
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2011) pp. 159-174.

EFFICIENT PARALLEL ALGORITHMS FOR HIERARCHICALLY
SEMISEPARABLE MATRICES

SHEN WANG∗, XIAOYE LI† , JIANLIN XIA‡ , YINGCHONG SITU§ , AND MAARTEN V. DE HOOP¶

Abstract. Recently, hierarchically semiseparable (HSS) matrices have been used in the development of fast
direct sparse solvers. Key applications of HSS algorithms, coupled with multifrontal solvers, appear in solving certain
large-scale computational inverse problems. Here, we develop massively parallel HSS algorithms appearing in these
solution methods, namely, parallel HSS construction using the rank revealing QR (RRQR) method, parallel HSS ULV

factorization, and parallel HSS solution. HSS representations have a nice binary tree structure called HSS tree. HSS
operations can be conducted following the traversal of this tree, and communications are generally limited to between
siblings and between parents and children. Thus, HSS algorithms are often highly scalable. BLACS [1] and ScaLapack

[3] are used as our porTable libraries. We construct contexts (sub-communicators) on each node of the HSS tree and
exploit the governing 2D-block-cyclic data distribution scheme widely used in ScaLapack. Computational examples
confirm the weak scaling, strong scaling and accuracy of our implementation.

Key words. parallel algorithm, HSS matrix, low rank, compression, direct solver

AMS subject classifications. 15A23, 65F05, 65F30, 65F50

1. Introduction. In recent years, rank structured matrices have attracted much attention and
have been widely used in developing fast solutions of partial differential equations, integral equations,
and companion eigenvalue problems. Several useful rank structured matrix representations have
been developed, including H-matrices [11, 16, 12], H2-matrices [5, 6, 15], quasiseparable matrices
[4, 10], and semiseparable matrices [7, 14].

Here, we focus on the hierarchically semiseparable (HSS) matrices, in the context of fast sparse
direct solvers. Key applications of HSS algorithms, coupled with massively parallel multifrontal
solvers, appear in solving certain large-scale computational inverse problems. We mention the multi-
frequency formulation of (seismic) inverse scattering and tomography. Here, the Helmholtz equation
has to be solved for many right-hand sides, on a large domain for a selected set of frequencies. The
solutions are combined to compute one step in, for example, a nonlinear Landweber iteration.
The accuracy of computation can be limited, namely, in concert with the accuracy of the data.
The frequency formulation is attractive, in as much as that frequency essentially appears in the
convergence criterion for the iteration; hence, one can exploit a relationship between data and
components (scale of variation) of the coefficients that can be reconstructed.

HSS representations have a tree structure, called the HSS tree, and HSS operations can be
generally conducted following the traversal of this tree. The traversal can be subjected to paral-
lelization of the corresponding algorithms. Existing studies of HSS structures mostly focus on the
mathematical aspects of HSS methods; here, we present new efficient, parallel HSS algorithms and
analyze computational aspects in particular scalability.

We concentrate on three, connected, algorithms: The parallel construction of an HSS form
from a general dense matrix, the parallel ULV factorization of such a matrix, and the parallel
solution to multiple right-hand sides. Since the HSS algorithms mostly consist of dense matrix
kernels, we choose BLACS [1] and ScaLapack [3] as our porTable libraries. We construct contexts
(sub-communicators) on each node of the HSS tree. We also exploit the governing 2D-block-cyclic
data distribution scheme widely used in ScaLapack to achieve high performance. In [19] it is proven

∗Center for Computational and Applied Mathematics, Purdue University, IN 47907 (wang273@math.purdue.edu).
†Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (xsli@lbl.gov). The research of this author was

supported in part by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S.
Department of Energy under Contract No. D-AC02-05CH11231.

‡Center for Computational and Applied Mathematics, Purdue University, IN 47907 (xiaj@math.purdue.edu). The
research of this author was supported in part by NSF grant CHE-0957024

§Department of Computer Science, Purdue University, IN 47907 (ysitu@cs.purdue.edu).
¶Center for Computational and Applied Mathematics, Purdue University, IN 47907 (mdehoop@math.purdue.edu).

159

160 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

that the complexity of HSS construction, factorization and solution are O(rn2), O(r2n) and O(rn),
respectively, where r is the maximum numerical rank and n is the size of the dense matrix.

The outline of the paper is as follows. In Section 2, we present an overview of HSS structures.
The parallelization strategy and the performance model are introduced in Section 3, where we also
briefly discuss the portability of BLACS and ScaLapack which enables us to achieve high performance.
In Section 4, we present our parallel HSS construction framework which consists of three phases:
parallel rank revealing QR (RRQR) factorization using the modified Gram-Schmidt (MGS) method,
the parallel row construction and the parallel column construction. The parallel HSS factorization
is presented in Section 5, in which we discuss a generalization involving the use of two children’s
contexts c1, c2 and the parent context i. The communication patterns are composed of intra-
context and inter-context ones. In Section 6, we describe the parallel solution strategy. We present
computational experiments in Section 7 and confirm the weak scaling of large Helmholtz problems,
the accuracy and the strong scaling of a large dense Toeplitz matrix. The results show that our
code achieve high performance when the matrix is scaled to up to 6.4 billions.

2. Overview of HSS structures. We follow the work of [19, 17] and briefly summarize the
key concepts in HSS structures. Let A be a general n×n real or complex matrix and I = {1, 2, ..., n}
be the set of all indices. Suppose ti ⊂ I and tj ⊂ I are subsets of I, we denote the submatrix of
A with row index subset ti and column index subset tj as A|ti×tj . Suppose T is a full binary tree
with k leaf nodes, then the number of nodes on T is 2k − 1. We say that T is in its postordering
form if for each non-leaf node i among {1, 2, ..., 2k − 1}, its left child c1 and right child c2 satisfy
c1 < c2 < i. Moreover, the node numbers within each subtree are consecutive. Then we have the
following definition [19]:

Definition 2.1. We define T as an HSS tree and A is represented in HSS form if the following
conditions are satisfied:

• T is in its postordering form.
• Suppose a non-leaf node i represents the submatrix A|ti×ti , and child c1 represents A|tc1×tc1

,
child c2 represents A|tc2×tc2

, then tc1 ∩ tc2 = ∅, tc1 ∪ tc2 = ti.
• The root node 2k − 1 represents the entire matrix A, t2k−1 = {1, 2, ..., n}.
• There exist matrices Di, Ui, Ri, Bi,Wi, Vi (called HSS generators) associated with each node

i on T , such that:

Di = A|ti×ti ≈
�

Dc1 Uc1Bc1V
H
c2

Uc2Bc2V
H
c1 Dc2

�
, D2k−1 = A,(2.1)

Ui =

�
Uc1Rc1

Uc2Rc2

�
, Vi =

�
Vc1Wc1

Vc2Wc2

�
,

where upper script H denotes the Hermitian transpose.
For example, Figure 1(a) illustrates a block 2 × 2 HSS representation of A where the number

of leaf nodes in the HSS tree T is k = 2:

A ≈
�

D1 U1B1V
H
2

U2B2V
H
1 D2

�
.

Figure 1(b) illustrates a block 4× 4 HSS representation of A where the number of leaf nodes in the
HSS tree T is k = 4:

A ≈




�
D1 U1B1V

H
2

U2B2V
H
1 D2

� �
U1R1

U2R2

�
B3

�
WH

4 V H
4 WH

5 V H
5

�
�

U4R4

U5R5

�
B6

�
WH

1 V H
1 WH

2 V H
2

� �
D4 U4B4V

H
5

U5B5V
H
4 D5

�


 .

For some applications like the multifrontal method [9, 13, 18], we are interested in obtaining
the Schur complement of A. For instance, the following block 3× 3 HSS representation of A where

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 161

(a) (b)

Fig. 1. (a). a block 2× 2 HSS representation of A; (b). a block 4× 4 HSS representation of A.

(a) (b)

Fig. 2. (a). a block 8× 8 representation of a dense matrix A; (b). the illustration of the HSS tree T associated
with A for a block 8× 8 case.

the number of leaf nodes in the HSS tree T is k = 3 treats D4 as the Schur complement of A:

A ≈




�
D1 U1B1V

H
2

U2B2V
H
1 D2

� �
U1R1

U2R2

�
B3V

H
4

U4B4

�
WH

1 V H
1 WH

2 V H
2

�
D4


 .

3. Parallelization strategy. Let n be the matrix dimension, m is the row block size corre-
sponding to the leaf nodes of the HSS tree. We choose m first, which is related to the HSS rank,
then choose the number of processes P ≈ n/m. In this paper, we assume that P is a power of two,
and the logorithm is in base 2. The parallel operations can be organized effectively using the HSS
tree T , via either upward sweeping or downward sweeping. We refer to the bottom level of the tree
as level 1, and the next level up as level 2, and so on. We use an example in Fig. 2 to illustrate
the organization of the algorithms. The matrix is partitioned into eight block rows (Fig. 2(a)), with
its HSS tree T displayed in Fig. 2(b). We use eight processes {0, 1, 2, 3, 4, 5, 6, 7} for the parallel
operations. Each process Pi works on the leaf node i at level 1 of T . At the second level, each
group of two processes cooperate at a level-2 node. At the third level, each group of four processes
cooperate at the level-3 nodes, and so on.

3.1. Using ScaLAPACK and BLACS . Since the HSS algorithms mostly consist of dense matrix
kernels, we chose to use as much as as possible the well established routines in the ScaLAPACK

library [3] and its communication substrate, the BLACS library [1]. The governing distribution
scheme is 2D block cyclic matrix layout, in which the user specifies the block size of a submatrix
and the shape of the 2D process grid. The blocks of the matrices are then cyclically mapped to the
process grid in both row and column dimensions. Furthermore, the processes can be divided into
subgroups to work on independent parts of the calculations. Each subgroup is called a context in
the BLACS term, similar to the sub-communicator concept in the MPI standard. All our algorithms
start with a global context created from the entire communicator, i.e., MPI COMM WORLD. When we

162 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

move up the HSS tree, we define the other contexts encompassing process subgroups. For example,
in the example shown in Fig. 2, the eight processes can be arranged as eight contexts for the leaf
nodes in T . Four contexts are defined at the second level: {0, 1} ↔ node 3, {2, 3} ↔ node 6, {4,
5} ↔ node 10, and {6, 7} ↔ node 13. Two contexts are defined at the third level: {0, 1 ; 2, 3} ↔
node 7, and {4, 5 ; 6, 7} ↔ node 14. Finally, one context is defined for node 15: [0,1,4,5 ; 2,3,6,7].
Here the notation {0, 1 ; 2, 3} means processes 1 and 2 are stacked atop processes 2 and 3. We
always arrange the process grid as square as possible, i.e., P ≈

√
P ×

√
P , and we can conveniently

use
√
P to refer to the number of processes in the row or column dimension.

When the algorithms move up the HSS tree, we need to perform resistribution to merge the data
distributed in the two children’s process contexts to the parent’s context. Since the two children’s
contexts have the same size and shape and the parent context doubles each child’s context, the parent
context can be arranged to combine the two children’s contexts either side by side or one atop the
other. Thus, the processes grid is mantained as square as possible, and the redistribution pattern is
simple, which only involves pairwise exchange. That is, a pair of processes at the same coordinate in
the two children contexts exchange data. For example, the redistribution from {0, 1; 2, 3}+{4, 5; 6, 7}
to {0, 1, 4, 5; 2, 3, 6, 7} is achieved by the following pairwise exchanges: 0 ↔ 4, 1 ↔ 5, 2 ↔ 6 and
3 ↔ 7.

3.2. Parallel performance model. We will use the following notation in the analysis of our
parallel algorithms. r is the HSS rank, i.e., the maximum off-diagonal rank after compression. The
communication cost is modeled as follows.

• We use the pair [#messages, #words] to count the number of messages and the number
of words transferred in a parallel algorithm. The parallel runtime can be modeled as the
following (ignoring the overlap of communication with computation):

(3.1) T ime = #flops · γ + #messages · α+ #words · β ,

where, γ is the time taken for each flop, α is the time taken for each message (latency), and
β is the time taken for each word transferred (reciprocal bandwidth).

• The cost of broadcasting a message of W words among P processes is modeled as
[logP, W logP], assuming a tree-based or hypercube-based broadcast algorithm is used.
The same cost is incurred for a reduction operation of W words.

4. Parallel HSS construction. In this section we discuss how to construct the HSS repre-
sentation of A introduced in [18, 19] from the bottom up in parallel. The construction is composed
of the row compression step (Section 4.2) followed by the column compression step (Section 4.3).
The key kernel is the rank revealing QR algorithm which we discuss first in Section 4.1.

4.1. Parallel rank revealing QR (RRQR). The key step to obtain the HSS representation
of A is to compress the off-diagonal block of Di, denoted as Fi = A|ti×(I\ti). Truncated SVD is
one option to realize such a compression. That is, we drop those singular values below a prescribed
threshold after the full SVD factorization of Fi is computed. This is very expensive. An efficient
alternative is to use rank-revealing QR (RRQR), where QR factorization with column pivoting is
performed. We now describe our parallel RRQR algorithm.

Consider the ith off-diagonal block Fi = (f1, f2, ..., fJ) associated with node i in the HSS tree T .
Let ri be the numerical rank determined by the tolerance. Assume Fi is of size M ×N , and is dis-
tributed on the process context P ≈

√
P ×

√
P . That is, the local dimension of Fi is

M√
P
× N√

P
. The

following algorithm, based on Modified Gram-Schmidt [8], computes RRQR in parallel: Fi ≈ �Q �R
where �Q = (q1, q2, ..., qri),

�RH = (rH1 , rH2 , ..., rHri).

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 163

for j = 1:ri
1. In parallel, search for the column fj with the maximum norm;

2. normalize fj to qj: qj = fj/�fj�, rjj = �fj�;
3. broadcast qj within the context associated with the node i;
4. PBLAS2: rj = qHj Fi;

5. rank one update: Fi = Fi − qjrj.
end

Communications occur in Steps 1 and 3. The other steps involve local computations only. In
Step 1, the processes in each column group perform N√

P
reductions to compute the column norms,

with communication cost = [log
√
P , log

√
P] · N√

P
. This is followed by another reduction among

the processes in the row group, with communication cost = [log
√
P , log

√
P].

In Step 3, the processes among each row group broadcast qj of size M√
P
, costing

[log
√
P , M√

P
log

√
P].

Adding the leading terms, we obtain the following communication cost:

(4.1) RRQRcomm =

�
N√
P

log
√
P ,

M +N√
P

log
√
P

�
.

To achieve higher performance, a block RRQR strategy can be adopted similarly, like Lapack

[2] subroutine xGEQP3.

4.2. Parallel row compression. We still use the 8 × 8 block matrix in Fig. 2 to illustrate
the algorithm step by step.

Row compression—Step 1. In the first step, all the leaf nodes 1, 2, 4, 5, 8, 9, 11, 12 have
their own process contexts: {0}, {1}, {2}, {3}, {4}, {5}, {6} and {7}. Each process owns part of the
global matrix A, given by Di = A|ti×ti , Fi = A|ti×(I\ti). Fi s are indicated by the shaded areas in
Figure 2(a). We perform RRQR (Section 4.1) on Fi:

(4.2) Fi ≈ Ui
�Fi ,

where �Fi can also be denoted as A|t̂i×(I\ti)
and t̂i is the update of ti due to the rank contraction.

This first step is done locally within each process. One of the HSS generators Ui is obtained here.
Moving to the second level of T , the compressions must be carried out among a pair of processes

in each context. To prepare for this, we need a redistribution phase prior to the compressions. In
redistribution, we perform pairwise exchange of data: {0} ↔ {1}, {2} ↔ {3}, {4} ↔ {5}, and
{6} ↔ {7}. The level-2 nodes on T are 3, 6, 10, 13 whose contexts are {0, 1}, {2, 3}, {4, 5} and {6, 7}

respectively. The level-2 off-diagonal blocks Fi, i = 3, 6, 10, 13 are formed by merging �Fc1 and �Fc2

via the following formula:

(4.3) Fi =

�
A|t̂c1×(I\ti)

A|t̂c2×(I\ti)

�
, Fc1 = A|t̂c2×tc1

, Fc2 = A|t̂c1×tc2
.

This procedure is illustrated in Figure 3(a). Two communication steps are needed. The first step
is to generate Fc1 and Fc2 by exchanging A|t̂c1×tc2

and A|t̂c2×tc1
between c1’s and c2’s contexts.

This prepares for the column compression. The second step is to redistribute the newly merged
off-diagonal block Fi onto the process grid associated with node i’s context, for i = 3, 6, 10 or 13.
Here we use a ScaLAPACK subroutine PxGEMR2D to realize the data exchange and redistribution
steps.

During the redistribution phase, the number of messages is 2, and the number of words ex-
changed is r n

2 · 2. The communication cost is [2, r n
2 · 2].

Row compression—Step 2. At level 2 of the tree, the contexts {0, 1}, {2, 3}, {4, 5} and
{6, 7} are associated with the nodes 3, 6, 10, 13, respectively. The distribution of the off-diagonal

164 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a). parallel row construction 1; (b). parallel row construction 2; (c). parallel row construction 3 and
initiate the parallel column construction; (d). parallel column construction 1; (e). parallel column construction 2;
(f). parallel column construction 3 and finalize the entire parallel HSS construction.

blocks Fi, i = 3, 6, 10, 13 is finished, as shown in Fig. 3(a). We then perform the parallel RRQR
within each context for each Fi:

(4.4) Fi ≈
�

Rc1

Rc2

�
�Fi ,

where �Fi can also be denoted as A|t̂i×(I\ti)
, t̂i is the row index subset of �Fi. One of the HSS

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 165

generators Ri is obtained here. Since each Fi is bounded by size 2r× n and two processes are used
for each RRQR, using Eqn.(4.1), we obtain the communication cost to be [n√

2
log

√
2, 2r+n√

2
log

√
2].

To prepare for the third level HSS construction, again, we need a redistribution phase, perform-
ing the following pairwise data exchange: {0, 1} ↔ {2, 3} and {4, 5} ↔ {6, 7}. In this notation,
0 ↔ 1 and 2 ↔ 3 exchanges occur simultaneously. There is no need for data exchanges between
processes 0 and 3, or processes 1 and 2. The level-3 nodes are 7 and 14 with the process contexts
{0, 1, 2, 3} and {4, 5, 6, 7}, respectively. This procedure is illustrated in Fig. 3(b). There are also
two communication steps similar to Eqn.(4.3).

During the redistribution phase, the number of messages is 2, and the number of words ex-
changed is r n

4 · 2. The communication cost is [2, r n
4 · 2].

Row compression—Step 3. At level 3, there are only two contexts {0, 1; 2, 3} and {4, 5; 6, 7}
which are associated with the nodes 7 and 14 respectively. Each of the two off-diagonal blocks
Fi, i = 7, 14 has already been distributed onto the respective process context (see Fig. 3(b)). We
then perform the parallel RRQR within each context for each Fi, similar to Eqn.(4.4). One of the
HSS generators Ri is also obtained here. The communication cost of RRQR is given by [n√

4
log

√
4,

2r+n√
4

log
√
4].

Since the upper level node is the root node 15 of T , there is no off-diagonal block F15 associated
with it. Thus to prepare for the column HSS constructions, only one pairwise exchange step is
needed between the two contexts: {0, 1; 2, 3} ↔ {4, 5; 6, 7}, meaning 0 ↔ 4, 1 ↔ 5, 2 ↔ 6, and
3 ↔ 7. This is similar to eq.(4.3) except that there is no merging step to form F15. The procedure
is illustrated in Fig. 3(c). The communication cost in the redistribution phase is [2, r n

8 · 2].
To summarize, we now sum all the messages and number of words communicated at all the

levels of the tree. Denote L = logP as the number of levels in T . Then, the total communication
cost is summed up by the following.

1. Redistribution

(4.5) #messages =

L�

i=1

2 = 2 logP

(4.6) #words =

L�

i=1

(
r N

2i
2) = O(2r N)

2. RRQR

(4.7) #messages =

L�

i=1

n√
2i

log
√
2i =

n

2

L�

i=1

i

2i/2
= O(

n

2
logP)

(4.8) #words =

L�

i=1

2r + n√
2i

log
√
2i =

2r + n

2

L�

i=1

i

2i/2
= O(

2r + n

2
logP)

4.3. Parallel column compression. After the row compression, the matrices remained to
be compressed are much smaller, and the communication cost is also lower in this step. We now
describe how the column compression works using the same 8× 8 block matrix example.

Column compression—Step 1.
After the parallel row construction, the updated off-diagonal blocks Fi, i = 1, 2, ...14 are stored

in the individual contexts. For example, F1 is stored in the context {0}, F3 is stored in the context
{0, 1}, and F7 is stored in the context {0, 1; 2, 3}. Since the algorithms for both row and column
compressions are upward sweeping along T [19], there is a redistribution step for the leaf off-diagonal

166 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

blocks from their parents’ contexts to their own contexts. For instance, consider the context {0}
associated with the leaf node 1, the redistribution procedure can be formulated as:

(4.9) F1 =




A|t̂2×t1
A|t̂6×t1
A|t̂14×t1


 , t̂1 = t̂2 ∪ t̂6 ∪ t̂14.

Eq.(4.9) can be similarly applied to other contexts associated with the leaf nodes. We still rely on
the subroutine PxGEMR2D to realize this inter-contexts communications.

After the redistribution, the layout of the off-diagonal blocks is illustrated by Figure 3(c), which
initiates the parallel column construction. At the bottom level, the contexts {0}, {1}, {2}, {3}, {4},
{5}, {6} and {7} are associated with the leaf nodes i, i = 1, 2, 4, 5, 8, 9, 11, 12. Fi are indicated by
the shaded areas in Fig. 3(c). We carry out the RRQR on Fi:

(4.10) Fi ≈ �FiV
H
i ,

where �Fi can be denoted as A|t̂i×t̃i
and t̃i is the update of ti due to the rank contraction in the

column compression. We note that this step is done locally within each process. One of the HSS
generators Vi is obtained here.

To enable the upper level column HSS construction, communications occur pairwise: {0} ↔ {1},
{2} ↔ {3}, {4} ↔ {5}, {6} ↔ {7}. The upper level off-diagonal blocks Fi, i = 3, 6, 10, 13 are formed

by merging �Fc1 and �Fc2 via the following formula:

(4.11) Fi =
�

A|t̂i×t̃c1
, A|t̂i×t̃c2

�
, Bc1 = A|Ht̃c1×t̃c2

, Bc2 = A|Ht̃c2×t̃c1
.

This procedure is illustrated in Fig. 3(d). Two communication steps are needed: in the first step
Bc1 and Bc2 are generated by exchanging A|t̃c2×t̃c1

and A|t̃c1×t̃c2
pairwise between c1 context and c2

context. We note that one of HSS generators Bi is obtained here. The second stage is to redistribute
the newly merged off-diagonal block Fi onto the process grid associated with the node i’s context
for i = 3, 6, 10, 13.

Column compression—Step 2.
At level 2, the contexts {0, 1}, {2, 3}, {4, 5} and {6, 7} are associated with the nodes 3, 6, 10,

and 13, respectively. Each off-diagonal block Fi, i = 3, 6, 10, 13 has already been distributed onto
the respective process context, as illustrated in Fig. 3(d). Then we perform parallel RRQR (see
Section 4.1) for each Fi:

(4.12) Fi = �Fi

�
WH

c1 , WH
c2

�
,

where �Fi can also be denoted as A|t̂i×t̃i
and t̃i is the column index subset of �Fi. One of the HSS

generators Wi is generated here.
To enable the upper level column HSS construction, communication occurs pairwise: {0, 1} ↔

{2, 3} and {4, 5} ↔ {6, 7}. The procedure is illustrated by Fig. 3(e). Similar to Eqn.(4.11), two
communication steps are needed.

Column compression—Step 3.
At level 3, the two contexts {0, 1; 2, 3} and {4, 5; 6, 7} are associated with the nodes 7 and 14,

respectively. Each off-diagonal block Fi, i = 7, 14 has already been distributed onto the respective
process contexts, as shown in Fig. 3(e). Then we perform RRQR similar to Eqn.(4.12). One of the
HSS generators Wi is also obtained here.

Since the level-4 node is the root node 15 of T , there is no off-diagonal block F15 associated
with it. Thus the entire parallel HSS construction is finalized at this step. There is only one stage
of communications occurring: {0, 1; 2, 3} ↔ {4, 5; 6, 7}, which is similar to Eqn.(4.11) except there
is no merging step to form F15. Fig. 3(f) indicates that after this final communication, there are
no residual off-diagonal blocks. All the HSS generators Di, Ui, Ri, Bi,Wi, Vi have been successfully
computed.

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 167

(a) (b)

(c) (d)

Fig. 4. (a). the illustration of a block 2 × 2 HSS form for (5.1); (b). the illustration of QL factorization for
(5.2); (c). the illustration of LQ factorization for (5.3); (d). the illustration of the inter-context communication to
form (5.5).

5. Parallel HSS factorization. After the HSS representation of A (2.1) is constructed in
parallel, it is ready to factorize A via the HSS generators. Here we adopt the ULV -type factorization
and generalize our discussions by a block 2× 2 HSS form illustrated by Figure 4(a):

(5.1)

�
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

�
,

where the generators with subscripts c1 are distributed on the process grid associated with c1
context, the generators with subscripts c2 are distributed on the process grid associated with c2
context, and the generators with subscripts i are distributed on the process grid associated with i
context. c1 and c2 are the children of i on the HSS tree T . The i context is the union of the c1
context and the c2 context. We assume that the size of Uc1 is m1×r1, and the size of Uc2 is m2×r2.
Here r1 and r2 are numerical ranks.

We start with the QL factorization of Uc1 and Uc2 , which is illustrated by Figure 4(b):

(5.2) Uc1 = Qc1

�
0
�Uc1

�
, Uc2 = Qc2

�
0
�Uc2

�
,

where �Uc1 and �Uc2 are lower triangular matrices of the size r1 × r1 and r2 × r2, respectively. We
note that there is no inter-context communication occurring at this stage. Then we multiply QH

c1
and QH

c2 independently within each context and obtain:

�
QH

c1 0
0 QH

c2

��
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

�
=




�Dc1

�
0
�Uc1

�
Bc1V

H
c2

�
0
�Uc2

�
Bc2V

H
c1

�Dc2


 ,

168 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

where

�Dc1 = QH
c1Dc1 =

�
�Dc1;1,1

�Dc1;1,2

�Dc1;2,1
�Dc1;2,2

�
, �Dc2 = QH

c2Dc2 =

�
�Dc2;1,1

�Dc2;1,2

�Dc2;2,1
�Dc2;2,2

�
,

in which �Dc1;2,2 and �Dc2;2,2 are of the size r1 × r1 and r2 × r2, respectively.
Then an LQ factorization is carried out independently within each context:

�
�Dc1;1,1

�Dc1;1,2

�
=

�
�Dc1;1,1 0

�
Pc1 ,

�
�Dc2;1,1

�Dc2;1,2

�
=

�
�Dc2;1,1 0

�
Pc2 .(5.3)

We multiply Pc1 and Pc2 independently within each context, which can be illustrated by Figure
4(c), and obtain:

�
QH

c1 0
0 QH

c2

��
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

��
PH
c1 0
0 PH

c2

�
(5.4)

=




�
�Dc1;1,1 0
�Dc1;2,1

�Dc1;2,2

� �
0

�Uc1Bc1

�
�V H
c2;1

�V H
c2;2

�
�

�
0

�Uc2Bc2

�
�V H
c1;1

�V H
c1;2

�
� �

�Dc2;1,1 0
�Dc2;2,1

�Dc2;2,2

�




,

where
�

�Dc1;2,1
�Dc1;2,2

�
=

�
�Dc1;2,1

�Dc1;2,2

�
PH
c1 ,�

�Dc2;2,1
�Dc2;2,2

�
=

�
�Dc2;2,1

�Dc2;2,2

�
PH
c2 ,�

�V H
c1;1

�V H
c1;2

�
= V H

c1 P
H
c1 ,�

�V H
c2;1

�V H
c2;2

�
= V H

c2 P
H
c2 .

We note that there is still no inter-context communication occurring up to this stage.
Eventually we form the parentDi, Ui and Vi recursively via inter-context communications, which

is illustrated by Figure 4(d):

(5.5) Di =

�
�Dc1;2,2

�Uc1Bc1
�V H
c2;2

�Uc2Bc2
�V H
c1;2

�Dc2;2,2

�
, Ui =

�
�Uc1Rc1
�Uc2Rc2

�
, Vi =

�
�Vc1;2Wc1
�Vc2;2Wc2

�
.

Eq.(5.5) maintains the form of the recursive definition (2.1) of the HSS generators, except the size
has been deducted due to the HSS construction introduced in section 4.

If the root node is reached, an LU factorization with partial pivoting is conducted on Di.

6. Parallel HSS solution. We solve the linear system of equations Ax = b after obtaining
the HSS form of A in section 4 and the HSS factorization in section 5. We stick to the convention
of a block 2× 2 HSS form of A adopted in section 5, to generalize our discussion.

The system Ax = b with the HSS representation of A can be written in the following equation:

(6.1)

�
Dc1 Uc1Bc1V

H
c2

Uc2Bc2V
H
c1 Dc2

��
xc1

xc2

�
=

�
bc1
bc2

�
,

where

x =

�
xc1

xc2

�
, b =

�
bc1
bc2

�
.

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 169

Fig. 5. The illustration of the linear system of equations (6.2).

With the aid of eq.(5.4), we can rewrite eq.(6.1) into the following form:
(6.2)



�
�Dc1;1,1 0
�Dc1;2,1

�Dc1;2,2

� �
0

�Uc1Bc1

�
�V H
c2;1

�V H
c2;2

�
�

�
0

�Uc2Bc2

�
�V H
c1;1

�V H
c1;2

�
� �

�Dc2;1,1 0
�Dc2;2,1

�Dc2;2,2

�







�xc1;1

�xc1;2

�xc2;1

�xc2;2


 =




�bc1;1
�bc1;2
�bc2;1
�bc2;2


 ,

where

xc1 = PH
c1 �xc1 = PH

c1

�
�xc1;1

�xc1;2

�
, xc2 = PH

c2 �xc2 = PH
c2

�
�xc2;1

�xc2;2

�
;

bc1 = Qc1
�bc1 = Qc1

�
�bc1;1
�bc1;2

�
, bc2 = Qc2

�bc2 = Qc2

�
�bc2;1
�bc2;2

�
.

Figure 5 illustrates the eq.(6.2). We point out that the solution to eq.(6.1) is converted to the
solution to eq.(6.2). Once �xc1 and �xc2 are obtained, we can easily compute the original solution x.

We note that the following two triangular systems can be efficiently solved locally within each
context:

�Dc1;1,1 �xc1;1 = �bc1;1, �Dc2;1,1 �xc2;1 = �bc2;1.

Then a local update of the right hand side is conducted:

�bc1;2 = �bc1;2 − �Dc1;2,1 �xc1;1,
�bc2;2 = �bc2;2 − �Dc2;2,1 �xc2;1.

Up to this stage, there is no inter-context communication between c1 and c2 contexts.

Then we have to further update the right hand side via inter-context communication:

�bc1;2 = �bc1;2 − �Uc1Bc1
�V H
c2;1 �xc2;1

�bc2;2 = �bc2;2 − �Uc2Bc2
�V H
c1;1 �xc1;1

Eventually we solve two triangular systems on the i context:

�
�Dc1;2,2

�Uc1Bc1
�V H
c2;2

�Uc2Bc2
�V H
c1;2

�Dc2;2,2

��
�xc1;2

�xc2;2

�
=

�
�bc1;2
�bc2;2

�

170 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

N (2D mesh N ×N) 5, 000 10, 000 20, 000 40, 000 80, 000
size (×109) 0.025 0.1 0.4 1.6 6.4
Nprocs 16 64 256 1024 4096

MF + HSS (s) 89 175 366 780 1689

last frontal size 5,000 10,000 20,000 40,000 80,000
HSS compr (s) 2.09 3.89 6.59 17.94 47.77
RRQR (s) 1.81 2.86 4.53 12.19 32.39
redist (s) 0.18 1.03 2.06 5.75 15.38

Table 7.1

Weak scaling of the parallel HSS solver imbedded in the parallel multifrontal solver, for 2D Helmholtz problem.

10
8

10
9

10
0

10
1

10
2

10
3

problem size

M
P

I
W

a
ll

ti
m

e
 (

s
)

weak scaling

compression

RRQR
redist

MF+HSS

Fig. 6. Weak scaling curves for HSS compression, RRQR phases in HSS compression, data redistribution phases
in HSS compression, and the entire parallel multifrontal solver equipped with the parallel HSS solver. The data is
from Table 7.1.

7. Performance tests and numerical examples. We first present the weak scaling results
for both the parallel HSS solver, and the hybrid parallel multifrontal solver in which the parallel
HSS solver is imbedded, for solving large scale 2D Helmholtz problem. The 2D mesh ranges from
10, 000 × 10, 000 to 80, 000 × 80, 000, yielding that the size of the global Helmholtz matrix ranges
from 0.1 billion up to 6.4 billion. We carry out our experiments on the cluster Hopper at Lawrence
Berkeley National Laboratory (LBNL) hopper.nersc.gov. In order to test the weak scaling, we
make the number of processors four times larger upon doubling the mesh size. We have 8 cores
per node (32GB memeory). The MPI wall time for the entire hybrid solver is recorded in Table
7.1. To highlight the scalability of the parallel HSS solver, we focus on the last frontal dense matrix
computation in the multifrontal solver. We split the total HSS compression time into an RRQR
phase and a data redistribution phase. Table 7.1 also lists the MPI wall time for each individual
phase. The weak scaling curve is plotted in Figure 6. We note that four phases in the entire hybrid
solver scale much the same. The weak scaling factor is about 2.0.

Secondly, we show the accuracy of the entire hybrid parallel multifrontal and HSS solver for
seismic applications. The mesh size is 5000 × 3000. Figure 7(a) displays a 5Hz time-harmonic
wavefield solution to the 2D Helmholtz problem using the hybrid parallel multifrontal and HSS
solver, with the preset tolerance τ = 10−2. The amplitude difference between the solution in Figure
7(a) and the true solution is displayed in Figure 7(b). We note that 2 digits is insufficient to produce
an accepTable wavefield solution, since too much information is lost when RRQR is conducted with
a large tolerance. In Figure 7(c) we display the 5Hz time-harmonic wavefield solution to the 2D
Helmholtz problem using the hybrid parallel multifrontal and HSS solver with the preset tolerance

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 171

X

Z

MF HSS solution: ! = 10
−2

1000 2000 3000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 −0.5

0

0.5

X

Z

MF HSS solution difference: ! = 10
−2

1000 2000 3000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 −0.01

−0.005

0

0.005

0.01

(a) (b)

X

Z

MF HSS solution: ! = 10
−4

1000 2000 3000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 −0.5

0

0.5

X

Z

MF HSS solution difference: ! = 10
−4

1000 2000 3000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000 −0.01

−0.005

0

0.005

0.01

(c) (d)

Fig. 7. (a). 5Hz time-harmonic wavefield solution to the 2D Helmholtz problem using the hybrid parallel
multifrontal and HSS solver, with the preset tolerance τ = 10−2; (b). the amplitude difference between (a) and
the true solution; (c). 5Hz time-harmonic wavefield solution to the 2D Helmholtz problem using the hybrid parallel
multifrontal and HSS solver, with the preset tolerance τ = 10−4; (d). the amplitude difference between (c) and the
true solution.

Nprocs 64 128 256 512 1024
HSS compr (s) 111 61 38 33 36
RRQR (s) 83 45 28 26 23
redist (s) 28 16 10 7 13

Table 7.2

Strong scaling for a fixed Toeplitz matrix 100, 000× 100, 000.

τ = 10−4. The amplitude difference is displayed in Figure 7(d); 4 digits yields an accuracy typically
required in seismic applications.

Finally, we present the strong scaling in Table 7.2 of the parallel HSS compression for a fixed
dense 100, 000 × 100, 000 Toeplitz matrix. The strong scaling curve is plotted in Figure 8. We
note that RRQR, compared with the data redistribution, is the most time consuming phase in the
parallel HSS compression.

172 S. WANG, X. LI, J. XIA, Y. SITU, AND M. V. DE HOOP

10
2

10
3

10
1

10
2

Nprocs

M
P

I
W

a
ll

ti
m

e
 (

s
)

strong scaling

compression

RRQR

redist

Fig. 8. Strong scaling curve for HSS compression, RRQR phase and the data redistribution phase, for a dense
100, 000× 100, 000 Toeplitz matrix. The data is from Table 7.2.

8. Conclusions. We presented fast parallel Hierarchically SemiSeparable matrix (HSS) algo-
rithms: parallel HSS construction using the rank revealing QR (RRQR) method, parallel HSS ULV
factorization, and parallel solution. We studied their scalability. We exploited the portability of
two libraries, BLACS and ScaLapack. Computational examples of weak scaling, strong scaling and
accuracy demonstrated that our implementation is robust and efficient indeed.

9. Acknowledgements. We thank the members, ConocoPhillips, ExxonMobil, PGS, Statoil
and Total, of the Geo-Mathematical Imaging Group (GMIG) for financial support. This research
used resources of the National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] www.netlib.org/blacs.
[2] www.netlib.org/lapack.
[3] www.netlib.org/scalapack.
[4] T. Bella, Y. Eidelman, and V. Gohberg, I. and. Olshevsky, Computations with quasiseparable polynomials

and matrices, Theoret. Comput. Sci., 409 (2008), pp. 158–179.
[5] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications, Eng.

Anal. Bound. Elem, 27 (2003), pp. 405–422.
[6] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Technical report, Leipzig,

Germany: Max Planck Institute for Mathematics, 86 (2001).
[7] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D. White, Some

fast algorithms for sequentially semiseparable representations, SIAM J. Matrix Anal. Appl., 27 (2005),
pp. 341–364.

[8] S. Delvaux and M. Van Barel, A QR-based solver for rank structured matrices, SIAM. J. Matrix Anal. Appl.,
30 (2008), pp. 464–490.

[9] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Trans. Math. Software, 9 (1983), pp. 302–325.

[10] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations Operator Theory, 34
(1999), pp. 293–324.

[11] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices, Com-
puting, 62 (1999), pp. 89–108.

[12] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part-II: Application to multi-
dimensional problems, Computing, 64 (2000), pp. 21–47.

[13] J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Review, 34 (1992),
pp. 82–109.

[14] R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi, A bibliography on semiseparable matrices,
Calcolo, 42 (2005), pp. 249–270.

PARALLEL HIERARCHICALLY SEMISEPARABLE MATRIX ALGORITHMS 173

[15] B. Khoromskij W. Hackbusch and S. A. Sauter, On H2-matrices, Lectures on applied mathematics (Munich,
1999), Springer, Berlin, (2000), pp. 9–29.

[16] L. Grasedyck W. Hackbusch and S. Börm, An introduction to hierarchical matrices, Math. Bohem., 127
(2002), pp. 229–241.

[17] J. Xia, On the complexity of some hierarchical structured matrices,
http://www.math.purdue.edu/∼xiaj/work/hsscost.pdf, submitted to SIAM J. Matrix Anal. Appl.
(2011).

[18] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li, Superfast multifrontal method for large structured linear
systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–1411.

[19] , Fast algorithms for hierarchically semiseparable matrices, Numer. Linear Algebra Appl., 2010 (2010),
pp. 953–976.

