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A DISCONTINUOUS GALERKIN METHOD FOR MODELING MARINE
CONTROLLED SOURCE ELECTROMAGNETIC DATA

TORGEIR WIIK∗, MAARTEN V. DE HOOP† , AND BJøRN URSIN‡

Abstract. We give a brief introduction to the marine Controlled Source Electromagnetic method for hydrocarbon
prospecting. A discontinuous Galerkin method is developed for the diffusive Maxwell’s/MagnetoTelluric equations in
this setting using linear finite element spaces. We utilize Perfectly Matched Layers based on a complex coordinate
stretching, to emulate the radiation condition. Convergence tests on 1D diffusive Maxwell’s equations are performed,
which indicate a linear convergence. Further, the method seems to treat the medium discontinuities well, which is
essential in mCSEM modeling due to the parameters varying over many orders of magnitude.

Keywords: Controlled source electromagnetic, discontinuous Galerkin, Maxwell’s equations

1. Introduction. The use of low-frequency, electromagnetic signals in hydrocarbon prospect-
ing is a relatively new achievement; the first Seabed Logging (SBL) survey was conducted by Statoil
offshore Angola in 2000. Marine Controlled Source Electromagnetic (mCSEM) surveys are usually
performed by towing a horizontal, electric dipole which outputs a square wave current, thus gen-
erating electromagnetic signals, behind a vessel. Usually the signal’s frequencies lie in the range
0.1Hz − 10Hz, as these frequencies penetrate into the relevant depths of the subsurface. Receivers
that measure the electric and magnetic field are placed on the seabed (See Figure 1).

However, the idea of using electromagnetic signals for hydrocarbon prospecting is not new.
The equipment used today was mostly developed at Scripps Institution of Oceanography [15], and
experiments were carried out in 1979 [40, 50]. One of the first patents in this context was filed
already in 1986 [41], but finding an appropriate configuration for hydrocarbon prospecting turned
out to be difficult. Among the early works on this is [8, 7, 21]. For a more complete overview of
the history, we refer to [14]. Indeed, the breakthrough did not occur until 2000 using the approach
described in [19].

Much of the development since then has been presented in the 2007 March-April edition of
Geophysics, which contained a special section devoted to mCSEM. This section discusses the history
of mCSEM [14] and the basic physics [37, 11], as well as more complex 2D and 3D settings [26, 27,
22]. A Bayesian study integrating seismic data in the analysis was presented by [9]. Recently the
development has moved towards complete modeling of the full 3D problem, primarily using finite
differences [31, 44, 33]. In addition, a thorough study of propagation in 1D anisotropic media was
performed in [30].

The method used by [19] uses the data in the frequency domain, as the square wave source signal
yields an odd harmonic series of distinct frequencies. The theory concerning the time-domain coun-
terpart can be found in e.g. [13, 39]. A wide band frequency domain survey should be similar to a
time domain survey. However, Constable and Srnka [14] point to several operational reasons for why
the frequency domain approach has been the method of choice for offshore hydrocarbon prospecting.
The time domain response works well on land, as the less resistive subsurface (compared to air)
implies that the subsurface information is contained in the late arrivals, while the opposite is true
for marine acquisition due to the conductive water column. In the frequency domain however, the
relatively resistive seabed rocks dictate that the subsurface information is contained at sufficiently
large offsets, where the direct ”wave” from source to receiver has been attenuated. The frequency
domain approach also allows for focusing the energy at specific frequencies, allowing for a higher
signal-to-noise ratio. Nevertheless, time domain methods have attracted interest also [51, 42]. We
will focus on the frequency domain method.
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Fig. 1. Figure displaying a usual configuration of a mCSEM survey. A horizontal electric dipole is towed behind
a vessel, while receivers are placed on the seabed. Main sources for measured response are: 1:Reflection from sea-air
interface, 2:direct wave, 3:Response from the seabed, 4:Response from hydrocarbon reservoir. The figure is retrieved
from [29].

The equations underlying the CSEM method are derived from the Maxwell equations, and
coincide with the equations used for MagnetoTellurics (MT).

The electromagnetic properties of a medium are described by its electric permittivity, electric
conductivity and magnetic permeability. A hydrocarbon reservoir will typically possess a lower
electric conductivity compared to its surroundings, which means that the electromagnetic signals
from the dipole will scatter when they hit the reservoir. From measuring this scattered field at the
receivers we can be able to predict the location of a possible reservoir and what kind of fluid (oil,
gas, water) it contains. Modeling this scattered response in known models constitutes the forward
scattering problem, which we will consider in this paper.

However, recorded fields are not necessarily only the scattered field from an anomaly, which a
hydrocarbon reservoir represents in the subsurface. As shown in Figure 1 there is response from
several other factors, which may distort our results. At short source-receiver offsets, say less than
2km between source and receiver, the direct field from source to receiver dominates the recorded
signals. At longer offsets the response from the seabed, the air wave and the scattered field from the
hydrocarbon reservoir dominate, as the signal passes with a different decay through the hydrocarbon
reservoir over longer distances due to the guided wave principle [48, 19, 25]; the low conductivity
implies low attenuation. Despite using electromagnetic waves for hydrocarbon prospecting had been
investigated, it was this idea of guided waves that allowed for the first successful application. The
latter responses also contain multiple reflections in the water column and between layers in the
subsurface, which imposes further problems in data processing, as the receivers will measure signals
that are not only a consequence of primary events.

To model the response of a mCSEM experiment we apply the discontinuous Galerkin (DG)
method, see [24] for an introduction. The DG method for elliptic problems originates from finite
element methods using interior penalties (IP) to weakly enforce continuity conditions between el-
ements, see for instance [2, 3, 18, 4, 49, 1]. The method is a mixture between conventional finite
element methods and finite volume methods; over each element in the mesh the solution is expanded
in a chosen basis, and to connect this element to its neighbors in a consistent way a numerical flux
is specified along the element boundary. We use a formulation based on the first order system of
equations, an approach which is similar to the method used by [17] and also closely related to the
work in [20]. We note that the solution of Maxwell’s equations using DG methods has also been
studied in the context of second order curl-curl equations using IP methods, see for instance [38]
and the references therein, and so called local DG methods [12, 6]. The first order system has
advantages in as much as that one avoids numerical differentiation to obtain the ”second” field,
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as both the electric and magnetic field are observed in mCSEM. The motivation for applying the
DG method to this problem lies in the treatment of discontinuities in the electromagnetic fields at
material interfaces, i.e. geological interfaces, in the subsurface. Further, the DG method is flexible
with respect to the computational mesh, which should prove an advantage for geophysical models.
For instance, conventional finite difference and finite element methods usually require a very dense
mesh around the source and material interfaces. This refinement can be expected to be relaxed
using DG, as we allow a discontinuous representation of the solution.

We present a DG method for the mCSEM problem in R3 using linear basis functions to acco-
modate the limited regularity of the coefficients. The problem is formulated as a first order system,
thus avoiding the penalty terms which are introduced in the IP curl-curl formulation. A Perfectly
Matched Layer is implemented to simulate the radiation condition on the finite computational do-
main. This formulation using the DG method admits large jumps in the conductivity. This is
essential for the mCSEM problem where the conductivity varies over many orders of magnitudes.
We test the performance of our algorithm in 1D. The error of the scheme is estimated to decay
linearily as a function of mesh size.

The purpose of this work is to provide a well defined setting for this problem and prove con-
vergence of our algorithm to a unique solution. Further, computational physics experiments will be
conducted in the context of inverse problems.

2. Basic equations.

2.1. Problem formulation. Let σ, � and µ denote the electric conductivity, electric permit-
tivity and magnetic permeability, which are assumed to be real, non-negative L

∞ functions. We
further accept the constitutive relations d = �e, b = µh and jc = σe, where d, e,b,h ∈ C3 are the
electric displacement field, electric field, magnetic flux density and magnetic field strength, respec-
tively, and jc is the conduction current set up by an imposed electric field. This leads us to the
following form of Maxwell’s time harmonic curl equations in R3 [43]:

∇× e = iωµ0h,(2.1)

∇× h = σ̃e+ js,(2.2)

where i =
√
−1, ω = 2πf , σ̃ = σ − iω� and js is the source current density. Here f denotes the

frequency and µ0 is the freespace permeability.
The source js is a horizontal electric dipole for mCSEM applications, with polarization given

by l = [lx, ly, 0]
T , where |l| is the length of the source, and current amplitude I (ω). The source

dipole moment is given by I |l|. This is well approximated by a point dipole, Ilδ (x− xs) when
|l| � λ, where xs is the source position and λ is the wavelength [29]. However, numerically we will
use a normalized hat function, with increasing height as a function of decreasing width, as source.

This implies that js ∈
�
L
2
�
R3

��3
for a finite width, which is needed in the later weak formulation.

The piecewise linear hat-shape is chosen as we will restrict ourselves to a linear basis. The source
function is explicitly given later.

In our applications the frequencies lie in the range 0.1−10Hz. In the watercolumn and sediments
we have σ̃ ≈ σ, i.e. the quasi-static approximation [34] applies, which means that the equations
describes a diffusion process instead of wave propagation. This is because of the low frequencies,
the fact that the conductivity of sea-water is approximately 3.2S/m (around 1S/m for water filled
sediments) and the permittivity is usually of the same order as the freespace permittivity, � = �0 =
8.85 · 10−12F/m. These conditions allow us to neglect the displacement currents.

Further, we assume that the fields decay as they propagate towards infinity, which is expressed
through the Silver-Müller radiation condition. This is expressed as [28]






���
√
�̃e− h× r

r

��� ≤ c
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|e| ≤ c
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where �̃ = �+ i σω , r = x, r = |r| and c is a generic constant.

We consider solving equations 2.1 and 2.2 on a bounded domain Ω ⊂ R3 with appropriate
boundary conditions imposed on ∂Ω. These boundary conditions will be specified later, and will
correspond to those introduced for the Perfectly Matched Layers (PML) as discussed in Appendix
A. We introduce the Sobolev space

W = H (curl;Ω) =
�
f ∈

�
L
2 (Ω)

�3
: ∇× f ∈

�
L
2 (Ω)

�3�
,

and assume js ∈
�
L
2 (Ω)

�3
. We further denote for vectors a, b ∈ C3

(a, b)Ω =

�

Ω
a · bdx,

where the overline denotes complex conjugate. We proceed by multiplying equations 2.1 and 2.2
with v ∈ D, where D is a space of sufficiently smooth test functions, and integrating the result over
Ω:

(∇× e, v)Ω = iωµ0 (h, v)Ω ,(2.3)

(∇× h, v)Ω = (σ̃e, v)Ω + (js, v)Ω .(2.4)

Performing integration by parts then yields

�

∂Ω
v · (n× h) dS+(h,∇× v)Ω = (σ̃e, v)Ω + (js, v)Ω ,(2.5)

�

∂Ω
v · (n× e) dS+(e,∇× v)Ω = iωµ0 (h, v)Ω ,(2.6)

where n is the outward pointing unit normal and dS is a surface measure. This yields the following
weak formulation of our problem:

Find e,h ∈ W such that equations 2.5 and 2.6 holds ∀v ∈ D.

The measurements emeas,hmeas, taken along a line or on a surface S, are then expressed as the
restriction of e and h to S. That is,

emeas = e (x) |S ,hmeas = h (x) |S .

2.2. Rays, asymptotic expansions. For later comparison with the results obtained using the
DG method we present a short summary of the asymptotic ray expansion presented in [47, 16]. To
this end we follow [16] and assume that the fields due an unit electric point source are asymptotically
given by

�
e (x) ∼ e

−
√
−iωτ(x)

�∞
k=0 (−iω)−(k−2)/2

ek (x)

h (x) ∼ e
−
√
−iωτ(x)

�∞
k=0 (−iω)−(k−1)/2

hk (x)
,

where τ (x) is the eikonal and ek, hk are the amplitudes. Inserting this into equations 2.1 and 2.2
in the quasi-static limit leads to the equivalents of the eikonal equation and transport equations of
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the ray theory for the wave equation:

∇τ ·∇τ = σµ0,

2 (∇τ ·∇) e0 + [∇ · (∇τ)] e0 +

�
∇σ

σ
· e0

�
∇τ = 0,

2 (∇τ ·∇)h0 +

�
σ∇ ·

�
1

σ
∇τ

��
h0 +

�
∇σ

σ
· h0

�
∇τ = 0,(2.7)

2 (∇τ ·∇) em−1 + [∇ · (∇τ)] em−1 +

�
∇σ

σ
· em−1

�
∇τ =

∇
�
1

σ
∇ · (σem−2)

�
−∇×∇× em−2, m = 2, 3, 4, . . . ,

2 (∇τ ·∇)hm−1 +

�
σ∇ ·

�
1

σ
∇τ

��
hm−1 +

�
∇σ

σ
· hm−1

�
∇τ =

∇ [∇ · (hm−2)]− σ∇×
�
1

σ
∇× hm−2

�
, m = 2, 3, 4 . . .

It may be shown using the method of steepest descent to the field integrals that the asymptotic
response from a thin resistive layer in an isotropic stratified model is due to a pole in the complex
frequency plane of the reflection coefficient [29]. This should correspond to a guided rays in the
resistor. The air-wave, i.e. the interaction at the sea/air interface, and other phenomena, may be
accounted for in a similar way which also shown in [29]. The air-wave is an important phenomenon
as it dominates the recorded signal at very far offsets, due to it passing with no attenuation through
the air and leaking back towards the seabed. Due to the very high conductivity contrast at this
interface it is also difficult to handle properly numerically, but the DG method should be able to
handle this because of its inherent discontinuities.

3. Discontinuous Galerkin Method.

3.1. Mesh and approximation space. We solve equations 2.5 and 2.6 numerically for e and
h using the DG method on a bounded domain Ω ⊂ R3, where n× e = 0 is imposed on ∂Ω. Inside
∂Ω a PML zone, where the fields are attenuated without causing any reflection back into the model,
is incorporated to simulate the radiation condition, as shown in Figure 2. It is assumed that the air
layer is chosen thick enough to account for the interaction between the water column and the air.

We consider Ωh, h > 0, to be a family of discretized approximations to Ω such that Ωh =�
K∈τh

K, where τh is a tesselation of Ωh into simplices, i.e. tetrahedrons in 3D. Figure 3 displays
the intersection of a tetrahedral mesh with a local refinement embedded.

We denote the set of facets by Γ, facets between two neighboring elements by Γi and the facets
on ∂Ωh as Γb. Naturally Γ = Γi ∪ Γb and Γi ∩ Γb = ∅.

We consider aproximative solutions
�
eh,hh

�
∈ X×X which satisfy equations 2.5 and 2.6, where

X =
�
f ∈

�
L
2 (Ω)

�3
: ∀K ∈ τh, f |K∈

�
P1 (K)

�3�
.

Here P1 (K) is the space of polynomials of at most degree 1 over K. Since we consider a Galerkin
type method, the space of test functions is chosen equal to the solution space.

It is easily verified that

�
[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T , [x�

, 0, 0]
T
, [y�, 0, 0]

T
, [z�, 0, 0]

T
,

[0, x�
, 0]

T
, [0, y�, 0]

T
, [0, z�, 0]

T
, [0, 0, x�]

T
, [0, 0, y�]

T
, [0, 0, z�]

T
�

=
�
v
i
K : i = 1 . . . 12

�
= XK
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is a basis for X restricted to a given element K, where x
� = 1

L (x− x0), x0 is a vertex of the
tetrahedron and L is a characteristic lenght scale of the element. This choice is made to ensure that
the expansion coefficients of the solutions in this basis have little dependency on the actual spatial
positions of the elements, which should yield a better conditioned system to solve. This is called
a modal basis, and differs from the nodal approach as described in [24] where basisfunctions are
constructed around specific points within each element.
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3.2. Local weak formulation. We obtain the local weak formulation for the discrete solution
by considering the weak formulation over a single element K ∈ τh:

�

∂K
v · (n× h∗) dS+

�
hh

,∇× v
�
K

=
�
σ̃eh, v

�
K
+ (js, v)K ,(3.1)

�

∂K
v · (n× e∗) dS+

�
eh,∇× v

�
K

= iωµ0

�
hh

, v
�
K
,(3.2)

where e∗,h∗ are the numerical fluxes which remain to be specified. This yields the following local
discrete weak formulation of our problem:

Find eh,hh ∈ X such that equations 3.2 and 3.1 hold ∀v ∈ X, for each K ∈ τh.

To couple each element to its neighbours and to ensure consistency a numerical flux needs to
be specified at the element boundaries, as the fields take on two values at each facet due to the
discontinuities. Several choices for specifying the flux term have been explored, for instance the
upwinding flux [17] is popular for flow problems. We choose to use the centered flux [17], as for the
diffusion dominated problem there is no wave motion as such. We thus use

e∗ = {{e}} =
1

2

�
eh,+ + eh,−

�
,

and similarily for the magnetic field. Here +/− denotes each side of the boundary surface. For
element K we may write ∂K =

�4
k=1 Fk, where Fk is a facet of the tetrahedron, and over each such

facet the normal vector is constant. Since the pairwise intersection of facets on a given tetrahedron
has zero surface measure we may write the integral as the sum of the integrals over each face. At
the boundary ∂Ωh, where there are no neighbours, we implement the boundary condition n×e = 0,
and define h∗ = {{h}} = hh,+, i.e. the limit of the value in the element. This may cause reflection
at the boundary, but will nevertheless be attenuated by the PML zone.

3.3. Global weak formulation. The global weak formulation is obtained by summing equa-
tions 3.1 and 3.2 over the elements, thus obtaining

�

F∈Γi

�

F
[[v]] · (n× {{h}}) dS+

�

F∈Γb

�

F
v · (n× {{h}}) dS+

�

K∈τh

�
hh

,∇× v
�
K

=
�
σ̃eh, v

�
Ωh

+ (js, v)Ωh
,(3.3)

�

F∈Γi

�

F
[[v]] · (n× {{e}}) dS+

�

K∈τh

�
eh,∇× v

�
K

= iωµ0

�
hh

, v
�
Ωh

,(3.4)

where [[v]] = IFKv + IFK̃v, IFK = ±1 depending on the orientation of the normal vector n chosen
for that facet and K̃ is a neighbor of K. This means that [[v]] is the jump of v. This yields the
following global discrete weak formulation of our problem:

Find eh,hh ∈ X such that equations 3.4 and 3.3 holds ∀v ∈ X.

3.4. Boundary and interface operators. At this point it is straightforward to make the
connection to the boundary operator MF for F ∈ Γb and the interface operator DF for F ∈ Γi ∪Γb
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as presented in [20]. To do this we first separate the source term and write

�
σ̃eh, v

�
Ωh

−
�

F∈Γi

�

F
[[v]] · (n× {{h}}) dS−

�

F∈Γb

�

F
v · (n× {{h}}) dS−

�

K∈τh

�
hh

,∇× v
�
K

= − (js, v)Ωh
,(3.5)

iωµ0

�
hh

, v
�
Ωh

−
�

F∈Γi

�

F
[[v]] · (n× {{e}}) dS−

�

K∈τh

�
eh,∇× v

�
K

= 0.(3.6)

We rewrite this as a single equation for wh =
�
eh,hh

�
∈ X ×X as

�

Ωh

G0w
h · ṽdx−

�

F∈Γi

�

F
[[ṽ]] ·Gn {{w}} dS−

�

F∈Γb

�

F
ṽ ·Gn {{w}} dS−

�

K∈τh

�

K
wh ·

�

l=x,y,z

Gel

∂

∂l
ṽdx = −

�

Ωh

j · ṽdx,(3.7)

where ṽ ∈ X ×X and j = [js, 01×3]
T , and

G0 =

�
σ̃I3×3 03×3

03×3 iωµ0I3×3

�
, Gn =

�
0 N

N 0

�
, N =




0 −nz ny

nz 0 −nx

−ny nx 0



 ;

el is the canonical basis for R3. Following [20] we assume that MF and DF are associated with
matrix valued fields, MF : Γb → R6,6 and DF : Γb ∪ Γi → R6,6, respectively. We find that

DF = −Gn,(3.8)

MF = −G̃n,(3.9)

with

G̃n =

�
0 N

−N 0

�
.

This specifies the actions of the operators on a vector through the matrix-vector product. It is
evident that multiplication with N corresponds to the cross product with n, and the construction
of Gn, G̃n ensures that n× e vanishes on the boundary.

It may be verified that our system does not fit into the Friedrichs’s systems framework treated
by [20] because of the fact that the coefficients are complex, nor does the central flux satisfy the
conditions set in [20] on boundary and interface operators for convergence. We note that on F ∈ Γi,
DF is double valued, although its mean is zero, while on Γb, DF is single valued.

4. Discrete system. Over a given element K we write eh |K= a
0
e,Kv

0
K + . . . + a

12
e,Kv

12
K and

hh |K= a
0
h,Kv

0
K + . . . + a

12
h,Kv

12
K , where v

i
K ∈ XK and a

i
e/h,K ∈ C, i = 1 . . . 12. We insert these

representations into equations 3.3 and 3.4, which yields 24 equations to determine the 24 unknown
expansion coefficients over K, coupled to the expansion coefficients of the neighbouring elements
through the flux.

We note that each integral in the weak formulation can be calculated analytically, with the
exception of

�
σ̃eh, v

�
K

since σ̃ is allowed to vary within K, and perhaps the source integral depending
on the source. These integrals are evaluated using Gaussian quadrature.

To this end we introduce φi;j such that X = span {φi;j : i = 1 . . . 12, j = 1 . . . NK}, where NK

is the number of elements. Specifically, we choose for a given j = j0,

φi;j0 (x) =

�
v
i
Kj0

(x) , x ∈ Kj0

0, elsewhise
,
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where we have introduced an ordering of the elements. We may organize the system of equations as

�
A B

B C

��
E

H

�
=

�
J

012NK×1

�
,

where A,B,C ∈ C12NK×12NK , E,H ∈ C12NK contains the unknown expansion coefficients, and
J ∈ C12NK contains the terms from the source integral. Specifically,

E =
�
a
1
e,K1

, . . . , a
12
e,K1

, a
1
e,K2

, . . . , a
12
e,KNK

�T
,

H =
�
a
1
h,K1

, . . . , a
12
h,K1

, a
1
h,K2

, . . . , a
12
h,KNK

�T
.

Disregarding the boundary conditions, which are implemented in the PML-zone, we find for
i, j = 1 . . . NK that the matrices are given by the following sub-matrices:

(A)ij =




(σ̃φ1;i,φ1;j)Ki

. . . (σ̃φ1;i,φ12;j)Ki

...
. . .

...
(σ̃φ12;i,φ1;j)Ki

. . . (σ̃φ12;i,φ12;j)Ki



 ,

− (B)ij =





1
2I

∂Ki
i,j,1,1 + δijI

Ki
i,j,1,1 . . .

1
2I

∂Ki
i,j,1,12 + δijI

Ki
i,j,1,12

...
. . .

...
1
2I

∂Ki
i,j,12,1 + δijI

Ki
i,j,12,1 . . .

1
2I

∂Ki
i,j,12,12 + δijI

Ki
i,j,12,12



 ,

(C)ij = iωµ0




(φ1;i,φ1;j)Ki

. . . (φ1;i,φ12;j)Ki

...
. . .

...
(φ12;i,φ1;j)Ki

. . . (φ12;i,φ12;j)Ki



 ,

where

I
∂Ki
i,j,k,l =

�

∂Ki

φk;i · (nKi × φl;j) dS,

I
Ki
i,j,k,l = (∇× φk;i,φl;j)Ki

,

nKi is the outward unit normal vector for element Ki and δij is Krönecker’s delta. We observe that
with the given choice of basis for X both A and C are block diagonal, while B is a sparse matrix
with entries along the diagonal and positions corresponding to neighbours. For the source term we
find that

J = −
�
(φ1;1, j

s)K1
, . . . , (φ1;11, j

s)K1
, (φ1;2, j

s)K2
, . . . , (φ11;NK , js)KNK

�T
.

An example of the matrix structure for a small domain is shown in Figure 4. Every point
corresponds to a block of either A, B or C. The blue points are the blocks on the diagonal of each
submatrix, while the red are off-diagonal. The cloud-like pattern in the off-diagonal submatrices is
due to the unstructured tetrahedral mesh, and suggests that the system is very poorly conditioned
in this form. Finding an appropriate preconditioner is thus essential, and is discussed further in a
later section.

4.1. Gaussian quadrature. A quadrature rule is an approximation to a definite integral of
a function stated as a weighted sum of the function values chosen at specific points within the
domain of integration. A n-point Gaussian quadrature rule is constructed to yield the exact result
for polynomials of degree 2n − 1 by suitably choosing the evaluation points xi and weights wi for
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Fig. 4. Matrix structure for a small domain.

i = 1 . . . n. For the one-dimensional integral the standard case is usually expressed on the interval
[−1, 1] as

� 1

−1
f (x) dx ≈

n�

i=1

wif (xi) .

It can be shown that the evaluation points should be choosen as the roots of a class of polynomials.
To extend this to the tetrahedral case, n3 points are arranged in a distorted cube inside the

tetrahedron with the appropriate weights. See [45] for a more detailed description on quadrature
rules in general and for the tetrahedron.

4.2. 3D Source representation. Due to the restriction to a linear basis we choose to imple-
ment the source as a L

2 normalized cone over R3 as

js =

�
3

πτ4 (τ − r) d̂, r ≤ τ

0, elsewhise
,

where r
2 = (x− xs)

2 + (y − ys)
2 + (z − zs)

2 is the squared euclidian distance to the source and

d̂ = [cosα, sinα, 0]T describes the source polarization, where α is the angle between the source
polarization and the x-axis in the horizontal plane. This choice is made as we model a horizontal
electric dipole. Although its support is spherical the source’s value increases linearly, which should
be well approximated by the linear basis. An illustration of the 1D equivalent is shown in Figure 5.

4.3. Preconditioning. As mentioned previously, the discrete system of equations can often
be quite stiff. This is especially true when the parameters vary over many orders of magnitude
from air to sea water. We thus apply a preconditioner to the system. Two options are compared
on the 1D example considered in the next section, a Jacobi preconditioner and an incomplete LU

factorization. We find that both approaches reduce the condtition number of the system matrix,
but the LU factorization is superior in this case, clustering the eigenvalues around the line � (λ) = 1
with � (λ) ≤ 1, as shown in Figure 6. The incomplete LU factorization was perfomed with a cutoff
at 10−3.
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Fig. 5. 1D hat source.
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Fig. 6. Eigenvalues of system matrix under different preconditioners. Blue cross: no preconditioner, red circle:
Jacobi preconditioner, green star: incomplete LU preconditioner.

5. Numerical experiments in 1D. As a demonstration of concept we consider the 1D
Maxwell’s equations; we restrict the propagation to the x-direction, assume that the medium param-
eters depend only on this coordinate and align the coordinate system such that e = [0, 0, ez]

T
,h =

[0, hy, 0]
T . This yields

σ̃ez −
∂hy

∂x
= −j

s
,

iωµ0hy +
∂ez

∂x
= 0.
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The source is chosen as a hat function with width κ given by

j
s (x) =






1
κ2 (x− xs) +

1
κ , xs − κ ≤ x ≤ xs

− 1
κ2 (x− xs) +

1
κ , 0 ≤ x ≤ xs + κ

0, elsewhere

,

which is normalized with respect to the L
2 (Ω) norm. Here xs is the center of the source which is

set to x = 350m, and we consider the typical mCSEM frequency 0.25Hz. Due to the relatively low
computational cost associated with 1D problems we have chosen to use uniform mesh sizes h. The
results presented uses 350 intervals, which corresponds to h = 10m, including 500m PML zone in
each end, and κ = 10m. Figure 7 displays the profile of the model which is considered.

Figure 8 displays estimated L
2 (Ω) error of the magnetic field against a ”truth” solution using

1400 elements. We observe that the convergence appears to be approximately linear in h, especially
when the mesh size h approaches 10m, which is needed to resolve the source properly. The same is
observed for the electric field. This is in compliance with the theoretical bounds referred to in the

x[m]

0

400

1400

σ = 10
−10

S/m,� = �0

σ = 3.2S/m,� = �0

σ = 1S/m,� = �0

σ
=

1
0
−
2
S
/
m
,�
=

� 0
,∆

x
=

1
0
0
m

σ = 1S/m,� = �0

Fig. 7. Model used in numerical example.
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Fig. 8. Convergence plot for magnetic field. Red line: h1.

investigations made by [17], but not in compliance with the quadratic convergence they report for
the magnetic field in their numerical examples.

Figures 9(a) and 9(b) display the magnitude of the calculated magnetic field over the whole
model and zoomed in around the source location, respectively. Figure 9(b) shows how well the DG
method performs around the difficult source point and the interface at x = 400m, which should
make it appropriate for mCSEM modeling.

6. Discussion. Preliminary tests applying the DG method to the 1D Maxwell equations show
promise for applying this method to mCSEM modeling. The method is flexible with respect to the
mesh construction and is able to handle large contrasts in properties at material interfaces due to
its discontinuous nature. The accuracy of the method is estimated to increase linearily as a function
of the mesh size. However, the corresponding linear system of equations is often very stiff due to
the unstructured nature of tetrahedral meshes in 3D. Thus, finding an appropriate preconditioner is
essential. Tests on a 1D problem suggest that an incomplete LU -type factorization is a good choice.

The DG implementation can be naturally tied to Automatic Differentiation [35, 23] for the
purpose of sensitivity analysis and parameter analysis via Output Least Squares [46, 32].

7. Acknowledgements. The authors would like to acknowledge the help from Assistant Pro-
fessor Peijun Li of Purdue University with the PML formulation. Torgeir Wiik acknowledges Statoil
ASA for sponsoring his Ph.D. project. Bjørn Ursin has received financial support from VISTA and
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Appendix A. PML boundaries. To simulate the radiation condition given in equation
2.1 with equations 2.1 and 2.2 one would need a huge domain Ω. This again would increase the
computational cost significantly due to the large model. To avoid this, a strategy using Perfectly

Matched Layers (PML) was invented. This involves padding the domain Ω with an absorbing
medium to ensure that the fields are attenuated fast when they approach ∂Ω, as indicated in Figure
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Fig. 9. Magnitude of magnetic field as a function of depth.
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2. However, the introduction of such a layer is not trivial. If it is done carelessly reflections from the
boundary between the normal domain and the PML will be encountered, and these will potentially
pollute the solution. To avoid these reflections from the boundary the PML is designed in such a
way that the fields are attenuated within this zone, but it has no contrast in impedances compared
to the actual domain of interest and thus does not cause any reflections. This attentuation emulates
the radiation condition, and allows for a significantly smaller computational domain to be chosen.
Several approaches are possible, for instance the variable splitting presented by Berenger [5] and
anisotropic matching [36], but we choose the complex coordinate stretching, also known as complex
scaling in analysis, introduced in [10].

To this end we follow [10] and introduce the complex coordinates

x̃ =

� x

0
sx (x

�) dx�
,

ỹ =

� y

0
sy (y

�) dy�,(A.1)

z̃ =

� z

0
sz (z

�) dz�,

where sj (τ) = ζ
1
j (τ) + iζ2j (τ) is a continuous function satisfying

ζ
1
j = 1, ζ

2
j = 0 outside the PML zone,

ζ
1
j ≥ 1, ζ

2
j > 0 inside the PML zone,

such that the coordinates coincides with the ordinary cartesian coordinates outside the PML zone.
The gradient in the stretched coordinate system becomes

∇̃ =

�
∂

∂x̃
,
∂

∂ỹ
,
∂

∂z̃

�
,

where ∂
∂x̃ = 1

sx
∂
∂x . Maxwell’s equations then become

∇̃ × e = iωµ0h,(A.2)

∇̃ × h = σ̃e+ js,(A.3)

∇̃ · (�e) = 0,(A.4)

∇̃ · (µ0h) = 0,(A.5)

which looks as usual, except the coordinates may be complex. In practice sj (τ) is taken as a power
function, that is

sj (τ) = 1 + χ

�
d (τ)

δ

�m

, m ≥ 1,

where d (τ) is the distance in the j-direction to the boundary between the ordinary zone and the
PML zone and δ is the thickness of the PML zone. It can be verified that increasing the thickness
δ or increasing Re (χ) and Im (χ) will reduce the PML approximation error.
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