
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2011) pp. 131-158.

REGULARITY IN, AND MULTI-SCALE DISCRETIZATION OF THE SOLUTION
CONSTRUCTION OF HYPERBOLIC EVOLUTION EQUATIONS OF LIMITED

SMOOTHNESS ∗

MAARTEN V. DE HOOP† , SEAN F. HOLMAN‡ , HART F. SMITH§ , AND GUNTHER UHLMANN¶

Abstract. We present a multi-scale solution scheme for hyperbolic evolution equations with curvelets. We
assume, essentially, that the second-order derivatives of the symbol of the evolution operator are uniformly Lipschitz.
The scheme is based on a solution construction introduced by Smith [19] and is composed of generating an approximate
solution following a paradifferential decomposition of the mentioned symbol, here, with a second-order correction
reminiscent of geometrical asymptotics involving a Hamilton-Jacobi system of equations and, subsequently, solving
a particular Volterra equation. We analyze the regularity of the associated Volterra kernel, and then determine the
optimal quadrature in the evolution parameter. Moreover, we provide an estimate for the spreading of (finite) sets
of curvelets, enabling the multi-scale numerical computation with controlled error.
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1. Introduction. We study the regularity in the construction of solutions of a general class
of evolution equations with limited smoothness. We have applications to wave propagation in non-
smooth media in mind. The construction makes use of a frame of curvelets [12, 10, 11], generates the
weak solution on the one hand but reveals the geometrical properties reminiscent of the propagation
of singularities in the case of smooth media on the other hand.

Let p(z, x, ξ) be a real-valued function defined on [0, Z] × R
n
x × (Rn

ξ \ {0}) that is smooth and
positively homogeneous of degree 1 with respect to ξ. If z0 ∈ [0, Z], we then consider the initial
value problem

(1.1) (∂z − i p(z, x,Dx))u(z, x) = 0 and u(z0, x) = u0(x).

Here p(z, x,Dx) is a pseudodifferential operator (ΨDO) whose symbol, p, may be rough in the z
and x variables. We will require here that p ∈ Cm.1S1

cl with m = 1 or 2. This means that the mth
derivatives of p with respect to z and x exist everywhere, are uniformly Lipschitz, and for every
multi-index α there is a constant Cα such that for all ξ sufficiently large

�∂α
ξ p(·, ξ)�Cm,1 ≤ Cα(1 + �ξ�)1−|α|.

The notation of the left-hand side above indicates the Cm,1 norm in (z, x).
The technique used here for construction of solutions to (1.1) was introduced by Smith [19].

More recently, properties of these solutions were studied from the point of view of concentration of
curvelets motivated by the propagation of singularities for the case of smooth symbols [3]. The solu-
tion construction is initiated by the construction of an approximate solution following the smooth-
ing, that is, paradifferential decomposition of the symbol p, and is completed by solving a Volterra
equation of the second kind which corrects for the symbol smoothing and essentially accounts for
scattering between curvelets. The approximate solution is constructed using geometrical asymp-
totics and involves solving the Hamilton and Hamilton-Jacobi systems generated by the smoothed
symbols. The Volterra equation can be solved by a Neumann series – as in the computation of
certain multiple scattering series – revealing a curvelet-curvelet interaction. The main goal of this
work is to develop regularity estimates in the evolution coordinate z for the Volterra kernel and
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solution. These estimates govern the choice of quadrature used when solving the Volterra equation,
and subsequently the initial value problem, numerically.

Our main result uses an adapted underlying approximate solution operator (para-metrix) for
(1.1) with second-order correction. With this parametrix we provide scale-independent regularity
estimates of the associated Volterra kernel in Hs, and likewise estimates for the regularity of the
solution g(z, x) of the Volterra equation in the z variable as a map into Hs, when m = 2 (or larger)
and −1 ≤ s < 2. Specifically, we obtain a Hölder estimate of order 1/2. Thus a natural choice of
quadrature when considering the numerical solution of the Volterra equation becomes the trapezoidal
rule [6]. The approximate solution construction to second order is obtained from results pertaining
to expansions of Fourier integral operators generated by canonical transformations [13, 9]. This
second order parametrix improves on first order parametrices in at least two ways. First, the Hölder
regularity mentioned above is required to prove that a discretization of the Volterra equation in the
evolution parameter z converges as the discretization step size goes to zero. Second, the Volterra
kernel associated with the second order parametrix is actually compact acting on Hs (in fact it
maps into Hs+1/2) and so exhibits better behavior when iterated.

ϕ γ

T( z 1, z 0)ϕ γ

T( z 2, z 0)ϕ γ

Fig. 1. Diagram describing a numeric solution including a single Volterra iteration. The parametrix is based
on the second-order (geometric) approximation and depicted in blue. Some “scattered” curvelets produced by the
Volterra iteration are depicted in red. The decay of curvelet frame coefficients for one of the wave packets propagated
by the parametrix is illustrated by grayscale.

The results obtained here can be extended directly to apply to solving the second-order wave
equation and associated Cauchy initial value problem.

A key aspect of developing an efficient computational algorithm will rely on available sparse
decompositions of u0 (that is, the initial data at z0), and of the Volterra operator applied to the
current solution by the Neumann series expansion (that is, the residual force at values of z dictated
by the chosen quadrature). We have developed first steps towards an approach based on nonlinear
approximation [1, 2], motivated by the work of Beylkin and Monzón [4, 5]. Here, we provide an
estimate of the spreading of the set of curvelet coefficients under propagation as a function of scale.
Following the decomposition of u0 into wave packets, a natural solution strategy – tracing the
convergence of the Neumann series expansion – starts at the finest available scale and progresses to
the coarser scales. The Volterra equation can be solved with a step-by-step method reminiscent of
the semi-group property. The numerical analysis of curvelet-like transforms can be found in [8, 15];
this analysis plays a role in developing a fast algorithm for the above mentioned approximate
solution. We note that the regularity and spreading estimates obtained here imply error estimates
of corresponding numerical schemes, which will be published elsewhere.

The results obtained in this paper have direct applications, for example, in seismic imaging.
Indeed most imaging procedures can be expressed in terms of evolution equations [16]. We mention
“reverse-time migration” based imaging [14] and “downward continuation (reverse depth)” based
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imaging [20, 21]. Furthermore, curvelet based data regularization dove tails perfectly with these
imaging techniques.

2. Solution of the evolution equation. We find solutions for (1.1) in two steps. We first
construct an approximate solution operator, which we will refer to as a parametrix, and then we
use this parametrix to transform (1.1) into an equivalent Volterra equation of the second kind for a
function with values in a Sobolev space. To be more precise, we first construct a family of operators
T(z, z�) : Hs(Rn) → Hs(Rn) for some s ∈ R parametrized by (z, z�) ∈ [0, Z] × [0, Z] which satisfy
the following two properties

(2.1) T(z�, z�) = Id for all z� ∈ [0, Z], and

(2.2) (∂z − i p(z, x,Dx)) T(z, z�) : Hs → Hs uniformly for (z, z�) ∈ [0, Z]× [0, Z].

Because (∂z − i p(z, x,Dx)) is a (possibly rough) ΨDO of order 1, the mapping property (2.2) is
better than would be expected and so it is this property that makes T(z, z�) an approximate solution
operator. Here “uniformly” means that there is a single modulus of continuity that holds for all
(z, z�). We think of T(z, z0)u0 as giving the approximate solution of (1.1). Any family of operators
satisfying these properties will be called a parametrix.

Once we have a parametrix we look for an exact solution for (1.1) in the form

(2.3) u(z, x) = [T(z, z0)u0](x) +

� z

z0

[T(z, z�)g(z�, ·)](x) dz�.

Intuitively, we are setting u(z, x) to be the approximate solution plus an error term that we expect
can be found or at least estimated. Now the function to be determined is g(z, x) which we refer to
as the residual. A calculation making use of (2.1) shows that u(z, x) is a solution of (1.1) if and
only if

g(z, x) = −[(∂z − i p(z, x,Dx))T(z, z0)u0](x)−

� z

z0

[(∂z − i p(z, x,Dx))T(z, z�)g(z�, ·)](x)dz�.

Motivated by this fact we introduce the Volterra kernel

(2.4) K(z, z�) = −(∂z − i p(z, x,Dx))T(z, z�)

so that the equation for g(z, x) becomes

(2.5) g(z, x) = [K(z, z0)u0](x) +

� z

z0

[K(z, z�)g(z�, ·)](x) dz�.

This is a linear Volterra equation of the second kind where the function to be determined (g(z, ·))
takes values in the Sobolev space Hs. For a review of the classical theory of this type of equation see
[6]. Although the theory there only explicitly deals with real and complex valued functions many of
the results still hold in the case of functions valued in general Banach spaces with the same proofs.

The solution of (2.5) may be obtained via a Neumann series. Indeed, let us define

K1(z) = K(z, z0), and for n > 1 Kn(z) =

� z

z0

K(z, z�)Kn−1(z�) dz�.

Note that by (2.2) K(z, z�) : Hs → Hs uniformly, and thus the composition used in the iterative
definition of Kn(z) is still an operator on Hs. Furthermore, if �K(z, z�)�(Hs,Hs) ≤ C(Z) for all z
and z�, then for all n and z it follows from the definition that

(2.6) �Kn(z)�(Hs,Hs) ≤
Zn−1

(n− 1)!
C(Z)n.
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The solution of (2.5) is then

g(z, x) =

∞�

n=1

[Kn(z)u0](x) =: [R(z)u0](x).

By (2.6) this sum converges absolutely in Hs for every z ∈ [0, Z], and in fact

(2.7) �R(z)�(Hs,Hs) ≤ C(Z)eZC(Z).

We refer to R(z) as the resolvent corresponding to the parametrix T.
This method of solution was first introduced for the half wave equation in [19], and has been

used previously to analyze the equation (1.1) in [3]. In both of these works the parametrix T is
constructed by decomposing u0 in the curvelet frame, and then applying a rigid motion to each
individual curvelet. We refer to this “rigid motion” parametrix as T1. In the current work we
will introduce a new parametrix, T2, which still uses a curvelet decomposition of u0, but also
incorporates spreading into the evolution of each individual curvelet. As we will see, when T2 is
used as the parametrix the corresponding Volterra kernel K2(z, z

�) will have additional regularity
properties in the z variables.

3. Construction of the parametrices. In this section we describe two possible ways to
construct a parametrix satisfying the requirements (2.1) and (2.2). Both methods are based upon
a curvelet decomposition. The first uses only a rigid motion of the curvelets, while the second also
incorporates spreading. The treatment of caustics in the second method needs special attention,
which we do not elaborate on here. The first method does not provide strong enough estimates to
guarantee that numerical solutions of the Volterra equation will converge. The proofs in this section
and section 4 make use of the results in both of the appendices, and in particular the rules for
manipulating families of curvelet like functions (FCLFs) developed in appendix A. When dealing
with a FCLF F we sometimes use the notation fγ ∈ πS(F) for a function in the family corresponding
to the curvelet index γ.

The first step for both parametrices is to smooth the rough symbol p of (1.1) in the x variable
according to scale. In this way we obtain a sequence of smooth (in x) symbols pk which approximate
p. Indeed, let ψ ∈ C∞

c (Rn) be an even function such that ψ(ξ) = 1 for |ξ| ≤ 1 and ψ(ξ) = 0 for
|ξ| ≥ 2. We also assume 0 ≤ ψ ≤ 1 everywhere. Then define

(3.1) pk(z, x, ξ) = [ψ(2−k/2Dx)p(z, ·x, ξ)](x)

for all k ∈ N. Thus for each k we low pass filter p in the x variable around the frequency 2k/2

to obtain pk ∈ C∞. This sequence of approximations to p satisfies the following estimates. For
j+ |β| ≤ m+1 (when j+ |β| = m+1 estimate (3.2) holds everywhere the left hand side is defined)

(3.2) |∂j
z∂

β
x∂

α
ξ (p− pk)(z, x, ξ)| � 2−k(m−|β|−j+1)/2�∂α

ξ p(·, ξ)�Cm,1

and

(3.3) |∂j
z∂

β
x∂

α
ξ pk(z, x, ξ)| � �∂α

ξ p(·, ξ)�Cm,1 .

Also, if j ≤ m and |β| ≥ m+ 1− j then

(3.4) |∂j
z∂

β
x∂

α
ξ pk(z, x, ξ)| � 2k(|β|+j−m−1)/2�∂α

ξ p(·, ξ)�Cm,1 .

Here and in the remainder of this work the notation Ak � Bk means that there exists a constant
C > 0 independent of the scale k, or more generally the index γ = (x, ν, k), such that Ak ≤ CBk.
In the following parametrix constructions pk(z, x,Dx) will be used to approximate the action of
p(z, x,Dx) on the curvelets at scale k.
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3.1. Rigid motion parametix. We first review the construction from [3] of a parametrix,
referred to here as T1(z, z

�), based only on the rigid motion of curvelets. The purpose of this review
is twofold. First, some of the techniques involved will be used again in the construction of the new
parametrix in section 3.2, and second we eventually wish to compare some results for this parametrix
and associated Volterra kernel to those for the new parametrix. In this interest we will also prove
regularity estimates for T1(z, z

�) in the z and z� variables. We will always assume that m = 1 when
we are considering T1.

We begin by considering the system

(3.5)
dyk
dz

(z, z�) = −∂ξpk(z, yk, νk) ,
dνk
dz

(z, z�) = ∂xpk(z, yk, νk)−

�
νk, ∂xpk(z, yk, νk)

�
νk,

and

(3.6)
dΘk

dz
(z, z�) = Θk

�
νk ⊗ ∂xpk(z, yk, νk)− ∂xpk(z, yk, νk)⊗ νk

�
.

which gives the projected Hamiltonian flow associated to pk. We write

yk(z, z
�, x, ν) , νk(z, z

�, x, ν) , and Θk(z, z
�, x, ν)

for the solution of (3.5) and (3.6) with initial data

yk(z
�, z�, x, ν) = x , νk(z

�, z�, x, ν) = ν , and Θk(z
�, z�, x, ν) = Id,

and refer to the map (x, ν) �→ (yk(z, z
�, x, ν), νk(z, z

�, x, ν)) as Ψk
z,z� . We also consider the system

(3.5) and (3.6) with pk replaced by p, and introduce a corresponding map Ψz,z� defined in the
analogous manner (note that since p ∈ C1,1 the problem is well-posed). In [19] it is shown that

(3.7) d(Ψz,z�(x, ν),Ψk
z,z�(x, ν)) � 2−k,

where d is the pseudodistance defined in appendix A.
If γ = (x, ν, k) is a curvelet index, then the flow out of the individual curvelet ϕγ is given by

ϕ1,γ(z, z
�, y) = ϕγ(Θk(z, z

�, x, ν)(y − yk(z, z
�, x, ν)) + x).

If u ∈ L2(Rn), then the parametrix T1(z, z
�) is defined by

(3.8) [T1(z, z
�)u](y) = u0 ϕ0(y) +

�

γ

uγ ϕ1,γ(z, z
�, y)

where the uγ are the coefficients of u given by the curvelet co-frame. Since it will be useful below,

we also define operators Tk�

1 (z, z�) which only give the contributions of curvelets at scale k�:

(3.9) [Tk�

1 (z, z�)u](y) =
�

{γ=(x,ν,k):k=k�}

uγ ϕ1,γ(z, z
�, y).

It is proven in [3] that T1(z, z
�) is a parametrix as defined in section 2 for −1 ≤ s < 2. To finish

this section we prove the following regularity result for T1(z, z
�).

Lemma 3.1. The operator T1(z, z
�) is uniformly Lipschitz in both of its arguments as a map

from Hs to Hs−1 for any s and on any fixed domain [0, Z]× [0, Z]. That is

(3.10) �T1(z, z
�)−T1(z̄, z

�)�(Hs,Hs−1) ≤ C1(Z)|z − z̄|
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for all z, z̄, and z� ∈ [0, Z], and the same estimate holds when z� is varied rather than z. Further-
more,

(3.11) �Tk�

1 (z, z�)−Tk�

1 (z̄, z�)�(L2,L2) ≤ C1(Z) 2k
�

|z − z̄|

and the same holds when z� is varied instead of z.

Proof. For γ = (x0, ν
0, k) the index of a curvelet, we define the change of variables

y �→ Φ1,γ(z, z
�, y) := Θk(z, z

�, x0, ν
0)(y − yk(z, z

�, x0, ν
0)) + x0.

This family of maps satisfies the hypotheses of lemma A.7 relative to the FCLF given by the curvelet
frame. Therefore

�
2−k∂zϕ1,γ(z, z

�, y),Φ∗
1,γ(γ)

�

is a FCLF, and by lemma A.2 we have for every δ > 0 a constant Cδ such that

(3.12)
���
�
ϕ�γ , ∂zϕ1,γ(z, z

�, y)
���� ≤ Cδ2

kµδ(�γ,Φ∗
1,γ(γ)),

where µ is the weight function introduced in appendix A. Now let us consider the infinite matrix

(3.13) c1,�γγ(z, z̄, z
�) =

�

Rn

ϕ�γ(y)
�
ϕ1,γ(z, z

�, y)− ϕ1,γ(z̄, z
�, y)

�
dy

which provides a representation of T1(z, z
�)−T1(z̄, z

�) with respect to the curvelet frame. Also, we
have representations of Tk�

1 (z, z�)−Tk�

1 (z̄, z�) for any k� given by ck
�

1,�γγ(z, z̄, z
�) = c1,�γγ(z, z̄, z

�) when

k� = k, and ck
�

1,�γγ(z, z̄, z
�) = 0 otherwise. By results in [19], to prove (3.10) it is sufficient to show

that

(3.14) |c1,�γγ(z, z̄, z
�)| ≤ Cδ |z − z̄| 2k uδ(�γ,Ψz,z�(γ))

for every δ > 0. Here Ψz,z�((x, ν, k)) = (Ψz,z�(x, ν), k). First, the estimate

(3.15) |∂zc1,�γγ(z, z, z
�)| ≤ Cδ2

kµδ(�γ,Ψk
z,z�(γ))

is equivalent to (3.12). Second, using (3.7) we may replace Ψk
z,z� by Ψz,z� in (3.15). Finally, because

c1,�γγ(z̄, z̄, z
�) = 0 the mean value theorem implies (3.14), which completes the proof that T1(z, z

�)
is Lipschitz in the z variable. Further, it follows from (3.14) that

|ck
�

1,�γγ(z, z̄, z
�)| ≤ Cδ |z − z̄| 2k

�

µδ(�γ,Ψz,z�(γ))

which implies the estimate for Tk�

1 .
The result for the z� variable follows by the same proof if we begin by obtaining (3.12) where

the differentiation is with respect to z� instead of z.

Remark 3.2. We observe that both Tk
1(z, z

�) and Tk
1(z, z

�)−Tk
1(z, z

�) are families of operators
satisfying the hypotheses required for Fk in lemma B.1 with, respectively, r = 0 and r = 1 and in
the latter case with C = C1(Z) |z − z|.

At this point we note that lemma 3.1 together with the fact that T1 is a parametrix allow us to
prove a (already known, see e.g. [22]) regularity result for the solution of (1.1). Indeed, from (2.3)
we see that if m = 1, then for −1 ≤ s < 2 and initial data u0 ∈ Hs the solution u(z, x) of (1.1) is
in C0,1([0, Z];Hs−1).
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3.2. Parametrix with second order correction. In this section we will construct a parametrix,
T2(z, z

�), that takes into account the spreading of curvelets. The action of this parametrix will be
specified in the same way as in section 3.1 by defining an action on each curvelet individually. The
underlying motivation for the parametrix comes from an approximation to a Fourier integral op-
erator, via a phase expansion as discussed in [13], with phase function defining the propagation of
singularities for (1.1). We should note that this parametrix construction only works in the absence
of caustics (this restriction will be made more precise below). However, if there is a global minimum
time before any caustics develop, then it is possible to repeatedly apply the construction stepping
forward in sufficiently small time steps. Thus, though we do not formulate the precise statements
here, these results can also apply past caustics. When we consider T2(z, z

�) we will always assume
that m = 2.

We begin the construction by introducing the Hamiltonian system that gives the propagation
of singularities for (1.1). In contrast to (3.5) and (3.6) the integral curves here are not projected
onto the unit co-sphere. For every (x, η) ∈ R

n
x × (Rn

η \ {0}) we consider the flow given by

(3.16)
dyk
dz

(z, z�, (x, η)) = −∂ξpk(z, yk, νk) , and
dνk
dz

(z, z�, (x, η)) = ∂xpk(z, yk, νk)

with initial data yk(z
�, z�, (x, η)) = x, and νk(z

�, z�, (x, η)) = η. The curves

(yk(z, z
�, (x, η)), νk(z, z

�, (x, η)))

are the integral curves of the z-dependent Hamiltonian vector field given by pk with initial data
(x, η). We consider the following system of equations

(3.17) (y, ν) = (yk(z, z
�, (x, η)), νk(z, z

�, (x, η))) .

For every k these define a mapping from (z, z�, (x, η)) to (y, ν) which is the canonical relation of the
solution operator for (1.1) if p is replaced by pk. Using them to define implicit relations amongst
the various variables amounts to parametrizing this canonical relation by different subsets of the
variables.

Now we supplement the flow (3.16) with another system that gives the dependence of (y, ν) on
perturbations of (x, η). This system, the Hamilton-Jacobi system associated to pk, is

(3.18)
dWk

dz
(z, z�, (x, η)) =

�
−∂2

ξxpk(z, yk, νk) −∂2
ξξpk(z, yk, νk)

∂2
xxpk(z, yk, νk) ∂2

xξpk(z, yk, νk)

�
Wk(z, z

�, (x, η))

where Wk(z, z
�, (x, η)) is a 2n × 2n matrix with initial data Wk(z

�, z�, (x, η)) = Id2n. We split
Wk(z, z

�, (x, η)) up into four n× n matrices

Wk(z, z
�, (x, η)) =

�
kW1(z, z

�, (x, η)) kW2(z, z
�, (x, η))

kW3(z, z
�, (x, η)) kW4(z, z

�, (x, η))

�
,

and then we have

∂yk
∂x

(z, z�, (x, η)) = kW1(z, z
�, (x, η)).

We will assume that kW1(z, z
�, (x, η)) is always invertible, and so by the implicit function theorem

the equations (3.17) can be solved for x and ν as a function of (z, z�, y, η) at least locally. Since
these functions depend on k we will label them as �xk and �νk. We can then introduce a defining
function Sk(z, z

�, y, η) for the canonical relation defined by (3.17) given by

Sk(z, z
�, y, η) = ��xk(z, z

�, y, η), η�.

We will always assume that this map �xk exists globally for z and z� ∈ [0, Z]. This is the as-
sumption that there are no caustics. We can also find formulas for the derivatives of �xk(z, z

�, y, η)



138 M. V. DE HOOP, S. F. HOLMAN, H. F. SMITH, AND G. UHLMANN

and �νk(z, z�, y, η). In the following the matrices kWi are understood to be evaluated at the point
(z, z�, �xk(z, z

�, y, η), η).

(3.19)
∂�xk

∂y
(z, z�, y, η) = kW

−1
1 ,

(3.20)
∂�xk

∂η
(z, z�, y, η) = −kW

−1
1 kW2,

(3.21)
∂�νk
∂y

(z, z�, y, η) = kW3 kW
−1
1 ,

and

∂�νk
∂η

(z, z�, y, η) = kW4 − kW3 kW
−1
1 kW2.(3.22)

Using the homogeneity of pk we can also prove the two following properties

(3.23) η = kW
T
1 �νk(z, z�, y, η),

and

(3.24) kW
T
2 kW

−T
1 η = 0.

Here kW
−T
1 refers to the inverse of the transpose of kW1. Finally, since Sk(z, z

�, y, η) is a smooth
function, using the above properties and the equality of the mixed partials of Sk we have

(3.25) kW
−T
1 =

�
∂xk

∂y

�T

=

�
∂2Sk

∂y∂η

�T

=
∂2Sk

∂η∂y
=

∂νk

∂η
= kW4 − kW3 kW

−1
1 kW2.

Thus (3.22) becomes

(3.22�)
∂�νk
∂η

(z, z�, y, η) = kW
−T
1 .

Finally, we can check using some of the above identities that kW3 kW
−1
1 and kW

−1
1 kW2 are always

symmetric matrices.
Next we will introduce the phase function used to construct the action of our parametrix on

curvelets at scale k. Let γ = (x0, ν
0, k) be the index of a curvelet. Then, for z, z� ∈ [0, Z], y ∈ R

n,
and η ∈ R

n, define (motivated in part by an expansion of Sk(z, z
�, y, η))

�Sγ(z, z
�, y, η) =

�
�xk(z, z

�, y, ν0), η
�
−

1

2�ν0, η�

�
kW

−1
1 kW2 η, η

�

−
1

2

� z

z�

tr

�
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)

�
dz

where the kWi, yk, and νk are the functions defined above all evaluated at the point (z, z�, x0, ν
0).

This will be the convention for the remainder of this work when kWi, yk, or νk are written without
any argument. Note that the last term in the definition only depends on z, z� and the curvelet index
γ. Because of this we introduce the notation

Uγ(z, z
�) =

1

2

� z

z�

tr

�
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)

�
dz.
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Now we define the action of an operator on the curvelet ϕγ as

ϕ2,γ(z, z
�, y) =

1

(2π)n

�

Rn

ei
�Sγ(z,z

�,y,η) �ϕγ(η) dη.

Note that ϕ1,γ could be written using the same formula if �Sγ were replaced by a simpler phase

function. Now T2(z, z
�) and Tk�

2 (z, z�) are defined respectively by (3.8) and (3.9) with ϕ1,γ replaced
by ϕ2,γ . In theorem 4.2 we will prove that T2 is a parametrix for (1.1), but for now we prove only
the following analog of lemma 3.1.

Lemma 3.3. The results of lemma 3.1 hold with T1 replaced by T2 assuming that no caustics
develop in the interval [0, Z].

Proof. As one might suspect, the proof is similar to that of lemma 3.1. We first note that

(3.26) ∂zϕ2,γ(z, z
�, y) =

i

(2π)n

�
ei

�Sγ(z,z
�,y,η)∂z �Sγ(z, z

�, y, η) �ϕγ(η) dη.

Now if we define new functions by

(3.27) �fγ(z, z�, η) = e
−i

2�ν0,η�

�
kW

−1
1 kW2 η, η

�
�ϕγ(η),

then using (3.24) we see that {fγ(z, z
�, ·), γ}γ∈Γ0

, where Γ0 is the grid of indices corresponding to
the curvelet frame, is a FCLF. Further, if we write Φ2,γ(z, z

�, y) = �xk(z, z
�, y, ν0), then from (3.26)

we have

(3.28) ∂zϕ2,γ(z, z
�, y) = i e−iUγ(z,z

�)
Φ

∗
2,γ(z, z

�, ·)
�
∂z �Sγ(z, z

�,Φ−1
2,γ(z, z

�, ·), D)fγ(z, z
�, ·)

�
(y)

where Φ
−1
2,γ(z, z

�, ·) is the inverse of y �→ Φ2,γ(z, z
�, y). From the definition of �Sγ as well as identities

(3.19) and (3.25), we may calculate

∂z �Sγ(z, z
�,Φ−1

2,γ(z, z
�, x), η) =

�
∂ξpk(z, yk(z, z

�, x, ν0), νk(z, z
�, x, ν0)), kW

−T
1 (z, z�, x, ν0) η

�

+
1

2�ν0, η�

�
∂2
ξξpk(z, yk, νk) kW

−T
1 η, kW

−T
1 η

�
−

1

2
tr

�
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)

�(3.29)

From this formula and using (3.4) we see that ∂z �Sγ(z, z
�,Φ−1

2,γ(z, z
�, x), η) satisfies the hypotheses of

lemma A.6 where z and z� are considered as extraneous parameters. By that lemma and lemma A.7,

(3.30)
�
2−k∂zϕ2,γ(z, z

�, y),Φ∗
2,γ(z, z

�, ·)(γ)
�
γ∈Γ0

is a FCLF.
Now let us introduce the matrix coefficients c2,�γγ(z, z, z

�) defined by (3.13) with ϕ1,γ replaced
by ϕ2,γ . Just as in the proof of Lemma 3.1 from (3.30) it follows that

|c2,�γγ(z, z, z
�)| ≤ Cδ |z − z| 2kµδ(�γ,Φ∗

2,γ(z, z
�, ·)(γ))

for any δ > 0. Now we can calculate using (3.19) and (3.23)

Φ
∗
2,γ(z, z

�, ·)(γ) =

�
yk(z, z

�, (x0, ν
0)),

νk(z, z
�, (x0, ν

0))

|νk(z, z�, (x0, ν0))|
, k + log2(|νk(z, z

�, (x0, ν
0))|)

�
.

The only difference between this and Φ∗
1,γ(z, z

�, ·)(γ) is the potential shift in the scale k by log2(|νk(z, z
�, (x0, ν

0))|).
However the size of this shift can be bounded uniformly by a constant times Z supω∈Sn−1 �p(·,ω)�Cm,1 ,
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and so as before we may replace Φ∗
2,γ(z, z

�, ·)(γ) by Ψz,z�(γ). The results now follow as in the proof
of lemma 3.1.

Remark 3.4. From the proof of lemma 3.3, using lemma A.5, we may conclude that Tk
2(z, z

�)
and Tk

2(z, z
�) − Tk

2(z, z
�) satisfy the hypotheses for Fk in lemma B.1 with respectively r = 0 and

r = 1, and in the latter case C = C2(Z)|z − z|. The constant A is related to the change in scale
log2(|νk(z, z

�, (x0, ν
0))|), giving the frequency localization.

4. Properties of the Volterra kernels and solutions. In this section we will prove a
number of properties of the Volterra kernels K1 and K2 associated, by (2.4), respectively to the
parametrices T1 and T2 introduced in the previous section.

4.1. Regularity estimates for the Volterra kernels. We will prove two theorems which
give respectively Lipschitz and Hölder regularity estimates for K1 and K2. The key distinction is
that K2 has Hölder regularity as a map from Hs to Hs for certain values of s, while K1 only has
this type of regularity as a map from Hs to Hs−� for some positive epsilon. Actually we will just
prove a Lipschitz estimate for K1 as a map from Hs to Hs−1, but using interpolation such Hölder
estimates could be found.

The first result concerns K1.

Theorem 4.1. For −1 ≤ s < 1

(4.1) �K1(z, z
�)−K1(z̄, z

�)�(Hs+1,Hs) ≤ CH
1 (Z) |z − z̄|,

uniformly in z� ∈ [0, Z]. An equivalent estimate holds when z� is varied instead of z.

Proof. To begin we make a decomposition of
�
∂z−i p(z, y,Dy)

�
T1(z, z

�)−
�
∂z̄−i p(z̄, y,Dy)

�
T1(z̄, z

�)
into the following three pieces

(4.2)
�

k

(∂z − i pk(z, y,Dy)
�
Tk

1(z, z
�)−

�
∂z̄ − i pk(z̄, y,Dy)

�
Tk

1(z̄, z
�),

(4.3) i
�

k

�
pk(z, y,Dy)− p(z, y,Dy)

��
Tk

1(z, z
�)−Tk

1(z̄, z
�)
�
,

and

(4.4) i
�

k

�
(pk(z, y,Dy)− pk(z̄, y,Dy))− (p(z, y,Dy)− p(z̄, y,Dy))

�
Tk

1(z̄, z
�).

The proof that the kernel is Lipschitz in the z variable will be complete if we can estimate the
norm of each of the previous three operators by |z̄ − z|. To estimate (4.3) we note, referring to
remark 3.2, that Tk

1(z, z
�)−Tk

1(z, z
�) satisfies the requirements of Fk in lemma B.1 with r = 1 and

C = C1(Z)|z− z̄|. Also p(z, y, ξ) takes the place of a(y, ξ) with m = 1 for fixed z, and so lemma B.1
implies the required estimate for (4.3). Similarly, lemma B.1 implies the result for (4.4) taking this
time Fk = Tk

1(z̄, z
�), r = 0, m = 0, and a(y, ξ) = p(z, y, ξ)− p(z̄, y, ξ). We now continue to analyze

(4.2).
We will use the same notation as in the proof of lemma 3.1. First define

(4.5) �ϕ1,γ(z, z
�, y) =

�
∂z − i pk(z, y,Dy)

�
ϕ1,γ(z, z

�, y)

and consider

(4.6) ∂z �ϕ1,γ(z, z
�, y) = (∂z − i pk(z, y,Dy))∂zϕ1,γ(z, z

�, y)− i ∂zpk(z, y,Dy)ϕ1,γ(z, z
�, y).
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Applying several of the lemmas from appendix A to this formula we see that
�
2−k∂z �ϕ1,γ(z, z

�, y),Φ∗
1,γ(z, z

�, ·)(γ)
�
γ∈Γ0

is a FCLF. Here we have omitted some calculations that show the cancellation of certain terms,
but these calculations are essentially the same as some which can be found in [3], and a more
sophisticated version is given in the proof of theorem 4.2. The result for (4.2) now follows as in the
proof of lemma 3.1.

To prove the final statement about regularity in z� we write

K1(z, z
�)−K1(z, z) =

�

k

(∂z − i pk(z, y,Dy))(T
k
1(z, z

�)−Tk
1(z, z))

− i
�

k

(pk(z, y,Dy)− p(z, y,Dy)(T
k
1(z, z

�)−Tk
1(z, z)).

The required estimate for the first term in the sum above follows just as the estimate for (4.2), while
the second term is estimated in the same way as (4.3).

The following theorem regarding regularity of K2 is the main technical result of this paper.

Theorem 4.2. For −3/2 ≤ s < 3, K2(z, z
�) : Hs−1/2 → Hs continuously. If −1 ≤ s < 2 then

(4.7) �K2(z, z
�)−K2(z̄, z

�)�(Hs,Hs) ≤ CH
2 (Z) |z − z̄|1/2,

uniformly in z� ∈ [0, Z]. An equivalent estimate holds if we vary z� instead of z.

Remark 4.3. Note that the first statement of the theorem shows that K2 is a parametrix for
−3/2 ≤ s < 3.

Proof. First assume that −3/2 ≤ s < 3. We begin as before by splitting K2 into smooth and
rough parts:

�

k

(∂z − i pk(z, y,Dy))T
k
2 + i

�

k

(pk(z, y,Dy)− p(z, y,Dy))T
k
2 .

For the rough part (the second summand above) we use the fact that Tk
2 satisfies the requirements

of lemma B.1 with r = 0, and so the required estimates follow by applying the lemma with m = 2.
Now we continue to analyze the smooth part given by the first summand.

We use the same notation as in the proof of lemma 3.3, and begin with formulas (3.28) and
(3.29). Indeed, by (3.29) we have

∂z �Sγ(z, z
�,Φ−1

2,γ(z, z
�, x), D)fγ

= −i
�
∂ξpk(z, yk(z, z

�, x, ν0), νk(z, z
�, x, ν0)), kW

−T
1 (z, z�, x, ν0) ∂xfγ

�

−
1

2

�
tr

�
kW

−1
1 ∂2

ξξpk(z, yk, νk)kW
−T
1

�
1

�ν0, D�
∂2
xxfγ

��

+ tr

�
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)fγ

��
.

Combined with (3.28) this gives a formula for ∂zϕ2,γ(z, z
�, y).

Next let us analyze i pk(z, y,Dy)ϕ2,γ(z, z
�, y). Since

ϕ2,γ(z, z
�, y) = e−iUγ(z,z

�)[Φ∗
2,γ(z, z

�, ·)fγ(z, z
�, ·)](y),
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we may begin by applying the calculus of ΨDOs (see in particular [17, Theorem 18.1.17]) as well a
generalization of [13, Lemma 3.1] to obtain the formula

pk(z, y,Dy)ϕ2,γ(z, z
�, y) = e−iUγ(z,z

�)
Φ

∗
2,γ(z, z

�, ·)[gγ(z, z
�, ·)](y)

where

gγ(z, z
�, x) =

�
pk(z,Φ

−1
2,γ(z, z

�, x), dΦT
2,γ(z, z

�,Φ−1
2,γ(z, z

�, x))D)

−
1

2
tr

�
kW3 kW

−1
1 ∂2

ξξpk(z, yk, νk)fγ

�
+ ak(z, z

�, x,D)
�
fγ

and the ak(z, z
�, x, η) result from the remainder terms of the ΨDO calculus and the application of

the lemma. The symbols ak are such that both

{2k/2ak(z, z
�, x,D)fγ(z, z

�, ·), γ}γ∈Γ0
and {2−k/2∂zak(z, z

�, x,D)fγ(z, z
�, ·), γ}γ∈Γ0

are families of curvelet like functions. This follows from analysis of these remainders and size
estimates of kW1 and its derivatives. By lemmas A.8 and A.4 if

�gγ = i 2k/2e−iUγ(z,z
�)
�
∂z �Sγ(z, z

�,Φ−1
2,γ(z, z

�, x), D)fγ − gγ
�

= i 2k/2e−iUγ(z,z
�)ak(z, z

�, x,D)fγ
(4.8)

then

(4.9)
�
Φ

∗
2,γ(z, z

�, ·)�gγ(z, z�, ·),Φ∗
2,γ(z, z

�, ·)(γ)
�
γ∈Γ0

is a FCLF. Combining all the previous calculations we see that 2k/2(∂z−ipk(z, y,Dy))ϕ2,γ(z, z
�, y) =

[Φ∗
2,γ(z, z

�, ·)�gγ(z, z�, ·)](y), and we finally conclude that

(4.10)
�
2k/2(∂z − ipk(z, y,Dy))ϕ2,γ(z, z

�, y),Φ∗
2,γ(z, z

�, ·)(γ)
�
γ∈Γ0

is a FCLF. The first statement of the theorem now follows as in previous proofs.
To prove (4.7) we combine the result already obtained for the continuity of K2(z, z

�) with the
following estimate which we will show holds for −3/2 ≤ s < 2.

(4.11) �K2(z, z
�)−K2(z̄, z

�)�(Hs+1/2,Hs) ≤

�
CH

2 (Z)
�2

2
|z − z̄|

for a constant CH
2 (Z) > 0. Indeed, if we establish (4.11) then (4.7) follows by interpolation and

the triangle inequality. The proof of (4.11) is the same as the proof of theorem 4.1. First we
split K2(z, z

�)−K2(z, z
�) into (4.2), (4.3), (4.4) with Tk

1 replaced by Tk
2 wherever it appears. The

estimates for the two rough parts, (4.3) and (4.4), follow just as before except that now m = 2 and
1 in the respective applications of lemma B.1. Finally, we analyze the part corresponding to (4.2).

The object is to show that

(4.12)
�
2−k/2∂z(∂z − i pk(z, y,D))ϕ2,γ(z, z

�, y),Φ∗
2,γ(z, z

�, ·)(γ)
�
γ∈Γ0

.

is a FCLF from which (4.11) follows as in the previous proofs. To do this, we calculate using the
results from above

2−k/2∂z(∂z − i pk(z, y,D))ϕ2,γ(z, z
�, y) = 2−k

��
∂�z Φ

∗
2,γ(�z, z�, ·)

�
�gγ(z, z�, ·)

����
�z=z

+ Φ
∗
2,γ(z, z

�, ·)
�
∂z�gγ(z, z�, ·)

��
(y).

The first term on the right hand side gives a FCLF by lemma A.7, and we can see that the second
term also gives a FCLF by analyzing the derivative of the second line of (4.8). This completes the
proof of (4.12) and also the proof of the Hölder regularity in z. To prove regularity in z� we begin
with the same expression as (4.12) with the first ∂z replaced by ∂z� and apply a similar analysis.
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4.2. Estimates of the iterated Volterra kernel and solution. Now that we have estab-
lished our central technical results in the previous two sections, we apply them to the solution of
the Volterra equation, and by extension the full solution of (1.1). Assume that we have a Volterra
kernel K(z, z�) with the following properties. There exist r, s, α, C(Z), CH(Z) ∈ R with r ≥ 0,
1 ≥ α > 0, and C(Z), CH(Z) > 0 such that

(4.13) K(z, z�) : Hs → Hs uniformly for z, z� ∈ [0, Z] with constant C(Z),

(4.14) �K(z, z�)−K(z̄, z̄�)�(Hs,Hs−r) ≤ CH(Z)(|z − z̄|α + |z� − z̄�|α)

for all z, z�, z̄, and z̄� ∈ [0, Z]. Note that the Volterra kernel associated to any parametrix satisfies
(4.13), K1 from section 3.1 satisfies (4.14) with certain values of s, r = 1, and α = 1, and K2 from
section 3.2 satisfies (4.14) with certain values of s, r = 0, and α = 1/2. Thus all the estimates of
this section applied to either K1 or K2 may be considered as corollaries of theorems 4.1 and 4.2.

We first consider the iterated Volterra kernel Kn given by (3.1). The following estimate is
proven by applying (4.14) to the definition of the iterated kernel and using an inductive argument.

(4.15) �Kn(z)−Kn(z̄)�(Hs,Hs−r) ≤
Zn−1

(n− 1)!
C(Z)n−1CH(Z)|z − z̄|α.

We next consider the resolvent R(z) defined in section 2 corresponding to K(z, z�). By summing
up (4.15) we obtain the following.

(4.16) �R(z)−R(z̄)�(Hs,Hs−r) ≤ eZC(Z)CH(Z) |z − z̄|α,

Now, for u0 ∈ Hr, let g(z, x) = [R(z)u0](x) be the solution of the Volterra equation (2.5). A
straightforward application of (4.16) then immediately implies that

(4.17) �g(z, ·)− g(z̄, ·)�Hs−r ≤ eZC(Z)CH(Z) |z − z̄|α �u0�Hs .

This, together with the comments above, shows that if 0 ≤ s < 2 and g1(z, x) is the solution of (2.5)
using K1 with initial data u0 ∈ Hs, then g1 ∈ C0,1([0, Z];Hs−1). If −1 ≤ s < 2 and g2(z, x) is the
solution of (2.5) using K2 with initial data u0 ∈ Hs, then g2 ∈ C0,1/2([0, Z];Hs).

5. Approximation by semi-discretization. In this section we discretize the Volterra equa-
tion (2.5) with respect to the z variable. To accomplish this we use the repeated trapezoid rule to
approximate the integral, and it is here that the regularity estimates from the previous section will
play a key role. Using these estimates we have certain error bounds for the quadrature scheme which
allow us to prove in turn convergence of a resulting approximation of the solution to the Volterra
equation.

5.1. Quadrature scheme. To produce a numeric algorithm to solve the Volterra equation
(2.5) we first introduce a quadrature scheme for the integration involved there. Given that the
Volterra kernel and solution have Hölder regularity and in general no better, a natural choice of
scheme is the trapezoid rule defined as follows.

For every N ∈ N we introduce a partition PN = {zN0 , zN1 , ... , zNN } of the interval [0, Z]. That
is, we chose the zNi so that 0 = zN0 < zN1 < · · · < zNn = Z. We then define hi = zNi − zNi−1, and the
weights

(5.1) wN
ij =





hN
j +hN

j+1

2 if 0 < j < i ≤ N ,
hN
j

2 if j = i > 0,
hN
1

2 if j = 0 and i > 0,
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and otherwise wN
ij = 0. Also let hN = supi∈1, ... ,NhN

i . If B is any Banach space and f : [0, Z] → B
is continuous, then the repeated trapezoid rule is given by

(5.2)

� zN
i

0

f(z) dz =

i�

j=0

wN
ij f(z

N
j ) + EN

i (f).

We are thinking of the sum in the previous expression as an approximation to the integral and
EN

i (f) as an error term which should approach zero as N → ∞. Indeed, we have in general the
following estimates

(5.3) �EN
i (f)�B ≤ zNi (hN )α L

α
[0,zi]

(f)

where

L
α
[0,i]

(f) = sup
z,z∈[0,zN

i ]: z �=z

�f(z)− f(z)�B
|z − z|α

.

The cases that are relevant here are when f(z�) = Km(zi, z
�)g(z�, ·) : [0, zi] → Hs where m = 1 or 2

and s is in the allowed range depending on m.

5.2. Semi-discrete Volterra equation. We now introduce the semi-discrete Volterra equa-
tion. If K is the Volterra kernel associated to a parametrix, as defined in section 2, then we will
write KN

ij := K(zNi , zNj ). Also we define

AN
ij := wN

ijK
N
ij ,

where wij are the weights given in (5.1). Thus AN is a (N +1)× (N +1) matrix with entries in the
space of continuous linear operators from Hs to Hs. The semi-discrete Volterra equation is then

(5.4) gNi = KN
i0 u0 +

i�

j=0

AN
ij g

N
j for all i ∈ {0, ... , N}.

We assume that u0 ∈ Hs. If hN < 2 then, since Aii = hiId/2 for i > 0, and A00 = 0, we see that this
equation has a unique solution in (Hs)N+1. This method of approximating g, using (5.4), is known
as direct quadrature. The next proposition establishes how well the solution of (5.4) approximates
the solution of the Volterra equation.

Proposition 5.1. Suppose that the Volterra kernel K(z, z�) satisfies (4.13) and (4.14) for
some values of the parameters, and for given u0 ∈ Hs let g(z, x) ∈ L∞([0, Z], Hs) be the solution of
(2.5) and gN ∈ (Hs)N+1 be the solution of (5.4). Assume also that K(z, z�) extends to a uniformly
continuous map from Hs−r to Hs−r with the same constant C(Z) and that hN < 1. Then

(5.5) supi∈{0, ... ,N}�g(zi, ·)− gNi (·)�Hs−r ≤ 2 e

�
Z+

2NhN
2−hN

�
C(Z)

CH(Z)hα
N�u0�Hs .

Proof. We first note that by (2.7), (4.14), and (4.17)

(5.6) �K(zNi , z�)g(z�, ·)−K(zNi , z̄�)g(z̄�, ·)�Hs−r ≤ 2eZC(Z)CH(Z)|z� − z̄�|α�u0�Hs
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for all i, z�, and z̄�. We will write dNi (x) = g(zNi , x)− gNi (x). Then (2.5) and (5.4) imply

dNi (x) =



� zN

i

0

[K(zNi , z�)g(z�, ·)](x) dz� −
i�

j=0

[AN
ij g(z

N
j , ·)](x)




+

i�

j=0

[AN
ij (g(z

N
j , ·)− gNj (·))](x)

= EN
i ([K(zi, z

�)g(z�, ·)]) +

i�

j=0

[AN
ijd

N
j (·)](x).

(5.7)

Using now (5.3) with B = Hs−r and (5.6) we have

�dNi �Hs−r ≤ 2eZC(Z)CH(Z)hα
N�u0�Hs + C(Z)

i�

j=0

wN
ij �d

N
j �Hs−r

≤ 2
eZC(Z)CH(Z)hα

N�u0�Hs

1− hN/2
+

C(Z)hN

1− hN/2

i−1�

j=0

�dNj �Hs−r

A discrete Gronwall-type inequality (see [6, section 1.5.3]) now implies that

�dNi �Hs−r ≤ 4eZC(Z)CH(Z)hα
N�u0�Hse

NhNC(Z)

1−hN/2 .

This completes the proof.

If hN ≈ 1/N , as would be the case if the partition P is evenly spaced, then proposition 5.1 implies
that �g(zi, ·) − gNi (·)�Hr−s ≈ (1/N)α as N → ∞. The proposition also reveals the key difference
between the parametrices T1 and T2 and corresponding Volterra kernels K1 and K2. For K1 we
only have the Hölder estimates (4.14) in the case where r > 0, and so we can only estimate the
error incurred as a result of the discretization in a norm which is rougher than that of the space
where the initial data u0 lies. However, for K2 we can take r = 0 and obtain an error estimate with
respect to the original norm.

6. Concentration of sets of wave packets. In this section we assume that the initial data,
u0, has a representation in the curvelet frame that is concentrated near a finite set of curvelet indices
Γ0, and then study how much the curvelet coefficients for the solution of (1.1) spread away from
Ψz,0(Γ0) as z increases. The motivation for this study is to apply the results to prove convergence
of a numeric scheme to solve (1.1) using only a finite set of curvelets.

Following [3], we first introduce the following weighted spaces.

Definition 6.1. Let Γ0 be a finite set of curvelet indices. We define the space Hσ,α
Γ0

by the
norm

�f�2Hσ,α
Γ0

= |f0|
2 +

�

γ

�� 2kσ min
γ0∈Γ0

��
2max(k,k0)d(γ; γ0)

�α�
fγ

��2 ,

where γ = (x, ν, k), and fγ are the coefficients of f with respect to the curvelet frame.

In this definition, σ corresponds to the Sobolev space regularity of f while α gives the degree to
which the curvelet coefficients of f are concentrated near Γ0. A useful estimate is the following

(6.1) �f�2Hσ,α
Γ0

≈ |f0|
2 + min

γ0∈Γ0

�

γ

�� 2kσ
�
2max(k,k0) d(γ; γ0)

�α
fγ

��2.
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The constants relating the two sides can be found based on the “radius” of the set Γ0 (under a
proper interpretation of the radius).

Estimates in terms of the Hσ,α
Γ0

norm allow us to easily estimate how well a given function is
approximated by a finite set of curvelets. Indeed, given a finite set of curvelet indices Γ0 ⊂ Γ let Γr

0

be the set of all indices γ that are indices of curvelets in the curvelet frame, and such that

min
γ0∈Γ0

2max(k,k0)d(γ; γ0) ≤ r.

Then define ∆r
Γ0

to be the operator given

∆
r
Γ0
f = f0ϕ0 +

�

γ∈Γr
0

fγϕγ .

If f ∈ Hσ,α
Γ0

it is then straight forward to check that f ∈ Hσ and

(6.2) �f −∆
r
Γ0
f�Hσ ≤ min(r−α, 1)�f�Hσ,α

Γ0
.

This inequality will be useful below when we estimate the error incurred by solving the Volterra
equation with only a finite number of curvelets. However, to accomplish this goal we will first
require the following lemma.

Lemma 6.2. Let 0 ≤ α < m+1
2 , |σ| ≤ m−1

2 with m = 1 (p ∈ C1,1S1
cl) or 2 (p ∈ C2,1S1

cl). It
holds true that

(6.3) �Km(z, z�)�(Hσ,α
Ψ

z�,0
(Γ0 )

,Hσ,α
Ψz,0(Γ0)

) ≤ CK(Z)

uniformly in z, z� ∈ [0, Z].
Proof. Let cm,γγ�(z, z�) and �cm,γγ�(z, z�) be respectively matrices of the operators

�

k

(∂z − i pk(z, y,Dy))T
k
m(z, z�) and Tm(z, z�)

with respect to the curvelet frame. Then by results in sections 3 and 4 as well as [19, Lemma 2.2]
we have the estimates

cm,γγ�(z, z�) � 2k(1−m)/2µδ(γ,Ψz,z�(γ�)), and �cm,γγ�(z, z�) � µδ(γ,Ψz,z�(γ�))

for any δ > 0. Also, by [3, Theorem 5.5] (or, more accurately, using a portion of the proof of that
theorem) and (6.1) we have the estimates

�
�
pk(z, y,Dy)− p(z, y,Dy)

�
ϕγ�Hσ,α

Ψz,0(Γ0)
� �ϕγ�Hσ,α

Ψz,0(Γ0)

� 2kσ min
γ0∈Ψz,0(Γ0)

��
2max(k,k0)d(γ; γ0)

�α�

for α and σ within the ranges specified in the hypotheses and where ϕγ is a curvelet at scale k.
Making the same decomposition as in the proof of theorem 4.2 we have

�Km(z, z�)f�2Hσ,α
Ψz,0(Γ0)

�

��

γ

�

γ�

2kσ min
γ0∈Ψz,0(Γ0)

��
2max(k,k0)d(γ; γ0)

�α�
cm,γγ�(z, z�) |fγ� |

+
�

γ

�

γ�;k�=k

2kσ min
γ0∈Ψz,0(Γ0)

��
2max(k,k0)d(γ; γ0)

�α��cm,γγ�(z, z�) |fγ� |

�2

.
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Now we apply the estimate
�
2max(k,k0)d(γ;Ψz,0(γ0))

�α
�

�
2max(k,k�)d(γ;Ψz,z�(γ�))

�α

·
�
2max(k�,k0)d(Ψz,0(γ0);Ψz,z�(γ�))

�α

which together with the bounds from above on the matrix coefficients cm,γγ� and �cm,γγ� gives for
any δ > 0

�Km(z, z�)f�2Hσ,α
Ψz,0(Γ0)

�

min
γ0∈Ψz,0(Γ0)

�

γ

��

γ�

µδ(γ0,Ψz,z�(γ�))
���2k�σ

�
2max(k�,k0)d(γ0;Ψz,z�(γ�))

�α
fγ�

���
�2

.

Finally, [19, Lemmas 2.1, 2.2, 2.4] imply with the last inequality and (6.1) that

�Km(z, z�)f�2Hσ,α
Ψz,0(Γ0)

� �f�2Hσ,α
Ψ

z�,0
(Γ0)

.

This completes the proof.

The lemma also yields estimates for the resolvents:

(6.4) �Rm(z)�(Hσ,α
Γ0

,Hσ,α
Ψz,0(Γ0)

) ≤ CR,m(Z)

uniformly for z ∈ [0, Z].
With the previous result we may now prove an error estimate that relates the solution of the

fully discrete Volterra equation (ie. the semi-discrete equation from the previous section truncated
to a finite set of curvelets) to the true Volterra solution. We begin by modifying the semi-discrete
Volterra equation to become fully discrete. Using the same notation as in section 5.2, for any given
r > 0 and finite set of indices Γ0 let

�AN
ij = wij ∆

r
Ψ

zN
i

,0
(Γ0)

Kij

The fully discrete Volterra equation is then (compare with (5.4))

(6.5) �gNi = ∆
r
Ψ

zN
i

,0
(Γ0)

Ki0 u0 +

i�

j=0

�Aij �gNj .

Note that for every i and N the solution �gNi of (6.5) is a linear combination of the curvelets
corresponding to the indices ΨzN

i ,0(Γ0)
r. Now we present the result, which is a sort of extension of

proposition 5.1.

Corollary 6.3. Let u0 be a linear combination of curvelets with indices in the finite set Γ0.
Suppose that g(z, x) is the solution of (2.5) corresponding to K2, and that �gN is the corresponding
solution of (6.5). Then for any |s| ≤ 1/2 and 0 ≤ α < 3/2 we have the estimate

sup
i∈{0, ... ,N}

�g(zNi , ·)− �gNi �Hs ≤ C(Z) (h
1/2
N +min(r−α, 1)))�u0�Hs

Proof. The proof is largely the same as the proof of proposition 5.1. The primary difference is
that in (5.7) �dNi (x) = g(zNi , x)− �gNi (x) replaces dNi (x), �AN

ij replaces AN
ij in the sum on the second

line, and there appear the extra terms
������

i�

j=0

[AN
ij − �AN

ij ]g(z
N
j , ·)

������
Hs

≤ min(r−α, 1)Z C2(Z)CR,2(Z) �u0�Hs
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and

�Ki0 u0 −∆
r
Ψ

zN
i

,0
(Γ0)

Ki0 u0�Hs ≤ min(r−α, 1)C2(Z)�u0�Hs .

These estimates use the result of lemma 6.2, (6.2), and (6.4) as well as the continuity ofK2. Inserting
these into the proof of proposition 5.1 yields the proof of the corollary.

This last corollary establishes the possibility of approximating the solution of the Volterra
equation using only curvelets that lie within a certain distance of the Hamiltonian flow corresponding
to the finite number of initial curvelets. We note additionally that the estimates lend themselves well
to a “step-by-step” approach to solving the fully discrete Volterra equation (6.5). Given a choice of
step size in the quadrature, and a choice for r, at each time step we compute only those curvelet
coefficients corresponding to indices in ΨzN

i ,0(Γ0)
r. This means, loosely speaking, that we only

consider those curvelets lying within r of the original curvelets flowed forward to time zi. Further,
we point out that the approximate solution of (1.1) provided by the fully discrete Volterra equation
will consist of a sum of terms each being a composition of some number of operators of the form
K2(z

N
i , zNj ) or T2(z

N
i , zNj ). The computation of these compositions, reserved for future work, will

be accomplished via a separated representation similar to that used in the proofs of theorems 4.1
and 4.2.

Appendix A. Curvelet like functions.
In this appendix we develop some technical machinery which we use to analyze the various

operators defined in terms of the curvelet frame. In the main text, we use a curvelet frame based
on parabolic scaling as defined, for example, in either [3] or [19]. Our notation for curvelets and the
curvelet frame matches that of [3]. In particular, we use the notation Γ = R

n × S
n−1 ×R and refer

to Γ as the set of “curvelet indices.” Also d is the pseudodistance on R
n × S

n−1 introduced in [19,
Definition 2.1]

(A.1) d(x, ν;x�, ν�) = |�ν, x− x��|+ |�ν�, x− x��|+min{|x− x�|, |x− x�|2}+ |ν − ν�|2.

If γ = (x, ν, k) and γ� = (x�, ν�, k�) ∈ Γ, let

(A.2) d(γ; γ�) = 2−min(k,k�) + d(x, ν;x�, ν�).

The weight function µδ(γ, γ
�) is given by

µδ(γ, γ
�) = (1 + |k� − k|2)−12−( 1

2n+δ)|k�−k|2−(n+δ)min(k�,k)d(γ; γ�)−(n+δ).

This weight function is different from, but equivalent to that introduced in [18]. We also use both

notations �f and F{f} for the Fourier transform of f depending on the aesthetic demands of the
individual situation.

We now begin to introduce more general classes of functions that behave in many ways like
those which make up the curvelet frame. For k ∈ R we will denote by Ck the cylinder

(A.3) Ck = [2k−1, 2k+1]× B
n−1
2k/2 ⊂ R

n.

where B
n−1
2k/2 is the n − 1 dimensional ball of radius 2k/2 centered at the origin. The term “dyadic

parabolic scaling” refers to the relative proportions of these cylinders which scale like 2k in the
direction of e1, and 2k/2 in the perpendicular directions. Given ν ∈ S

n−1 let Θν ∈ O(n) represent
any rotation that maps e1 into ν, and define

Cν,k = ΘνCk.

Naturally Cν,k is independent of the specific rotation that is chosen. Also, we write ρk = |Ck| ∼
2k(n+1)/2. The families of functions are now defined as follows.
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Definition A.1. A subset F ⊂ S(Rn)× Γ is a family of curvelet like functions (FCLF)
if the following conditions are met.

1. For every j ∈ N, α ∈ N
n, and N ∈ N, there exists a constant Cj,α,N > 0 such that the

following estimates hold for all (f, (x, ν, k)) ∈ F

ρ
1/2
k

���ν, ∂ξ�j∂α
ξ (e

i�x,ξ� �f(ξ))
�� ≤ Cj,α,N2−k

�
j+

|α|
2

��
1 + 2−k/2�ξ − Cν,k�

�−N
.

2. There exists a constant C ∈ R (possibly less than zero) such that for all (f, (x, ν, k)) ∈ F ,
k ≥ C.

When we have a family of curvelet like functions, F , we use the notation πΓ : F → Γ for the map
projecting F onto the set of curvelet indices, and πx, πν , πk for the respective projections onto
components of the curvelet indices. Also, πS : F → S(Rn) is the projection onto S(Rn). When
there is only one family of curvelet like functions we will usually write γ = (x, ν, k) for the curvelet
index of arbitrary functions in the family.

Though we will not formulate the result precisely, we also remark that families of curvelet like
functions may be added together (ie. adding functions corresponding to the same index) to produce
a new family of curvelet like functions. This fact, which follows immediately from the definition,
will be used extensively.

Curvelet frames with parabolic scaling give families of curvelet like functions if we remove the
element of the frame whose Fourier transform covers the origin (ie. the zero frequency curvelet).
The motivation for considering these families is that they are more or less preserved under most
of the operations that we would like to perform on curvelets. In the following series of lemmas we
will show precisely what this means, and in essence establish a calculus for families of curvelet like
functions.

Lemma A.2. Suppose that F and G are two families of curvelet like functions. Then for every
δ > 0 there exists a constant Cδ such that for every f ∈ F and g ∈ G

���
�
πS(f),πS(g)

���� ≤ Cδ µδ(πΓ(f),πΓ(g)).

Proof. We first prove the result for the case when one of the families is given by a curvelet
frame. Then we represent the functions in each of two families with respect to this curvelet frame
and apply a slight generalization of [18, lemma 2.5] to the case when the γ and γ0 need not be in
the grid corresponding to the curvelet frame.

We next study what happens when we take derivatives of curvelet like functions.

Lemma A.3. Suppose that F is a family of curvelet like functions. Then

��
2−k�ν, ∂y� f, γ

��
(f,γ)∈F

and
��

2k�ν, y − x� f, γ
��

(f,γ)∈F

are also families of curvelet like functions. Furthermore, if we are given a map ν⊥ : F → S
n−1 such

that �ν⊥(f, γ), ν� = 0 for every (f, γ) ∈ F , then

��
2−k/2�ν⊥(f, γ), ∂y� f, γ

��
(f,γ)∈F

and
��

2k/2�ν⊥(f, γ), y − x� f, γ
��

(f,γ)∈F
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are both families of curvelet like functions.
Proof. For (f, γ) ∈ F we have

2−k
F

�
�ν, ∂y� f

�
(ξ) = i 2−k�ν, ξ� �f(ξ).

Combined with the inequality

2−k|�ν, ξ�| ≤ 2(1 + 2−k/2�ξ − Cν,k�)

this gives the first assertion of the lemma.
Next we have

F

�
�ν, y − x� f

�
= �ν, D �f �,

which easily implies the second assertion.
The third and fourth assertions follow in the same way if we use also the inequality

2−k/2|�ν⊥(f, γ), ξ�| ≤ (1 + 2−k/2�ξ − Cν,k�)

which holds for any ν⊥ satisfying the hypotheses.

We next study how curvelet like functions change under pull-back by a change of coordinates.
Suppose that Φ : R

n → R
n is a diffeomorphism. First recall that the pull-back of a function

f ∈ S(Rn) is given by the composition Φ∗(f)(x) = f(Φ(x)). We define the pull-back of a curvelet
index γ = (x, ν, k) by

Φ
∗(γ) =

�
Φ

−1(x), (dΦT (x)ν)/|dΦT (x)ν|, k + log2(|dΦ
T (x)ν|)

�
.

Note that since Φ is a diffeomorphism, the map Φ∗ : Γ → Γ is invertible.

Lemma A.4. Suppose that F is a family of curvelet like functions, and that {Φγ}γ∈πΓ(F) is a
family of diffeomorphisms on R

n satisfying

�∂α
xΦ

−1
γ � ≤ Cα for 0 < |α| ≤ 2, and �∂α

xΦ
−1
γ � ≤ 2k(|α|−2)/2Cα for 2 < |α|.

Then ��
Φ

∗
γ(f),Φ

∗
γ(γ)

��
(f,γ)∈F

is a family of curvelet like functions. Note that Φ∗
γ(f) is the pull-back of the function f , while Φ∗

γ(γ)
is the pull-back of the curvelet index γ.

Proof. Let (f, γ) ∈ F . By the Fourier inversion formula we have the following formula

ρ
1/2
k� �ν�, ∂ξ�

j∂α
ξ

�
ei�Φ

−1
γ (x),ξ� �Φ∗

γf(ξ)
�
=

ij+|α|ρ
1/2
k�

(2π)nρ
1/2
k

��
ei
�
�Φγ(y)−x,η�−�y−Φ

−1
γ (x),ξ�

�

·�ν�,Φ−1
γ (x)− y�j

�
Φ

−1
γ (x)− y

�α�
ρ
1/2
k ei�x,η� �f(η)

�
dη dy.

where k� ∈ R and ν� ∈ S
n−1 are the respective components of the pull-back Φ∗

γ(γ). Note that this
should be interpreted as an iterated integral with the integration done first in η and then in y.
Making the change �x = Φγ(y)− x in the second integral gives

ρ
1/2
k� �ν�,∂ξ�

j∂α
ξ

�
ei�Φ

−1
γ (x),ξ� �Φ∗

γf(ξ)
�

=
ij+|α|ρ

1/2
k�

(2π)nρ
1/2
k

��
ei
�
��x,η�−�Φ−1

γ (�x+x)−Φ
−1
γ (x),ξ�

�
�ν�,Φ−1

γ (x)− Φ
−1
γ (�x+ x)�j

·
�
Φ

−1
γ (x)− Φ

−1
γ (�x+ x)

�α�
ρ
1/2
k ei�x,η� �f(η)

� dη d�x
|det(dΦγ(�x+ x))|

.
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By Taylor’s theorem we may write

Φ
−1
γ (�x+ x)r − Φ

−1
γ (x)r = dΦ−1

γ (x)rp �xp + �Ψγ(�x, x)rpq �xq �xp

using the summation convention. Here �Ψγ is a smooth array of functions that can all be simulta-
neously bounded in Cl in terms of bounds on the derivatives of Φ−1

γ up to order l+ 2. We will also

write �Φ(�x, x)rp = dΦ−1
γ (x)rp + �Ψγ(�x, x)rpq �xq. With this notation

ρ
1/2
k� �ν�, ∂ξ�

j∂α
ξ

�
ei�Φ

−1
γ (x),ξ� �Φ∗

γf(ξ)
�

=
(−i)j+|α|ρ

1/2
k�

(2π)nρ
1/2
k

��
ei
�
��x,η�−��Φγ(x̃,x)�x,ξ�

�
�ν�, �Φγ(x̃, x)�x�j

·
�
�Φγ(x̃, x)�x

�α�
ρ
1/2
k ei�x,η� �f(η)

� dη d�x
|det(dΦγ(�x+ x))|

=
(−i)jρ

1/2
k�

(2π)nρ
1/2
k

��
ei
�
��x,η�−��Φγ(x̃,x)�x,ξ�

��
�ν�, dΦ−1

γ (x) ∂η�

+
�
ν�r

�Ψγ(�x, x)rpq∂2
ηpηq

��j �
�Φγ(x̃, x) ∂η

�α�
ρ
1/2
k ei�x,η� �f(η)

� dη d�x
|det(dΦγ(�x+ x))|

.

After several more rounds of integration by parts, for any M and �N this last expression equals

(−i)jρ
1/2
k�

(2π)nρ
1/2
k

��
ei
�
��x,�η�−��Φγ(x̃,x)�x,ξ�

� �
1 + i 2−k/2

�
∂�x, η − ∂�x(��Φγ(�x, x) �x, ξ�)

��M

·

�
�ν�, dΦ−1

γ (x) ∂η�+ ν�r
�Ψγ(�x, x)rpq∂2

ηpηq

�j

(1 + 2−k/2 �η − ∂�x(��Φγ(�x, x) �x, ξ�)�2)M

�
1− 2k∆η

1 + 2k|�x|2
� �N �

�Φγ(x̃, x) ∂η

�α

·
�
ρ
1/2
k ei�x,η� �f(η)

� dη d�x
|det(dΦγ(�x+ x))|

,

which may now be interpreted as an integral over R2n. Using definition A.1 and the hypotheses on
Φγ , the integrand in the previous formula can be bounded for any N by an expression of the form

C 2−k(j+
|α|
2 )(1 + 2−k/2�η − Cν,k�)

−N (1 + 2−k/2�η − ∂�x(��Φγ(�x, x)�x, ξ�)�)−M

· (1 + 2k|�x|2)− �N

for some positive C. Therefore, if M > N + n then
����ρ

1/2
k� �ν�, ∂ξ�

j∂α
ξ

�
ei�Φ

−1
γ (x),ξ� �Φ∗

γf(ξ)
����� � 2−k(j+

|α|
2 ) sup

η,x�∈Rn

�
(1 + 2−k/2�η − Cν,k�)

−N

(1 + 2−k/2�η − ∂�x(��Φγ(�x, x)�x, ξ�|�x=2−k/2x��)−N
�

� 2−k(j+
|α|
2 )(1 + 2−k/2�ξ − dΦT

γ (x)Cν,k�)
−N

� 2−k(j+
|α|
2 )(1 + 2−k/2�ξ − Cν�,k��)−N .

This is the required estimate and completes the proof.

The next lemma says that we may decompose curvelet like functions into two pieces one of
which is compactly supported and the other which decays very quickly with the scale k.
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Lemma A.5. If F is a family of curvelet like functions, then for every � > 0 it is possible to
find a family of curvelet like functions G and a map, TG : F → G such that

1. πΓ ◦ TG = πΓ

2. For every (g, γ) ∈ G, if ξ ∈ supp(�g), then

2k(1/2− �) ≤ �ξ� ≤ 2k(2 + �) and 2k(1/2− �) ≤ |�ν, ξ�| ≤ 2k(2 + �).

3. For every m ∈ R,

��
2km(f − πS ◦ TG(f, γ)), γ

��
(f,γ)∈F

is a family of curvelet like functions.

Proof. We begin by choosing a cut-off function χ ∈ C∞
c supported within � of the set A1 =

{2−1 ≤ �ξ� ≤ 2} ∩ {2−1 ≤ |�ν, ξ�| ≤ 2} and equal to 1 within �/2 of this set. We construct χ so
that it is symmetric with respect to rotations that preserve ν. Also, we set χk(ξ) = χ(2−kξ). The
first task is to show that

G =
�
χk(D)f, γ

�
(f,γ)∈F

is a family of curvelet like functions which will then satisfy requirement 2. For (f, γ) ∈ F we have

ρ
1/2
k �ν, ∂ξ�

j∂α
ξ ei�x,ξ� �[χk(D)f ](ξ) = �ν, ∂ξ�

j∂α
ξ

�
ρ
1/2
k ei�x,ξ�χk(ξ) �f(ξ)

�

and it follows from this expression and the Liebniz rule that G is a family of curvelet like functions.
It now remains to show that for any m,

H =
�
2km

�
1− χk(D)

�
f, γ

�
(f,γ)∈F

is a family of curvelet like functions. Once again for (f, γ) ∈ F , we have using definition A.1 that
for any N

����ρ
1/2
k �ν, ∂ξ�

j∂α
ξ ei�x,ξ� �

��
1− χk(D)

�
f
�
(ξ)

���� =
�����ν, ∂ξ�j∂α

ξ

�
ρ
1/2
k ei�x,ξ�(1− χk(ξ)) �f(ξ)

�����

� 2−k(j+
|α|
2 )(1 + 2−k/2�ξ − Cν,k�)

−N sup
2−k+1ξ∈Ac

1

(1 + 2−k/2�ξ − Cν,k�)
−2m

� 2−k(j+
|α|
2 )(1 + 2−k/2�ξ − Cν,k�)

−N2−mk.

This completes the proof.

Now we begin to examine the action of pseudodifferential operators on families of curvelet like
functions.

Lemma A.6. Suppose that F is a family of curvelet like functions, and that {pγ(y, ξ)}γ∈πΓ(F)

is a collection of smooth functions on R
n × (Rn \ {0}) such that for some m ∈ R, any multi-indices

α and β, and any nonnegative integer j there is a constant Cα,β,j so that

|∂β
y ∂

α
ξ pγ(y, ξ)| ≤ Cα,β,j2

k
|β|
2 (1 + �ξ�)m−|α|

for all (y, ξ). Then

��
2−kmpγ(y,D)f, γ

��
(f,γ)∈F
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is a family of curvelet like functions.

Proof. We begin by choosing a family G as in lemma A.5 with some small value of � > 0. The
following calculation then applies when (h, γ) equals either TG(f, γ) or (f − πS ◦ TG(f, γ), γ).

ρ
1/2
k �ν, ∂ξ�

j∂α
ξ e

i�x,ξ�
F

�
pγ(y,D)h

�
(ξ)

=
1

(2π)n

��
ei�η−ξ,y−x��ν, ∂η�

j ∂α
η pγ(y, η)

�
ρ
1/2
k ei�x,η��h(η)

�
dη dy

=
1

(2π)n

��
ei�η−ξ,y��ν, ∂η�

j ∂α
η pγ(y + x, η)

�
ρ
1/2
k ei�x,η��h(η)

�
dη dy

=
1

(2π)n

��
ei�η−ξ,y�

�
1− i 2−k/2�η − ξ, ∂y�

1 + 2−k/2�η − ξ�2

�M�
1− 2k∆η

1 + 2k|y|2

�N

· �ν, ∂η�
j ∂α

η pγ(y + x, η)
�
ρ
1/2
k ei�x,η��h(η)

�
dη dy.

In the case when (h, γ) = TG(f, γ), by taking M sufficiently large this integral may be bounded by
the required estimate since on the support of h

��∂β
y ∂

α
η �ν, ∂η�

jpγ(y + x, η)
�� � 2k(m−j−|α|+

|β|
2 )

and

(1 + 2−k/2�η − ξ�)−1(1 + 2−k/2�η − Cν,k�)
−1 ≤ (1 + 2−k/2�ξ − Cν,k�)

−1.

For the case when (h, γ) = (f −πS ◦TG(f, γ), γ), we use the fact that 2
k �m(f −πS ◦TG(f, γ)) gives a

family of curvelet like functions for any �m. Therefore the integral in this case may be bounded by
a constant times

2−k �m(1 + 2−k/2�ξ − Cν,k�)
−N

for any �m. This proves the result.

The next lemma examines the case of lemma A.4 when the diffeomorphisms depend on a pa-
rameter.

Lemma A.7. Suppose that F is a family of curvelet like functions, and that {Φγ}γ∈πΓ(F) is a
smooth family of functions from [z0, Z]× R

n to R
n such that

{Φγ(z, ·)}γ∈πγ(F)

satisfies the hypotheses of lemma A.4 for every fixed z with the constants in the estimates uniform
with respect to z, and

|∂α
y ∂zΦγ(z, y)| ≤ Cα2

k
|α|
2 .

Then
��

2−k∂z[Φ
∗
γ(z, ·)f ],Φ

∗
γ(γ)

��
(f,γ)∈F

is a family of curvelet like functions.
Proof. Let (f, γ) ∈ F . Then, as in the proof of lemma A.4 we use the Fourier inversion formula

to establish that

∂z[Φ
∗
γ(z, ·)f ](y) =

i

(2π)n

��
ei�Φγ(z,y),ξ�

�
∂zΦγ(z, y), ξ

� �f(ξ) dξ

= Φ
∗
γ(z, ·)

�
�∂zΦγ(z,Φ

−1
γ (z, ·)), ∂y�f

�
(y)



154 M. V. DE HOOP, S. F. HOLMAN, H. F. SMITH, AND G. UHLMANN

The collection of functions
�
�∂zΦγ(z,Φ

−1
γ (z, y)), ξ�

�
γ∈πγ(F)

satisfy the hypotheses of lemma A.6

with m = 1, and so that lemma and lemma A.4 imply the result.

The next lemma gives an explicit expression for the leading order terms of the action of a suitable
family of pseudodifferential operators with principal symbols that are homogeneous of degree 1 on a
family of curvelet like functions. For every ν ∈ πν(F) we use the notation Pν for the matrix which
gives orthogonal projection onto the space perpendicular to ν.

Lemma A.8. Suppose that F is a family of curvelet like functions, and that {pγ}γ∈πΓ(F) is a
collection of functions that satisfy the hypotheses of lemma A.6 with m = 1, and are such that every
pγ is positive homogeneous in ξ of degree 1 on {2C−2 ≤ |�ξ, ν�|} where C is the constant from part
2 of definition A.1. Also, let φ(t) ∈ C∞

c (R) be a function that is equal to zero when |t| ≤ 2C−3 and
equal to 1 when |t| > 2C−2. If for every (f, γ) ∈ F we define

g = 2k/2

�
pγ(y,D)f −

��
∂ξpγ(y, ν), Df

�
+

1

2
tr

�
∂2
ξpγ(x, ν)

φ(�ν, D�)

�ν, D�
D2f

��

then
��

g, γ
��

(f,γ)∈F

is a family of curvelet like functions.

Proof. First, applying both lemma A.5 and lemma A.6 we may assume without loss of generality
that every (f, γ) ∈ F satisfies part 2 of lemma A.5 for some small value of � > 0.

Next we make the following expansion of pγ , which holds for ξ ∈ supp( �f) and follows using the
homogeneity assumption.

(A.4) pγ(y, ξ) = �∂ξpγ(y, ν), ξ�+
1

2

n�

q,r=1

∂2
ξpγ(x, ν)qr

ξq ξr

�ξ, ν�
+Rγ(y, ξ)

where

Rγ(y, ξ) =
1

6

n�

q,r,s=1

�� 1

0

∂3
ξqξrξspγ(y, �ξ, ν�ν + t Pνξ) dt

�
(Pνξ)

q (Pνξ)
r (Pνξ)

s

+
1

2

n−1�

r,s=1

�� 1

0

∂3
yqξr

�
ξs

�pγ(x+ t (y − x), ν) νr
�

r νs
�

s dt

�
(x− y)q

�ξ, νr��ξ, νs�

�ξ, ν�
.

We write (R1
γ)qrs(y, ξ) and (R2

γ)rs(y) respectively for the two arrays of functions given by the
integrals in the previous formula. From the hypotheses and the fact that every (f, γ) ∈ F satisfies
part 2 of lemma A.5 we see that each of these functions satisfies the hypotheses of lemma A.6 with
respectively m = −2 and m = 0 for ξ restricted to supp( �f). Therefore by A.3

�
2k/2[Rγ(y,D)f ], γ

�
(f,γ)∈F

is a family of curvelet like functions. From (A.4) we observe that

g = 2k/2[Rγ(y,D)f ],

and so the proof is complete.
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Appendix B. Lemma for paradifferential estimates.
In this appendix we will state and prove the lemma used to deal with the “rough” parts of

the Volterra kernels. The lemma is an extension of lemma 13 in [7] to a broader class than just
multipliers. The idea of expanding homogeneous symbols using spherical harmonics is suggested in
exercise 13.9.6 of [23].

Let a(x, ξ) ∈ Cm,1Sm
cl (R

n) be homogeneous of order 1 in ξ, and let ak be obtained by (3.1)
applied to a instead of p. Also, let β ∈ C∞

0 (Rn) be a function such that 0 ≤ β ≤ 1, supp(β) ⊂ {1/2 ≤

|ξ| ≤ 2} for some l0 ∈ Z
+, and constructed so that β0(ξ) +

∞�
k=1

β(2−k+1ξ) = 1 for another function

β0 ∈ C∞
0 (Rn) with support contained in the unit ball. For convenience we define βk(ξ) = β(2−k+1ξ)

for k ≥ 1 (ie. so that {βk} provides a Littlewood-Paley partition of unity). Assume that Fk is a
family of operators on L2(Rn) satisfying estimates of the form

(B.1) �Fku�L2(Rn) ≤ C 2kr�βk(D)u�L2(Rn).

We will further assume that each Fk is frequency localized at the scale A 2k for some constant A in
the sense that (1 − βk(D/A))Fk = Rk where Rk : Hs� → Hs is continuous uniform in k for any s�

and s.

Lemma B.1. If s and s� ∈ R are such that

s < m+ 1 , r −m ≤ s� − s , r −m ≤ s� , and
2r −m+ 1

2
≤ s� − s,

then there is an N ∈ N such that for any u ∈ Hs�(Rn)
�����

��

k

�
a(y,D)− ak(y,D)

�
Fk

�
u

�����
Hs

� (C + C �)
�

|α|≤2N

sup
ω∈Sn−1

�∂α
ξ a(·,ω)�Cm,1�u�Hs� .

The constant C in this estimate is the same as the constant in (B.1), and C � is a modulus of
continuity for Rk : Hs� → Hs that is independent of k.

Proof. For ease of notation we will write fk(y, ξ) = a(y, ξ) − ak(y, ξ) and now record a few
properties of fk. First, from the homogeneity of a it is still true that fk is homogeneous of degree
1 in ξ. Second, because ak is obtained by a low pass filter in y from a, �fk(η, ξ) = �fj(η, ξ) for
|η| ≥ 2max(k,j)/2. Finally, the estimates

(B.2) |∂β
y ∂

α
ξ fk(y, ξ)| � 2−k(m+1−|β|)/2�∂α

ξ a(·, ξ)�Cm,1

for |β| ≤ m+ 1 follow from (3.2).
The first step of the proof will be to decompose fk(y,D) in terms of a sum of multiplication and

convolution operators by using spherical harmonics in the phase space. Indeed, let {wκ} denote the
set of eigenfunctions of ∆Sn−1 , with the eigenvalue of wκ denoted by λκ, which form an orthonormal
basis for L2(Sn). By the homogeneity of fk in ξ we have

fk(y, ξ) = |ξ|
�

κ

fkκ(y)wκ(ξ/|ξ|)

where

fkκ(y) =

�

Sn−1

fk(y,ω)wκ(ω) dω.

By Green’s formula we have for any N ∈ N

λN
κ fkκ =

�

Sn−1

fk(y,ω)∆
N
Sn−1wκ(ω)dω =

�

Sn−1

(∆N
Sn−1fk)(y,ω)wκ(ω)dω,
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which using (B.2) gives

(B.3) |∂β
y fkκ| � λ−N

κ 2−k(m+1−|β|)/2
�

|α|≤2N

sup
ω∈Sn−1

�∂α
ξ a(·,ω)�Cm,1

for |β| ≤ m+ 1 and any N . Also, we can see from the definition that the family {fkκ} inherits the

property that �fkκ(η) = �fjκ(η) for |η| ≥ 2max(k,j)/2 from {fk}. With this decomposition we have

�

k

fk(y,D)Fk =
�

k,κ

fkκ(y) |D|wκ(D/|D|)Fk

The operator |D|wκ(D/|D|)Fk is still frequency localized at scale A 2k in the sense given above,
and so this last formula in fact gives

�

k

fk(y,D)Fk =
�

k,κ

fkκ(y)βk(D/A) |D|wκ(D/|D|)Fk + fkκ(y)Rkκ

where Rkκ : Hs� → Hs has the same continuity properties as Rk but uniform also in κ. To finish
we apply one further decomposition to the above operator by separating frequency scales a second
time to obtain

(B.4)
�

k

fk(y,D)Fk =
�

j,k,κ

�
βj(D/A)fkκ(y)βk(D/A)

�
|D|wκ(D/|D|)Fk +

�

k,κ

fkκ(y)Rkκ.

Note that by the uniform continuity of Rkκ, if we take N to be large enough then the second sum
on the right gives an operator with the required properties provided that s < m + 1 in which case
fkκ acts as a multiplier mapping Hs to Hs with norm bounded by (B.3). Thus we have reduced
the proof to estimating the first sum in (B.4).

Now we will look in more detail at the operators in parentheses from the right hand side above,
which we will label as

Γjkκ = βj(D/A) fkκ βk(D/A)|D|.

With this notation, for u ∈ L2(Rn) and j, k ≥ 1 we have

�Γjkκu(ξ) =
β(2−j+1ξ/A)

(2π)n

�

Rn

�fkκ(ξ − η)β(2−k+1η/A) |η| �u(η) dη.

From this formula and the location of the support of β(ξ) we have that �Γjkκu(ξ) only depends on
�fkκ(ξ − η) at points where

ξ ∈ supp
�
β(2−j+1 · /A)

�
= {ξ ∈ R

n |A 2j−2 ≤ |ξ| ≤ A 2j}

and

η ∈ supp
�
β(2−k+1 · /A)

�
= {η ∈ R

n |A 2k−2 ≤ |η| ≤ A 2k}.

We will use the notation l(A) = min(0, floor(log2(A))). Assuming that j − 2 > k, by the triangle
inequality

{ξ ∈ R
n |A 2j−2 ≤ |ξ| ≤ A 2j}− {η ∈ R

n |A 2k−2 ≤ |η| ≤ A 2k}

⊂ {ζ ∈ R
n | |ζ| ≥ A(2j−2 − 2k) = A 2j−2(1− 2k−j+2) ≥ 2j−3+l(A)},

and similarly assuming that k − 2 > j

{ξ ∈ R
n |A 2j−2+l(A) ≤ |ξ| ≤ A 2j}− {η ∈ R

n |A 2k−2 ≤ |η| ≤ A 2k}

⊂ {ζ ∈ R
n | |ζ| ≥ 2k−3+l(A)}.
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Since fkκ(ζ) = f(2j−6+2l(A))κ(ζ) for |ζ| ≥ 2max(k,2(j−3+l(A)))/2, in the case that j > k + 3− l(A) we
have

Γjkκ = βj(D/A)f(2j−6+2l(A))κβk(D/A)|D|,

and in the case that k > j + 3− l(A)

Γjkκ = βj(D/A)f(2k−6+2l(A))κβk(D/A)|D|.

To simplify the following formulas we now introduce the notation

�a�N =
�

|α|≤2N

sup
ω∈Sn−1

�∂α
ξ a(·,ω)�Cm,1 .

Based on (B.3) and the fact that �βk(D)�L2(Rn)→L2(Rn) ≤ 1 for any r we can see that

�Γjkκ�L2→L2 �





A 2kλ−N
κ 2−j(m+1)�a�N for j > k + 3− l(A),

A 2kλ−N
κ 2−k(m+1)/2�a�N for k + 3− l(A) ≥ j ≥ k − 3 + l(A),

A 2kλ−N
κ 2−k(m+1)�a�N for k − 3 + l(A) > j.

With these estimates available we now return to (B.4). It remains to estimate the operator norm
of the first sum on the right hand side, which we will refer to as S. As before, we may choose N
sufficiently large depending on the dimension so that the sums with respect to κ in (B.4) converge
absolutely and uniformly with respect to the other parameters. Having chosen such an N we now
apply these estimates to obtain the result. For u ∈ C∞

0 (Rn)

�Su�
2
Hs � C2

�

j,k,κ

22(js+kr)) �Γjkκ�
2
L2→L2 �βk(D)u�

2
L2

� C2
�

j,k,κ

22(js+k(r−s�)) �Γjkκ�
2
L2(Rn)

�
2ks

�

�βk(D)u�L2(Rn)

�2

� (AC)2�a�2N

� �

j>k+3−l(A)

22(j(s−m−1)+k(r−s�+1))
�
2ks

�

�βk(D)u�L2(Rn)

�2

+
�

k−3+l(A)≤j≤k+3−l(A)

22js+k(2r−2s�−m+1)
�
2ks

�

�βk(D)u�L2(Rn)

�2

+
�

k>j+3−l(A)

22(js+k(r−s�−m))
�
2ks

�

�βk(D)u�L2(Rn)

�2
�
.

If s−m− 1 < 0 and r−m ≤ s� − s, then the first sum in parentheses is bounded by �u�2
Hs� (Rn)

. If

(2r −m+ 1)/2 ≤ s� − s, then the second sum is also bounded by �u�2
Hs� (Rn)

. Finally, if r −m ≤ s�

and r−m ≤ s� − s, then the third sum is bounded by the same quantity. This completes the proof
of the lemma.

Note that s− s� measures the extent to which the operator

�

k

(a(y,D)− ak(y,D))Fk

is smoothing. The previous lemma thus states that if m is large enough, then this operator is
smoothing.
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