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DATA ANALYSIS TOOLS FOR UNCERTAINTY QUANTIFICATION OF

INVERSE PROBLEMS

LUIS TENORIO∗, FREDRIK ANDERSSON† , MAARTEN V. DE HOOP‡ , AND PING MA§

Abstract. We present exploratory data analysis methods to assess inversion estimates using examples based on
�2- and �1-regularization. These methods can be used to reveal the presence of systematic errors such as bias and
discretization effects, or to validate assumptions made on the statistical model used in the analysis. The methods
include: bounds on the performance of randomized estimators of a large matrix, confidence intervals and bounds for
the bias, resampling methods for model validation, and construction of training sets of functions with controlled local
regularity.

1. Introduction. The analysis of physical problems based on experimental data commonly
relies on idealized mathematical and statistical models. We consider the particular framework of
inverse problems where the data are modeled as a vector y related to an unknown function f via an
equation of the form y = A[f ] + ε, where A is a linear operator defined on a linear space and ε is a
random noise vector. We assume that the problem is ill-posed; A does not have a bounded inverse.
Since the measurements as well as the assumptions on A and ε are subject to error, any solution of
the inverse problem must include some assessment of its associated uncertainty. This uncertainty is
usually quantified using statistical methods that lead to formal statements of uncertainty However,
these methods rely on the validity of the modeling assumptions.

For example, consider the typical Bayesian framework for uncertainty quantification of inverse
problems that can be summarized as follows: Select a probability distribution for the noise and a
prior distribution for the unknown function; model all the available information using random vari-
ables with some probability distributions; use Bayes’s theorem to define the posterior distribution
of the function given the data and Markov chain Monte Carlo methods to sample from it. Uncer-
tainty quantification is then based on the variability under the posterior distribution. Since this
procedure provides a statement of uncertainty even when the choice of distributions is inadequate
and inconsistent with the observations, it is important to validate all the assumptions.

Similarly, there is a variety of regularization techniques that can be used to find solutions of
ill-posed inverse problems. Some of these techniques have known rates of convergence and other
good asymptotic properties provided some regularity conditions are satisfied (e.g., [7, 15]). But in

any practical problem we should always question if is there any reason not to trust an estimate �f of
the function f given the fixed sample size and modeling assumptions. That is, we should determine
if the features we see in the estimate can be explained by systematic errors or random variability.

To avoid drawing false conclusions, any uncertainty quantification should include a validation
of the modeling assumptions that may point to, for example, problems with the calibration of the
instruments or the presence of systematic errors (e.g., unmodeled physics). One of our goals is to call
attention to the question of model validation for ill-posed inverse problems. We provide validation
methods in the framework of �2- and �1-regularization.

As it is often done in applications, we assume that the inverse problem has been discretized.
This assumption is especially convenient in the statistical analysis as it frees us from having to
define probability measures on function spaces. The data are modeled as

(1.1) y = Af+ ε,

where f is the discretized function to be recovered, A is a possibly ill-conditioned matrix, and ε is
the noise vector modeled as random with zero-mean and covariance matrix σ2I; assumptions that
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have to be validated. For example, the mean of the errors will not be zero if there is a significant
discretization effect. This can be checked using, for example, the confidence intervals for the bias
defined in Section 2, or the resampling methods we present in Section 3.

Since model validation techniques depend on the chosen regularization method, to present
concrete examples we have chosen two different types of inversion estimates that are often used in
practice and that we shall call �2- and �1-regularization. The former is based on the idea of finding
a ‘smooth’ function that is consistent with the data. This can be done via a discrete Tikhonov
approach where the estimate �f�2 is chosen so as to balance an �2-data-misfit with an �2-smoothness
penalty:

�f�2 = argmin
�f

�y −A�f�22 + λ2 �D�f�22,(1.2)

where D is a finite-difference operator of some order and λ is a regularization parameter. In Section
3 we also consider a Bayesian framework where �f�2 is a posterior mean. The second approach
exploits sparse representations of f to regularize the problem: f is assumed to have a representation
f= Wβ, where β is the vector of coefficients in the sparse representation. An �1-norm penalty is
used to promote sparsity of the vector of coefficients (see, e.g., [1, 21, 30]). If X = AW , then the

�1-estimate of f is �f�1 = W �β, where

(1.3) �β = argmin
�β

�y −X�β �22 + λ � �β �1.

A variety of methods have been developed for model validation and uncertainty quantification for
classic linear regression (e.g., well-posed linear inverse problems [2, 6]) and nonparametric regression
(e.g., [20]) but these questions are more difficult in the framework of ill-posed inverse problems.
One of the difficulties is that in applications such as 2D and 3D geophysical inversions the inverse
problems are large-scale and routine tasks such as computing the trace of a matrix or extracting
its diagonal entries become computationally demanding. Another complication is that regularized
estimates may be subject to significant bias (more so than in nonparametric regression); a component
of the error that is difficult to assess for it depends on the object to be recovered.

The paper is organized as follows. In Section 2 we present some auxiliary tools that are useful
in the analysis of large-scale problems. We summarize robust recursive estimates of location and
scale that are used to analyze simulation results and study the stability of inversion estimates.
We also review the derivation of randomized estimators of the trace of a large matrix. The use
of such estimators requires the selection of the number of random realizations to be averaged in
the approximation. We provide bounds (based on the behavior of the eigenvalues) for the relative
variance and concentration of the trace estimator that help answer this question. In Section 3 we
present confidence intervals for the bias of A�f as an estimator of Af which helps us check if �f ,
even if biased, is still consistent with the data. To validate the estimate, we also present examples of
frequentist and Bayesian resampling approaches to create synthetic predictions that are compared
to the observations. Up to Section 3, we do model validation by checking consistency with the data.
In Section 4 we consider methods to assess characetristics of the estimate �f itself, which requires
more assumptions on f. We derive bounds that provide information about the geometry of the
bias of �2- or linearized �1-estimates. We also discuss applications of wavelet characterizations of
function regularity to generate training sets of functions with controlled regularity. These functions
can be used to assess the relative errors one may expect in estimates of f. The paper concludes with
a summary in Section 5.

2. Auxiliary tools for large-scale simulations.

2.1. Exploring stability. Most of the methods we describe are based on simulations. At
each simulation run j we obtain an estimate �fj and functions thereof. If these quantities were one-
dimensional, one could store thousands of them and then study their simulation distributions. But
this cannot be easily done with large-scale problems such as 2D or 3D data. In this case we may
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be limited to estimating properties of their distributions that can be computed recursively. Clear
choices with well known recursive formulas are the mean and standard deviation, which provide
location and scale summaries of the distributions. To check for stability, asymmetry or the presence
of outliers, it is advisable to also compute more robust measures of location and scale. Here we
consider the median and median absolute deviation from the median (MAD) for which there are
recursive approximations. The method we use is based on the algorithms described in [9, 16], which
have been shown to have similar asymptotic properties to those of the non-recursive sample median
and MAD. For completeness, the procedure for a sequence of N × N images Ti is described in
Algorithm 1.

Algorithm 1 Recursive estimates of the median and MAD for a sequence Ti of N ×N images. For
simplicity some of the operations are written as MATLAB commands.

Initialize: b = 0.2, g1 = median = g2 = zeros(N,N)
Initialize: s1 = s2 = mad = ones(N,N) ∗ 10−5

for k = 1 : sims do

s1 = (k − 1) ∗ s1/k + |Tk − s1 |/k
�1 =

�
|median− Tk| < s1/kb

�

g1 = (1− 1/k) ∗ g1 + kb−1. ∗ �1./s1
c = 0.1 ∗ k−1/4

a1 = max(c./s1, g1)
median = median + sign(Tk −median)./(k ∗ a1)
z = |Tk −median |
s2 = (k − 1) ∗ s2/k + | z − s2 |/k
g2 = (1− 1/k) ∗ g2 + kb−1. ∗ �2./s2
a2 = max(c./s2, g2)
mad = mad + sign(z −mad)./(k ∗ a2)

end for

As an illustration we compare the stability of some �2- and �1-regularized estimates. To compute
�f�2 given the n×1 data vector y, we use the value of λ that minimizes the generalized cross-validation

(GCV) function [28, 41]: GCV(λ) = �y − A�fλ �
2/[n − trH(λ) ]2, where H(λ) = A (AtA +

λ2DtD)−1At. Since the nonlinearity introduced by the �1-penalty in (1.3) does not lead to a
simple formulation of a GCV-type function, we use Morozov’s discrepancy principle for which there
are some efficient implementations [40]. The idea is to choose λ so as to minimize the �1-norm of β
subject to fitting the data to within the noise level:

(2.1) �β = argmin
�β

��β�1 s.t. �y −X�β�2 ≤ nσ2.

The tolerance nσ2 is what is used most often as it is the expected value of the data-misfit norm
for iid Gaussian errors: E �y −Xβ�2 = E �ε�2 = nσ2. Since σ2 is unknown, we use a data-based
estimate obtained as follows: σ is the standard deviation of the variability of yi about (Af)i. If
Af is the discretization of a function that is expected to be smoother than that corresponding to f,
then it makes sense to use the Tikhonov estimate (1.2) with A = I. That is, the data are modeled
as noisy direct observations of µ = Ey = Af and D acts on µ. The estimate of σ2 is then

(2.2) �σ2 =
�y − �µλ �

2

n− tr [ (I + λ2DtD)−1 ]
.

The degrees of freedom of �µλ (as defined in [37]) is tr [ (I +λ2DtD)−1 ] so �σ2 is the residual sum of
squares normalized by an ‘effective number’ of observations; the same formula as in linear regression.
The estimate �σ2 is used in place of σ2 in (2.1). Of course, in some applicationAfmay not be smooth.
In these case there are other methods to estimate σ depending on the characteristics of Af. See,
for example, [11, 17, 20, 27, 33].

In the following example we compare the stability of �2- and �1-estimates. The point is not to
compare the two regularization methods but to illustrate the information that can be obtained by
comparing robust to non-robust simulation results.
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Fig. 1. Left: f, Af and a sample y. Right: Simulation results. The boundary of the band is the mean and
mean +/− 2(std) over the simulations of �f

�2
with λ fixed.

Example 1. We simulate one-dimensional data using the model (1.1) with the matrix A of a

Gaussian kernel ∝ e−(x−y)2/2γ2

(γ = 0.08) and a vector f of discretized values of a function f with a
sparse wavelet representation in the Daubechies-4 basis. The left panel in Figure 1 shows f, Af and
a realization of y. The right panel shows the mean and mean ± 2(standard deviation) over 20,000

estimates �f�2 based on different noise realizations with λ fixed and equal to the mean value of the
GCV selections over the simulations. The results seem reasonable but they are misleading because
in practice λ is estimated from the data and this selection may introduce important variability.
This is illustrated in Figure 2. The left panel shows the results when λ is selected by GCV in every
simulation. The panel on the right shows the median and median ± 2(MAD/0.675) (recall that
MAD/0.675 is a robust estimate of the standard deviation of a Gaussian distribution). The drastic
difference in variability observed in the two plots indicates the occurrence of outliers introduced by
the selection of λ (this behavior can be modeled with Gaussian mixtures as explained in Section
4). For some data realizations the GCV selects too small a value of λ that leads to under-smoothed
estimates. A corrected version of the GCV where the denominator is replaced by n−γ trH(λ), with
γ a constant slightly greater than one, is sometimes used to help reduce this problem. However, for
the case of indirect observations with an ill-posed problem the selection of γ is not easy; it depends
on how ill-posed the operator is. For direct observations the value γ ≈ 1.2 has been suggested
[13, 28, 31]. We use this value to estimate σ2 using (2.2). Figure 3 shows the version of Figure 2

corresponding to �f�1 . It is clear that the �1-estimates are more stable, which may not be surprising
given that it includes two regularizations: one based on sparsity and the other on the stopping of
the iterations in the �1-code. The results with the recursive mean and MAD (not shown) are almost
identical to those with their non-recursive counterparts.

2.2. Approximating the trace of a large matrix. The computation of the trace of a large
matrix is often required, for example, for evaluating the GCV function, computing mean-squared
errors, and approximating confidence intervals or the objective function of A-experimental designs
for inverse problems. Stochastic trace estimators [5, 19, 23] can be used to approximate the trace
of a large matrix. We start with a brief derivation and then proceed to determine bounds for their
variance and concentration around their mean in terms of the behavior of the matrix eigenvalues.
Other bounds and estimators are discussed in [3].

If U is an n × 1 random vector with covariance matrix Σ and H is any fixed symmetric
n × n matrix, then E (U tHU ) = tr(ΣH ). The variance of this quadratic form is [36, p.35]:
Var(U tHU ) = 2tr(HΣHΣ ) + tr(HΣDHD4Σ ), where E(U4

i ) = βiσ
4
i for some βi > 0, σ2

i =
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Fig. 2. Left: Bands for �f
�2

with λ selected by GCV in every simulation. Right: The band is defined by the the
median ± 2(MAD/0.675). The blue line is f.

Fig. 3. Same as Figure 2 but for �f
�1

obtained by solving (2.1).

Var(Ui), DH = Diag(H) and D4 = Diag{β1−3, ...,βn−3}. For example, if the Ui are independent
and zero mean with Var(Ui) = σ2 and E(U4 ) = β σ4, then E (U tHU ) = σ2tr(H ) and

(2.3) Var(U tHU ) = 2σ4tr(H2 ) + σ4(β − 3) �h �2,

where h is the vector of diagonal entries of H. An unbiased estimate of tr(H) requires σ = 1, and
since β ≥ 0, (2.3) implies that the smallest variance is obtained with the smallest β. But, if X
is a zero-mean, unit-variance random variable with finite fourth moment, then Jensen’s inequality
implies 1 = (E(X2 ) )2 ≤ E(X4 ). Hence β = 1 is the smallest possible value of E(X4 ), which
is achieved with X uniform on {−1, 1}. In this case (2.3) reduces to Var(U tHU ) = 2[ tr(H2) −
�h �2 ]. This proves part (i) of the following proposition.
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Proposition 2.1. Let H be a symmetric n × n matrix with diagonal h and U1,...,Um be
independent n × 1 vectors, each with independent entries uniform on {−1, 1}. For a fixed integer

m define the trace estimator �Tm(H) = (1/m)
�m

i=1 U
t
iHU i. Then:

(i) E( �Tm(H) ) = tr(H ) and Var( �Tm(H) ) = 2
m [ tr(H2)− �h �2 ].

(ii) If H is also non-negative definite with eigenvalues αi and tr(H) > 0, then the relative

variance Vr( �Tm) of �Tm is

Vr( �Tm) =
Var( �Tm(H) )

tr(H )2
≤

2

mn

S2
α

ᾱ2
,

where ᾱ = (1/n)
�

i αi and S2
α = (1/n)

�
i(αi − ᾱ)2.

(iii) For any t > 0,

P( �Tm(H) ≥ tr(H) (1 + t) ) ≤ e−mt2/4Vr(�T1)(2.4)

P( �Tm(H) ≤ tr(H) (1− t) ) ≤ e−mt2/4Vr(�T1).(2.5)

Proof : The proof of (ii) is straightforward: Since the minimum of �h�2 subject to
�

hi = tr(H )
is tr(H )2/n, it follows that

tr(H2)− �h �2

tr(H)2
=

nS2
α + nᾱ2 − �h �2

tr(H)2
≤

nS2
α + nᾱ2 − tr(H )2/n

tr(H)2
=

S2
α

n ᾱ2
.

(iii) We first prove (2.4) for m = 1 using a martingale concentration inequality that can be found
in [29]. Define the increasing sequence of σ-algebras Fk = σ(U1, ..., Uk) for k = 1, ..., n. Then,

E(U tHU | Fk) =

k�

i=1

Hi,iU
2
i +

n�

i=k+1

Hi,i + 2

k−1�

i=1

k�

j>i

Hi,jUiUj ,

from which one can easily verify the equality

dk = E(U tHU | Fk)− E(U tHU | Fk−1) = 2Uk

k−1�

i=1

Hi,kUi,

for k = 2, ..., n and d1 = 0. It follows that each dk is bounded: |dk| ≤ Bk = 2
�k−1

i=1 |Hi,k|, and

B2
k = 4

k−1�

i,j

|Hi,k| |Hk,j | ≤ 4(

n�

i,j

|Hi,k| |Hk,j |−H2
k,k ),

which implies
�

k B
2
k ≤ 4( tr(H2)−�h�2 ) = 2Var( �T1(H) ). It now follows from Lemma 4.1 in [29,

p.68] that

P( �T1(H) ≥ tr(H) (1 + t) ) ≤ e−tr(H)2 t2/4Var( �T1(H) ) = e−t2/4Vr(�T1).

To prove the result for m > 1 note that we can write �Tm(H) = �U t�H �U , where �U = (U t
1 · · ·U

t
m)t

and �H = Diag(H, ...,H)/m. Set �h = Diag(�H). Then, tr(�H) = tr(H), tr(�H2
) = tr(H)/m and

��h�2 = �h�2/m and therefore the result follows from the case m = 1. The proof of (2.5) follows
similarly using the left-tail concentration inequality in [29, p.68]. �

Part (ii) shows that the relative variance of the trace estimate is small if the scatter of the
eigenvalues is small compared to their mean. For example if H = aI then the variance bound is
zero as it should. Also, the bound is small if H is diagonal with small variation in the diagonal
entries. The bounds may serve as a guide to choose m.
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Example 2. The standard least-squares estimate of x based on the n×1 data vector y = Ax+ε

with A of full column rank leads to the projection matrix H = A(AtA)−1At, which projects y

orthogonally onto the k-dimensional subspace spanned by the columns of A. This matrix is used,
for example, for model validation and construction of confidence intervals. Since H is symmetric
and idempotent, it has k eigenvalues equal to one and the rest equal to zero. In this case the relative
variance and bound (2.1) become

Vr( �Tm) =
2

mk

�
1−

�h�2

k

�
≤

2

mk

�
1−

k

n

�
.

For example, for the variance to be less than ν, we need m ≥ 2(1/k − 1/n)/ν. The right-tail
probability bound is

P( �Tm(H) ≥ tr(H) (1 + t) ) ≤ e−mk2t2/8(k−�h�2) ≤ e−mkt2/8.

Note that this standard least-squares approach is often used after an �1-regularization is employed
for variable selection to reduce dimensionality. In this case k is the number of variables kept (i.e.,
target sparsity). The performance of such procedure is considered in Example 8.

Example 3. Consider now the matrix H from Example 1 with n = 210 and tr(H) = 20.5; H
is not a projection matrix but all of its eigenvalues are bounded by one. The true relative variance
in this case is Vr( �T1) = 0.0917 while the bound from Proposition 2.1 is 0.0919. With m = 20 the

variance bound is decreased to 0.005. The deviation probabilities that �T1(H) differs from tr(H) by

±2.5 are P ( �T1(H) ≥ 1.12 tr(H) ) = 0.322 and P ( �T1(H) ≤ 0.88 tr(H) ) = 0.372. This time (2.4)
provides the very conservative bound 0.962.

3. Checking the model fit. Suppose �f is a ‘good’ estimate of f, the noise ε is truly N(0,σ2I)

and �σ2 is a reasonable estimate of σ2. It then stands to reason that simulating data via A�f + �ε
with �ε ∼ N(0, �σ2I) should produce synthetic data consistent with the observations y. This may

happen even if �f has a significant bias as long as the bias of A�f is small. We check the bias of A�f
by constructing confidence intervals.

3.1. Confidence intervals for the bias of A�f�2 . For a fixed λ, the estimate �f�2 can be

written explicitly: �f�2 = G(λ)−1Aty, where

(3.1) G(λ) = AtA+ λ2DtD.

Since we will simulate data using A�f�2 as a proxy for Af, we need to check the bias of A�f�2 given by

Bias(A�f�2) = ABias(�f�2). This bias is easier to assess than that of �f�2 because the data are direct
observations of Af. We employ a method similar to that used for constructing prediction intervals
in regression [12], where estimates are unbiased. We construct confidence intervals for ABias(�f)
and ABias(�f (−i)), where

�f (−i) is a leave-one-out estimate of f defined as follows: Let y(−i) and
A(−i) be, respectively, the vector y and matrix A without the ith row. Then, it is easy to see that
�f (−i) = (At

(−i)A(−i) + λ2DtD)−1At
(−i)y(−i). Define �y(−i),i to be the ith entry of the prediction

A�f (−i): �y(−i),i = etiA
�f (−i) ({ei} is the standard basis of Rn). Hence,

E( �yi − yi ) = etiABias(�f), E( �y(−i),i − yi ) = etiABias(�f (−i)).

Using a standard rank-one update [12], we obtain �y(−i),i − yi = (�yi − yi)/(1−Hii), which yields

Var( �yi − yi ) = σ2
�
(1−Hii)

2 + (H2)ii − (Hii)
2
�

Var( �y(−i),i − yi ) = σ2

�
1 +

(H2)ii − (Hii)
2

(1−Hii)2

�
.
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Fig. 4. Each plot shows 95% confidence intervals (3.2) (indistinguishable from (3.3)) drawn as a continuous

green band for the data in Figure 1. The blue lines are the bias of A�f
�2
. The estimates on the right panel was

obtained using a large λ to introduce a bias.

If σ is known, Gaussian approximations of 1−α confidence intervals for etiABias(�f) and etiABias(�f (−i)),
are, respectively,

�yi − yi ± zα/2 σ
�
(1−Hii)2 + (H2)ii − (Hii)2(3.2)

�yi − yi
1−Hii

± zα/2 σ

�
1 +

(H2)ii − (Hii)2

(1−Hii)2
(3.3)

(zα/2 is defined by P(Z > zα/2) = α/2 for Z ∼ N(0, 1)). If σ is unknown we use �σ instead.
Approximations of these intervals defined in terms of traces (to allow the use randomized trace
estimators) are obtained by replacing Hii and (H2)ii with tr(H)/n; a similar thing is done to
obtain the GCV from the cross-validation function [41]:

�yi − yi ± zα/2 �σ
�

tr(I −H)/n(3.4)

�yi − yi
tr(I −H)/n

± zα/2 �σ
1�

tr(I −H)/n
.(3.5)

If the ith observation is not too influential, then the intervals for etiABias(�f (−i)) and etiABias(�f)
should be similar. If the intervals do not include zero it may be an indication that the bias of etiA

�f
is significant. To check for the influence that the different yi may have on the fit, we may plot
|�y(−i) − �yi| = Hii |�yi − yi|/(1−Hii) normalized by its standard error.

In the derivation of the intervals, we assumed that λ was fixed but in practice we have found
that the variability introduced by the selection of λ (e.g., by GCV) does not have much of an effect
on the coverage of these intervals. This is shown in the next example.

Example 4. We construct 95% confidence intervals for the bias of A�f�2 in Example 1. The
left panel in Figure 4 shows confidence intervals (3.2) and (3.3) (for a single realization of y) drawn
as a band with red boundaries for (3.3) and black boundaries for (3.2) (almost identical). For
reference, the correct bias is shown in blue. Here λ is chosen by GCV and �σ is used in place of
σ. The right panel shows confidence intervals when λ is set to a large value (20 times the GCV
selected value) to increase the bias. The left panel does not show evidence of bias while the right
one does. To check the behavior of the intervals for different realizations of y, we use simulations



DATA ANALYSIS FOR INVERSE PROBLEMS 9

Fig. 5. Top: pointwise coverage of the 95% confidence intervals (3.2) and (3.4) (labeled y), and (3.3) and (3.5)

(labeled y(−i)). Bottom: the blue, green and red lines (almost identical) depict, respectively, the median bias of �f
�2
,

and the mean and median of B(�λ) (4.3).

to estimate the pointwise coverage of the intervals (3.2) through (3.5). The results are shown in
Figure 5. The intervals (3.3) have the correct coverage almost everywhere while (3.2) are slightly
more conservative across the function; a result of including yi in the data to predict itself. The
approximate intervals (3.4) and (3.5) have essentially the same coverage, close to the target except
at the boundaries where they are slightly conservative.

3.2. Comparing predictions to observations. Another way to explore model fits is by
comparing characteristics of simulated data A�f + �ε with those of the original observations y. We
illustrate this using parametric and nonparametric bootstrap methods [14]. For the parametric
approach we assume that ε ∼ N(0,σ2I) and �ε is sampled randomly from N(0, �σ2I). This method

can be used with linear or nonlinear estimates (e.g., �f�2 or �f�1). In the nonparametric approach �ε
is randomly sampled with replacement from the (corrected) residuals of the fit. The corrections are
needed because even though one would expect the residuals to behave approximately like the true
unobservable errors ε if the inversion estimate is reasonable, this is only true up to bias and variance
residual corrections. For example, the vector of residuals for �f�2 is r = y −A�f�2 = (I −H(λ))y
and for a fixed λ, E r = −λ2AG(λ)−1DtDf and Var(r) = σ2 (I − H(λ))2. Hence, even with
λ fixed, the residuals are, unlike the true errors, correlated, of variance different from σ2 and not
centered at zero. If the bias is small the residuals should be approximately centered at zero but
may be correlated even when the fit is reasonably good. One could use the covariance matrix of the
residuals to approximately correct their correlation but it would be computationally expensive. As
it is customary in regression analysis, we only correct the residuals for heteroscedasticity.

To simplify the correlation structure of the residuals as well as the computation of their correc-
tions, the nonparametric simulations will be based on the residuals of the �2-fit to µ = Af. That
is, the same fit used to determine �σ (2.2). The corrected residuals are then

(3.6) rc = [Diag(I − (I + �λ2DtD)−1) ]−1r.
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We use the following resampling procedures to generate B parametric/nonparametric bootstrap
samples {y∗

i }: For each i = 1, ..., B, (parametric) generate noise ε∗i from the distribution N(0, �σ2I),
or (nonparametric) by resampling from the residuals rc (3.6). The ith synthetic data vector is

y∗
i = A�f + ε∗i . It is useful to compare the results of parametric and nonparametric simulations; for

example, a large discrepancy may indicate problems with the presumed distribution of the noise.
If the model fit is reasonable, the characteristics of the simulated data y∗ should be similar to

those of the original observations. Similarly, if the hypotheses on the noise are correct and the fit is
good, then the characteristics of the corrected residuals rc should be consistent with those of an iid
Gaussian sample. To make these comparisons, we define statistics to capture different distributional
characteristics. The choice depends on the particular problem, as an example we use the following
test statistics:

T1(y) = min(y) T6(y) = MAD(y) T5(y) = sample median (y)
T2(y) = max(y) T7(y) = 1st sample quartile (y)
T3(y) =

1
n

�n
i=1(y −mean(y))3 T8(y) = 3rd sample quartile (y)

T4(y) =
1
n

�n
i=1(y −mean(y))4 T9(y) = # runs above/belowT5(y)

Note that y is a sample from a multivariate distribution, its entries yi are not iid as they have
different means. Thus the statistics Tj have to be interpreted as different functions of y not as
characteristics of marginal distributions. One reason for doing this is that there is only one sample
y so it is difficult to assess multivariate properties. In some cases it may be reasonable to use test
statistics in different regions of the domain of the data, or at different scales via a wavelet transform
as we do in Example 5.

To check if the observed values of the test statistics are consistent with those from the simula-
tions, we use the p-values Pj = P( |Tj(y

∗)| ≥ |T o
j | ), where T o

j = Tj(y). If the fit is reasonable and
the simulations are consistent with the process that generated the data, then the p-values should
be neither too close to zero nor too close to one. But, as we know from classic hypothesis testing,
the decision of what is too small or too large a p-value is subjective. Data analysis is not an exact
science. We consider the validation process more as a way to get insight into possible sources of
problems with the results than as a process to obtain formal statements of model fit.

We use the bootstrap samples to construct confidence intervals for the Pj . To obtain more
reliable estimates of p-values close to the boundaries, we use the method of Agresti-Coull (e.g., [8]):
Let B be the number of bootstrap samples and cj = #{|Tj(y

∗)| ≥ |T o
j |}/B. Define B� = B + z2

α/2

and �Pj = (B/B�) cj + (1/2B) z2
α/2. An approximate 1− α confidence interval for Pj is

(3.7) �Pj ± zα/2

�
�Pj(1− �Pj)/B�.

A similar method can be used with the �1-estimate: The parametric bootstrap is exactly the same
and the nonparametric bootstrap can still be based on resampling from the corrected residuals
(3.6). This time, however, there is no simple formula for the correction factors of the �1-residuals.
Although some corrections can be derived by linearization (see Section 4); one can also use the
residuals of the parametric bootstrap to derive approximate corrections.

Example 5. We return to Example 1. One realization of y is generated in three different
ways: y(1) satisfies all the model assumptions with Gaussian noise and �f�2 is obtained using a GCV
selection of λ; y(2) uses a right-skewed noise distribution (a χ2

3-distribution centered and normalized

to unit-variance) and �f�2 with λ selected by GCV; y(3) is like y(1) but with �f�2 computed using a
large λ, as in Example 4, to introduce a bias. Figure 6 shows the results. Each panel shows three
sets of 95% confidence intervals (which happen to be as small as the symbols) for each statistic
Tj . The blue circles and red squares correspond, respectively, to the parametric and nonparametric
bootstrap simulations. The black triangles compare the statistics of the corrected residuals to those
of a sample of iid Gaussian variables N(0, �σ2). The results for y(1) show that the p-values of T2

and T9 for the nonparametric bootstrap are higher than those for the parametric resampling. This
indicates that the maximum is not as large as it should be for a Gaussian and that the residuals are
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Fig. 6. 95% confidence intervals (3.7) of T1, ..., T9 for �f
�2
. The blue circles and red squares are, respectively,

for the parametric and nonparametric resamplings y∗. The black triangles serve to compare the corrected residuals
to an iid Gaussian sample.

correlated —this was expected given the discussion on the residuals above— but otherwise there do
not seem to be serious problems. The plot for y(2) shows large differences between the parametric
and nonparametric p-values as well as in the statistics of the residuals; a warning that the assumed
Gaussian distribution of the errors is not consistent with the residuals (because the noise is right-
skewed). In addition, we see some other very small or large p-values that correctly warn us that the
simulations may not be consistent with the obervations. This is also clear in the results for y(3).

To check if the problem in y(3) is with the noise distribution or a systematic bias, Figure 7
shows the results for y(3) in two ways. The first panel reconstructs y(3) using only its finest wavelet
coefficients in a Symmlet-4 wavelet representation. The finest-scale coefficients are expected to be
dominated by noise and since the effect of the large λ should be mostly on the bias, the panel does
not show unreasonable p-values. The second panel shows the reconstruction using all but the finest
wavelet coefficients, which reduces the effect of white noise. This time we see suspicious p-values,
indicating a possible bias problem or the effects of coherent noise. Although not included here, the
corresponding plots for �f�1 show similar results.

3.3. Bayesian model validation. We consider the �2-estimate (1.2), which can be derived in
a Bayesian framework assuming f is random with a Gaussian smoothness prior. Define the following
hierarchical sequence of distributions:

y |f,σ, γ ∼ N(Af,σ2I), f | γ ∝ exp
�
−ftDtDf/2γ2

�
, (σ, γ) ∼ π.

In its simplest formulation, σ and γ are assumed to be known leading to a Gaussian posterior
with the following mean and covariance matrix:

E(f |y) =

�
AtA+

σ2

γ2
DtD

�−1

Aty, Var(f |y) =

�
1

σ2
AtA+

1

γ2
DtD

�−1

.
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Fig. 7. p-values for y(3) in Figure 6 using data reconstructed with only the finest wavelet scales or without them.

Hence, the posterior mean and mode coincide with �f�2 if γ = σ/λ.
To check if the modeling assumptions are reasonable, we can sample f∗ and σ∗ from the posterior

distribution of (f,σ) given y to obtain simulated data y∗ = Af∗ + σ∗ε∗ with ε∗ ∼ N(0, I). The
consistency of y with the simulated y∗ can then be explored through test statistics as in Section 3.2
(e.g., [18]). In some cases one may also be able to check the model through the marginal distribution
of y. For example, assuming again that λ and σ are known and γ = σ/λ, then one can study the
distribution of y−E(Af |y). If the model is reasonably correct this vector should be approximately
zero-mean Gaussian with covariance matrix

(3.8) Var(y) = (I −H)
�
γ2A(DtD)−1At + σ2I

�
(I −H).

The marginal distribution cannot be used when DtD is not full rank (e.g., the prior is improper)
even when the posterior is proper.

Example 6. We use the estimates �λ and �σ2 obtained as in Example 1 and assume them to be
the fixed true values in the priors (a common practice). This time a slightly different definition of
D is used to make DtD nonsingular; two rows are added to force zero boundary conditions. The
data y(1),y(2) and y(3) are defined as in Example 5. Figure 8 shows the results. The blue circles
correspond to the p-values of samples from the posterior and the red squares to samples from the
zero-mean Gaussian with covariance matrix (3.8). The results for y(1) are consistent with those in
Example 5. In the panel for y(2) we see that the data seem to be consistent with the samples from
the prior but not with those from the marginal distribution. For example the value of T1 seems to
be smaller while that of T2 seems to be larger than expected under the marginal. This is a correct
warning as the noise distribution was right-skewed. The bias introduced in y(3) leads to unusual
p-values for samples from the posterior and the marginal.

4. Validating the estimate �f .
4.1. �2-regularization. For the linear (linearized) case one can derive explicit formulas for

the bias and variance that may help determine the nature of the uncertainties of the full nonlinear
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Fig. 8. p-values for �f
�2

as a posterior mean. The blue circles and red squares are, respectively, for samples
drawn from the posterior and the marginal distributions.

problem. For example, consider the variance and bias of �f�2 : For a fixed λ > 0 we have:

Var(�f�2 | λ) = σ2G(λ)−1AtAG(λ)−1(4.1)

Bias( �f�2 | λ) = E( �f�2 | λ )− f= B(λ),(4.2)

where G(λ) is defined in (3.1) and

(4.3) B(λ) = −λ2G(λ)−1 DtDf.

We also use the median bias defined as Bias
M
( �f�2 ) = M( �f�2 )− f, where M(X ) = (median(Xj )).

Since �f and �λ are correlated, (4.1) may not be valid when �λ is used in place of λ; even if
it is approximately valid, with large-scale problems it is unlikely that one can compute the full
covariance matrix; instead we may attempt to estimate only the variances. One possible solution

is to use a resampling approach as in Section 3.2 to produce a sequence of estimates {�f∗

i } whose
sample variances are used to estimate the true variances, which include the variability introduced
by the selection of λ.

Assessing the bias is clearly more difficult because f is unknown. If Eqn.(4.2) were valid when
the data are used to select λ, then it could yield information about the relative bias (this is illustrated

in Example 7). Figure 5 shows the mean and median of B(�λ) where �λ is the value obtained with GCV

in each simulation. The plot shows that Bias( �f�2) and E[B(�λ)] are quite different (Figure 2 shows

that the former is of order 104) but it also shows that Bias
M
( �f�2 ) ≈ M[B(�λ) ] ≈ E[B(�λ) ]. A study

of the simulation results led to the following explanation of this: The conditional distribution of �f�2
given �λ can be modeled as a two-component Gaussian mixture where about 99% of the realizations
are from the Gaussian distribution with bias and variance given by (4.2) and (4.1), respectively, with
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�λ in place of λ. The advantage of having the result Bias
M
( �f�2 ) ≈ M[ Bias(�f�2 | �λ) ] ≈ M[B(�λ) ] is

that —unlike Bias
M
( �f�2 )— B(�λ) provides an explicit formula that may yield geometric information

about the bias. If the approximation did not hold, it would still be natural to ask what information
regarding the distribution of �f�2 is provided by the median of the conditional bias M[ Bias(�f�2 | �λ) ].
The following general result relates the median of the conditional mean to the quartiles of the
marginal distribution.

Proposition 4.1. Let X and Y be random variables. Assume the conditional distribution
FX|Y of X given Y has finite expectation. Let Q

X
(p) for 0 < p < 1 denote the pth quantile of X.

Fix −1/2 < β < 1/2. Then:
(i) If P[X ≥ E(X|Y ) |Y ] ≥ 1/2 + β, then M(E(X|Y ) ) ≤ Q

X
(3/4− β/2).

(ii) If P[X ≤ E(X|Y ) |Y ] ≥ 1/2 + β, then Q
X
(1/4 + β/2) ≤ M(E(X|Y ) ).

(iii) If FX|Y is symmetric, then Q
X
(1/4) ≤ M(E(X|Y ) ) = M(M(X|Y ) ) ≤ Q

X
(3/4).

Proof :(i) The proof follows easily by conditioning on Y :

P[X ≥ M(E(X|Y ) ) ] ≥ E
�
IX≥E(X|Y ) IE(X|Y )≥M(E(X|Y ) )

�

= E
�
P(X ≥ E(X|Y ) |Y ) IE(X|Y )≥M(E(X|Y ) )

�

≥ (1/2 + β)P[E(X|Y ) ≥ M(E(X|Y ) ) ] ≥ 1/4 + β/2.

Therefore M(E(X|Y ) ) ≤ Q
X
(3/4 − β/2) by the definition of Q

X
(3/4 − β/2). The proof of (ii) is

analogous and (iii) follows from (i) and (ii). �

For example, if the conditional distribution of each component �f�2,i is approximately symmetric
about its mean (as in the simulations for Figure 5), then it follows from Proposition 4.1 that

M[E(�f�2,i |�λ ) ] is between the first and third quartiles of the distribution of �f�2,i and therefore

Q
�f
�2

(1/4)− f≤ M( Bias(�f�2 | �λ) ) ≤ Q
�f
�2

(3/4)− f.

In particular, if Q
�f
�2

(1/4) ≤ f ≤ Q
�f
�2

(3/4), then the median bias provides a lower bound for the

inter-quartile range of �f�2 :

|M( Bias(�f�2 | �λ)) | ≤ Q
�f
�2

(3/4)−Q
�f
�2

(1/4) = IQR(�f�2).

On the other hand, if f= Q
�f
�2

(1/4)− δ or f= Q
�f
�2

(3/4) + δ for some δ > 0, then

δ ≤ |M( Bias(�f�2 | �λ)) | ≤ IQR(�f�2) + δ,

so that |M( Bias(�f�2 | �λ)) | provides an upper bound for how far below/above the first/third quartiles
the true f may be.

We now use B(�λ) to obtain geometric information about the relative bias. Note that B(λ) is a
discrete version of the Backus-Gilbert averaging kernel [4, 34] and the bounds are based on different
characteristics of this kernel. By Hölder’s inequality

|B(�λ) | ≤ �λ2 �DG(�λ)−1ei�p �Df�q

for p > 0, 1/p+ 1/q = 1 or, in terms of β,

|B(�λ) | ≤ �λ2 �WDtDG(�λ)−1ei�p �β�q.

These bounds can be used in several ways. For example, plots of Up,i(�λ) = �DG(�λ)−1ei�p and

Uw
p,i(

�λ) = �WDtDG(�λ)−1ei�p as functions of xi provide complementary bounds on the relative
bias of the Tikhonov estimate. They do not provide bias bounds but they do show regions in x
space where the bias may be large or where it is expected to be small. On the other hand, plots of
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Fig. 9. Median and median ± 2(MAD/0.675) of U2,i (left) and Uw
2,i (right) normalized to median one.

�f�2/Up,i(�λ) and �f�2/Uw
p,i(

�λ) as functions of xi provide information as to the value of �Df�q or �β�q

required for the value of (�f�2)i not to be dominated by the bias. For example, one may ask what
values of �Df�q or �β�q would be required for the bias bound in a particular region to be below
the noise level. One may then decide if such size reasonable for these norms and thus whether or
not the bias seems acceptable.

Example 7. We continue the 1D simulations described in Example 1. This time we introduce
an additional artifact; data corresponding to values of x between 0.4-0.47 and 0.78-0.9 are discarded.
Figure 9 shows median and median ± 2(MAD/0.675) of U2,i(�λ) (left) and Uw

2,i(
�λ) (right) computed

over 20,000 simulations. To compare the two plots the results have been normalized to median one.
We see that the scatter of Uw

2,i(
�λ) around its median is a factor of ten smaller than that of U2,i(�λ);

that is, the �1-bias bound is less variable. In both plots we see wider bias bounds in the regions
where the data were discarded.

4.2. �1-regularization. There are no closed formulas for the bias and variance of �β or �f�1
(even for a fixed σ) but some approximations can be made: Using the dual formulation of the �1-

optimization problem, [35] have shown that any solution �β has to satisfy the equationXy = (XtX+

R) �β, where R = XtrrtX/��β�1�Xr�∞, with r = y −X�β. The approximation suggested by [35]

consists of using A = XtX+R as fixed at the value achieved with �β. This leads to approximations
similar to those in (4.1) and (4.2), Var(�β) ≈ σ2A−1XtXA−1 and Bias( �β ) ≈ −A−1Rβ., which

can be used as we did with �f�2 .
An alternative to linearization is to try to avoid the bias of �1-estimates by only using �1 to

select the variables: If the unknown f has a sparse representation in the columns of W , it then
seems reasonable to use the �1-regularization to find the sparse representation followed by standard
least-squares on the smaller set of variables. This would seem to solve the problem of bias and
uncertainty quantification for �1- and �2-regularization but this is not quite clear. The problem is
accounting for the variability in the determination of the sparse representation. As the following
example shows, once this variability is taken into account, it is not really true that it is better to

use �f�1 than to obtain an estimate �f ls

�1 using the two-stage procedure: �1 to reduce dimensionality
followed by ordinary least-squares on the reduced problem.

Example 8. The top row in Figure 10 shows a 2D image of the Sigsbee synthetic seismic
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Fig. 10. Top: the Sigsbee image (left) and a noisy sample (right). Bottom: simulation means of �f
�1

(left) and

�f ls
�1 (right).

dataset (http://www.delphi.tudelft.nl/SMAART/sigsbee2a.htm) and an example of its noisy
observations. The data are modeled after the geologic structure in the Sigsbee escarpment in the
Gulf of Mexico. This type of wavefield has a sparse representation in a frame of Gaussian wave

packets [1]. The bottom row in Figure 10 shows the simulation means of �f �1 (left) and �f ls

�1 (right). It

seems that on the average �f ls

�1 provides a better estimate but this is not obvious without considering
the uncertainties. We use simulations to compare their MSE. The left panel on Figure 11 shows

the ratio log10(MSE(�f �1)/MSE(�f ls

�1)) at each location. The MSE of �f �1 is almost two orders of

magnitude worse along the stronger fronts. However, the MSE of �f ls

�1 can be up to three orders of

magnitude worse where there is no structure. If the goal is to find the main fronts, then �f ls

�1 may

be a better choice but it is more likely than �f �1 to show spurious small features. This can be also
be seen in the right panel of Figure 11; it shows boxplots of the relative MSE for large and small
non-zero values in the original image.

4.3. Generating plausible f. The frequentist resampling procedures we have used were based
on creating synthetic noise samples using the fixed estimate �f as a proxy for the unknown f, which
could be misleading if �f happens to be very different from f. We now use known functions so that
a comparison between estimate and truth is possible. The idea is to use functions that are in some
way consistent with the unknown f. To obtain such functions Bayesians have the option of sampling
from the prior or posterior distribution of f. In the frequentist framawork, one possibility is to set up
an optimization problem to search for vectors f ∗ that lead to fitted values consistent with the data.
For example, start by defining a confidence region Cα ⊂ R

n such that P[ ε = y−Af∈ Cα ] ≥ 1−α

and let Rα = {f ∗ : y −Af ∗ ∈ Cα }. One can then pose an optimization problem to solve for the
largest MSE of estimates of f ∗ ∈ Rα (see, for example, [38]). We consider a more computationally
tractable problem based on wavelet characterizations of regularity.

Under some regularity conditions, membership of a function in, for example, a Sobolev, Besov
or Lp space can be determined from the behavior of its wavelet coefficients as a function of scale
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Fig. 11. Left: simulation estimate of log10(MSE(�f
�1
)/MSE(�f ls

�1 )). Right: boxplots for the relative values of

(MSE(�f
�1
))1/2 and (MSE(�f ls

�1 ))
1/2 for large and small values of the Sigsbee image.

[22, 32]. Hence by modifying the wavelet coefficients without changing such behavior one obtains
another function with the same global regularity. Wavelet characterizations of local regularity can
be used in a similar way to define new functions with controlled local regularity. We provide an
illustration of this approach.

We return to the original undiscretized function f . Assume the goal is to assess the error in
estimates of f(x0) for a fixed x0. Suppose we could generate functions f1, ..., fn with the same ‘local
regularity’ of f at x0. One could then generate noise samples as before to create synthetic data
A[fj ] + ε∗. The errors of the estimates of fj(x0) may provide useful information about the type of
errors one can expect for functions with the same local regularity.

There are different ways to define local regularity; as an example we consider pointwise Hölder
regularity, which is defined as follows: A locally bounded function f on an interval I is said to
be pointwise Hölder α > 0 at x0 ∈ I (we write f ∈ Cα(x0)) if there is a constant C > 0 and
a polynomial Pxo

of degree less than α such that | f(x) − Pxo
(x) | ≤ C|x − x0 |

α for all x in a
neighborhood of x0. Let cj,k be the wavelet coefficients of f with respect to an orthonormal wavelet
basis. For each integer j ≥ 0 there is a dyadic interval Q(j, kj) = [kj/2

j , (kj + 1)/2j) that contains
x0. Let Qj(x0) be the interval obtained by attaching one dyadic interval at each end of Q(j, kj).

The wavelet leaders of f at x0 are defined as dj(x0) = sup 2j
�/2 |cj�,k� |, where the supremum is

over all dyadic intervals Q(j�, k�) ⊂ Qj(x0) for j ≥ 0. Roughly speaking, membership in Cα(x0)
is equivalent to a decay dj(x0) ∼ C 2−αj as j → ∞. For the purpose of our applications we do
not need a precise statement of this result which can be found in [24, 25]. The dependence of the
wavelet leaders on the wavelet coefficients suggests a simple way to perturb the wavelet coefficients
while controlling the Hölder regularity: Define a function f∗ = R(f ;u,α, x0) with the same wavelet
coefficients as f except in a neighborhood of x0, where the coefficients are instead 2βjui,jcj,k with
|uj,k| ≤ 1 and a chosen β. This is done in the following example using discrete wavelet transforms
on the vectors of discretized values of the functions.

Example 9. The left panel in Figure 12 shows two functions f∗ obtained from f using ui,j = 1,
and β = 0.2 or β = −0.7, where x0 is chosen to be the location of the highest peak in f. We see
that β may be used to change the sharpness of the function at x0. It then makes sense to generate
synthetic data: y∗

i = AR(�f ;ui,α, x0) + ε∗i , where the entries of the vector ui are iid uniform on
[−1, 1] and α is chosen depending on how one wants to change the regularity at x0. For example,

suppose we want to determine the relative MSE we may expect for the nonlinear estimate �f�1 at x0.
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Fig. 12. Left: f from Figure 1 (blue) and two examples obtained by transforming the wavelet coefficients cj,k

of f in a neighborhood of x0 = 0.72. Right: empirical cumulative distributions of the relative errors |�f∗

�1
(x0) −

f∗(x0)|2/f
∗(x0)2 for the random perturbations of �f

�1
. The black line marks the relative MSE of �f

�1
.

Since each new simulation f∗
i = R(�f ;ui,α, x0) creates a function with different values at x0, we use

the relative errors |�f∗
�1(x0) − f∗(x0)|

2/f∗(x0)
2. The right panel in Figure 12 shows the empirical

distribution function of these errors for three different values of α and, for reference, the true relative
MSE of �f�1 at x0 —that is, MSE(�f �1)/f(x0)

2 = 0.57. If we think of the functions f∗ as controls,
the figure shows that without changing the sharpness at x0 (β = 0) almost all the controls lead to
relative errors less that 0.5 and 10% of them have associated relative errors greater than 0.14. With
β = 0.3 and β = 0.5, respectively, we see that about 15% and 28% of the controls lead to relative
errors greater that 0.4. It seems reasonable to question the significance of our estimate of f(x0)
if we had found that, say, 50% of the β = 0 controls have relative errors above 1. One can also
determine values of β required to have 50% of the controls with relative errors above 1 and then
decide, if possible, if such values of β are reasonable based on prior information about the model
and the effect of �1 estimators on local regularity.

5. Summary. We have presented examples of exploratory tools to study inversion estimates
based on �2- and �1-regularizations. For �2-estimates we took advantage of explicit formulas for
bias and variance for fixed values of the regularization parameter to derive approximate confidence
intervals for the bias of A�f�2 . This is possible because the data are noisy observations of Af. A
similar approach can be used with linear approximations of �1 (or other nonlinear estimates)’ which
of course depend of how good the approximations are. Bias effects observed in the plots of these
confidence intervals may reveal problems with the assumptions on the noise or the choice of forward
operator, or may point to the presence of discretization effects.

We have also provided examples of resampling methods to check different aspects of A�f as
an estimate of Af. The basic idea is that if the modeling assumptions are reasonable and the
estimate A�f is good, then we should be able to create synthetic data �y whose statistics are similar
to those of the observation vector y. In the Bayesian framework the comparisons are made to, for
example, the statistics of the posterior predictive distribution. The choice of statistics depends on
the particular application and the type of plausible anomalies one could expect. Clearly the more
statistics we check the more likely we are to incorrectly detect a problem; this is the usual multiple
testing problem. We have not worried about this as our goal has been exploratory data analysis
but (under appropriate conditions) one should be able to make multiple test corrections.

Even if A�f is a good estimate of Af, �f may be a poor estimate of f. An assessment of �f
requires more prior information about f in addition to the data y. Again, the explicit formula for
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the bias of �2-estimates was used to provide bias bounds that may give useful information about
the relative bias and its spatial dependence. On the other hand, if a collection of plausible f were
available (e.g., a training data set), one could repeat the resampling approach to generate synthetic
data for functions in the collection. The relative errors of the estimates would yield information
on the type of errors we could have in the actual estimate �f . We have presented a way to obtain
a training set of functions with controlled regularity at a point. The idea is based on a wavelet
characterization of pointwise Hölder regularity. Characterizations of other types of local regularity
can be used to capture different local behavior [25, 26]. As we noted before, there are also wavelet
characterizations of function spaces that can be used to create collections of functions with controlled
global regularity.

As we have explained, one way to validate the model in the Bayesian framework is by sampling
from the posterior predictive distribution. In this framework it is also important to study the
sensitivity of the results to the choice of prior distributions; the results should not be driven by
the priors. Methods for sensitivity analysis are discussed in, for example, [10, 18], but there is still
a need to further develop computationally efficient methods for sensitivity analyzes for large-scale
inverse problems. In addition, although not every Bayesian will agree, it is important to understand
the frequentist behavior of Bayesian procedures as it frees us from the potential subjectivity of
the prior (e.g., [10, 39]) and provides a calibration of the procedures based on repeated sampling
that is easy to interpret. But here again the computational cost can be quite high, especially for
high-dimensional priors where a sensitivity analysis is more important.

In closing, we note that the validity of formal uncertainty statements —such as statistical
significance, p-values, confidence regions or characteristics of posterior distributions— hinges on
the assumptions made on the mathematical and statistical models used for the inference. It is
important to check that such assumptions are consistent with the process that generated the actual
observations. Yet, this task can be computationally expensive and may require tedious hours of
systematic error checking and sensitivity analyzes. Furthermore, such hard work may not lead to
reassuring formal statements regarding the validity of the assumptions for such statements would
require yet more assumptions. Some subjective decisions about model validity may have to be made.
Such is the nature of data analysis.
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