H−1/2(Ω)) ≤ L�γ1 − γ2�Lp(Ω),

where C, L̂ and L depend on Ω, N and ellipticity constant K. Furthermore, since X is finite dimen-
sional, the weak topology is equivalent to the strong topology. Hence, F is a weakly sequentially
closed operator.

Let Ω satisfy Assumtion 5.4, preimage space X be defined by (5.5) and F be defined by (5.1).
Assume that y = F (γ†) for some γ† ∈ X. Then the Assumption 4.1 and (4.3), (4.2) of Theorem 4.5
are satisfied. Hence the Landweber iteration (2.13) converges with convergence radius given by (4.6)
and convergence rate given by (4.10).

6. Discussion. We discuss a modified Landweber iteration method for solving nonlinear op-
erator equations in both Hilbert and Banach spaces. Traditionally, the gradient-type methods are
often regarded as too slow for practical applications. Provided that the nonlinearity of the forward
operator obeys a Hölder type stability, we could prove the convergence and give a sublinear conver-
gence rate. With a Lipschitz type stability, the convergence rate switches to a linear one. Based
on these convergence rates, we anticipate that this modified Landweber iteration is a valuable tool
in solving inverse problems in both Hilbert and Banach spaces. This also motivates the study of
Hölder/Lipschitz type stability in inverse problems to provide explicit reconstructions.
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