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THE EFFECT OF INITIAL CONTACT AREA ON THE MECHANICAL AND

HYDRAULIC PROPERTIES OF SINGLE FRACTURES.

CHRISTOPHER PETROVITCH∗, LAURA J. PYRAK-NOLTE† , AND DAVID D. NOLTE‡

Abstract. Experimental work suggests that the flow-stiffness relationship in single fractures relies on the geom-
etry of the fracture, i.e. the size and spatial distributions of the void and contact area. In this work, the effect of
the initial contact area on the deformation of fractures and fluid through fractures are analyzed. Fractures with both
uncorrelated and correlated aperture distributions, with varying initial contact areas are deformed numerically under
a normal load. When the displacement-stress and stiffness-stress curves are normalized by the initial contact area
fraction, the disparate behavior collapses to a single curve except when the initial contact fraction approaches zero,
for correlated fractures.To remove the dispersion for correlated fractures additional geometric length scales are needed
to complete the normalization. The hydraulic properties normalization lends to bounding the possible flow-stiffness
curves.

1. Introduction. In today’s world, we rely upon the earth’s subsurface in many ways. These
include the extraction of drinkable water, production of oil and gas, nuclear waste disposal, the
storage of anthropogenic byproducts (e.g. CO2) in subsurface reservoirs, and the construction of
subsurface structures, such as tunnels, underground buildings, and the foundations of dams and
bridges. To successfully plan for any of these projects, an understanding of the geologic structures
in the subsurface is required. This knowledge is very difficult to obtain because the earth’s subsurface
is composed of a hierarchy of processes that occur at scales that span many orders of magnitude.
In this paper, we refer to a “fracture” with the understanding that we are referring to mechanical
discontinuities that range in scale from lattice dislocations (10-9 m) to micro-cracks (10-6 m) to
fractures (1 m) to the scale of plate boundaries (104 m).

To study processes with this range of scales, many scientists turn to the framework provided
by Percolation Theory and more specifically finite-size scaling methods. Percolation Theory has
been successfully used to predict many other physical processes that occur at different scales, such
as, phase transitions, the spreading of forest fires, and the electrical conductance through random
mediums [12]. However, in order to use these methods, a firm understanding of the properties
of a physical system is required at each scale. For example, when considering 2D random site
percolation, the common parameter used is the site occupation probability, p. To understand the
system, the desired quantity is measured at various values of p and scale, L, to locate the critical
probability, pc, at the infinite limit via finite size scaling [12]. A goal is to apply these methods
to the flow-stiffness relationship for single fractures by using the void/contact area fraction as our
order parameter rather than the site occupation probability. Before this can be done, it must
be recognized that in the previous example, each 2D pattern generated for a given probability is
uniquely defined, e.g. depending on the value of p, a site is either occupied or not. This is not the
case in the flow-stiffness relationship. For any given fracture, the void/contact area can be an effect
of (1) its original configuration (similar to site percolation) and (2) the current load applied. In
other words, it is a function of its initial state and how the fracture has been deformed under a load.
In this study, we determined that the fracture displacement and stiffness as a function of stress,
reduces to a single curve, through normalization by geometric parameters of the fracture. Also,
the flow-stress curves are bounded by normalizing the flow by the initial void area fractions and
mean aperture. Understanding the displacement-stress, stiffness-stress, and flow-stress behavior is
the necessary first step in the study of the flow-stiffness relationship.

2. Fracture Model. In this study, the simulated fracture void geometries are generated using
a stratified percolation method [9, 7, 8]. While many methods are based on bringing two gener-
ated rough surfaces together, (Pietgen & Saupe, [10]; Brown, [1]; Glover et al., [4]; Borodich &
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Table 2.1

Fracture generation parameters: (Left) Uncorrelated, (Right) Correlated. Cf is the approximate contact fraction
to be expected. The aperture scaling is the parameter used to convert pixel overlap during the generation to a physical
length. All fractures were generated with an edge length of 256 pixels and a physical dimension of .1 meters.

Uncorrelated
NPTS (Cf ) Aperture Scaling (µm)

3800 (40%) 5.92105
4300 (35%) 5.23256
5000 (30%) 4.5000
5700 (25%) 3.94737
6600 (20%) 3.40909
7800 (15%) 2.88462
9700 (10%) 2.31959
12400 (5%) 1.81452

Correlated
NPTS Aperture Scaling (µm)

11 10.928
12 7.816049
13 5.602044
14 4.16493
15 3.160493
16 2.4414
17 1.915686
18 1.524158
19 1.22773
20 1.00000

Onishchenko, [1]; Walsh et al., [15]) , the stratified percolation method enables the user to control
the void spaces directly, rather than indirectly. This method constructs a two-dimensional hier-
archical aperture distribution with a tunable spatial correlation. The construction begins with a
two-dimensional array set to zero. This initial array is termed the first tier. Within that tier, NPTS
(number of points per tier) are selected and used to define the center of the next tier. This next tier
is smaller than the first tier by a scale factor, b. This process is repeated until the desired number of
tiers have been generated. Finally, within the final tiers, NPTS points of a given size are randomly
placed and the initial array incremented by one unit. Overlapping tiers result in spatially-correlated
aperture distributions.

Two types of fractures are considered in this study: (1) spatially uncorrelated (or random) and
(2) spatially correlated. The uncorrelated patterns were generated by using only one tier, with
NPTS points of a given size (4 pixels by 4 pixels) on a 2D array. The correlated patterns were
generated using four tiers, with a scale factor set such that the final tier was the size of a plotted
point (4 pixels by 4 pixels). In this paper, we only considred fractures of size 256 x 256 pixels,
with a physical dimension of 0.1 meters on a side. Table 2.1 lists all of the parameter sets used to
generate the fracture geometries for this study and an example of each set is shown in Figure 1.

3. Deformation Model. Understanding how a fracture deforms when subject to a load is
necessary when investigating the relationship between the mechanical and hydraulic properties of
fractures. In this study, fractures were deformed numerically under a normal load using a method
similar to that developed by Hopkins [6]. Hopkins’ model assumes a joint can be approximated by
two parallel half-spaces separated by an asperity distribution. This model is similar to Greenwood
& Williamson’s model [5] where the joint was modeled as an asperity distribution in contact with a
smooth flat, rigid, surface and it’s later improvement by Brown and Scholtz [2] where the joint was
modeled as two rough surfaces in contact. Unlike these models, Hopkins’ included the interaction
between contact points by allowing each of the half-spaces to deform about the asperities as well as
the asperity deformation and it did not allow interpretation of the two rough surfaces like Brown
and Scholtz [2]. Each asperity is modeled as a cylinder arranged on a regular lattice. The height
of each cylinder is determined by the fracture generation model and is given a radius such that all
cylinders initially are in contact with neighboring cylinders.

A linear system of equations can be written for this system by noting that for each asperity, the
sum of the initial distance between the half-spaces, D, and the total deformation , Wi, must equal
the length of the asperity, or

(3.1) D +Wi = hi +∆hi for i ∈ C,
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Fig. 1. (Top row) Uncorrelated synthetic fractures generated with NPTS = 3800, 5000, 6600, 9700, 12400.
(Bottom row) Correlated synthetic fractures generated with NPTS = 12, 14,16, 18, 20. The white areas are contact
areas, while the color range blue to red are increasing apertures.
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Fig. 2. Analytic solution to the displacement of a half-space under a uniformly loaded circle of radius a = 0.003

where C is the set of all apertures in contact, and the change in height, ∆hi is the unknown variable.
The total displacement is the superposition of the self-interaction, displacement of asperity i due to
the deformation of the half-space by asperity i, and the asperity-asperity interaction, displacement
of asperity i due to the deformation of the half-space by asperity j. The displacement of the half-
space, w0, is found by integrating the Boussinesq’s solution for a loaded circle [13] and shown in
Figure 2. The solution is divided into two parts, the displacement within the loaded circle of radius
a, (r ≤ a), and points outside the radius(r > a).
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where,

ν = Poisson’s ratio

E = Young’s modulus

a = radius of the asperity

r = the distance from the center of the asperity

q =
f

πa2
= stress acting on the asperity

This displacement can be written in terms of the change in height ∆hi by using,

(3.2) ∆hi =
fihi

πa2E
.

To solve this system of linear equations, the conjugate gradient method was chosen [11] because
it reduces the problem to a matrix-vector multiplication. The computation time for the solver
was reduced by recognizing that long range interactions can be approximated accurately by Taylor
expanding the half-space’s displacement for large radii. By using this approximation, the matrix-
vector product can be rapidly calculated by using the Fast Multipole Method, [11].

4. Flow Model. To investigate the relationship between the mechanical and hydraulic prop-
erties of fractures, a flow model is also required. The hydraulic properties of the simulated fractures
considered in this study were calculated numerically using a network model similar to that of Yang
et al. [16, 17], Tran [14], and Cheng et al. [3]. In this model, the aperture distribution is replaced
by a connected graph starting from one inlet node and ending with one outlet node (see Figure 3).

Fig. 3. (Left) Example fracture geometry, where white is contact area and the range blue-red are increasing
apertures. (Right) The resulting pipe network generated using the elliptical pipe network method.

This differs from other models in that it is not direction blind, i.e. global flow and local flow
are assumed to be in the same direction. Each row of aperture elements perpendicular to the flow
is considered in turn and the large regions of non-zero apertures are brought together into a single
large elliptical pipe (Figure 4). Between the rows, flow is calculated based on the analytic solution
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to flow in an elliptical pipe with a hydraulic resistance based on the apertures,

R =
4fµ∆l

√
K(K + 1)

πa4
with,

f =
πa1b1 + πa2b2

2Aavg
and

K = (a/h)
2
.

Above, ai and bi i = 1, 2, are the major and minor axis of the two ellipsis between rows, a is the
average minor axis between the rows, h is half the maximum aperture of the larger ellipse, ∆l is
the distance between the center of the two elements, and finally Aavg is the average area of the two
ellipses.

Fig. 4. Side view of multiple apertures being converted to larger elliptical cross sections. This represents a row
of a fracture geometry, perpendicular to the flow direction.

This model is preferred over the bi-lattice grid method, used in [11], because it is computa-
tionally more efficient (run times are 4-10 times faster) and it was shown to model 2D micro-model
experimental data more accurately [3].

5. Simulations. The purpose of this study is to determine the effect of the initial contact
area of the fracture on both the mechanical and hydraulic properties of a single fracture. To do
this, several parameter sets were chosen to generate fracture geometries to single out its effect on
the mechanical and hydraulic properties. This was done by generating fractures with a constant
volume, total area, and allowing the contact area fraction to vary from 0% to 40%. It should be
noted that the correlated and uncorrelated generations were given constant volumes, separately, i.e.
all of the uncorrelated patterns have a constant volume, Vuncorr, and the correlated have a volume
of Vcorr, but Vuncorr &= Vcorr. The parameters used are listed in Table 2.1. Because the statistical
variation in the uncorrelated parameter sets was low [3], only four fractures were genereated per
set, while ten were generated for the correlated.

Once the fracture geometries were generated, each was deformed under a normal load with the
elastic properties of granite, i.e. a Poisson ratio of 0.25 and a Young’s modulus of 60 GPa. The
deformation solver was set to take between 20 to 50 steps to reach a maximum load of 80 MPa. The
flow rate was computed at each step of stress. The raw numerical data are presented in Figures 5
and 6.

From the displacement-stress curves, it is observed that each of the uncorrelated and correlated
(separately) fractures have the same maximum displacement. This is because they have a constant
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Fig. 5. (Left) Displacement-Stress curves and (Right) Stiffness-Stress curves of the simulated fractures. Open
squares are the uncorrelated (random) fractures and open circles are the correlated fractures. The color of a curve
indicates its initial contact area fraction: Red = >25%, Green = 20-25%, Blue = 10-20%, Black = 5-10%, Magenta
= <5%.
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Fig. 6. Flow-stress curves. Open squares are the uncorrelated (random) fractures and open circles are the
correlated fractures.

volume. However, it can also be seen that the curves diverge at low stresses. The colors of the
curves signify their corresponding initial contact fraction. Red curves signify that the generated
fracture has a initial contact fraction of >25%, green means that it was between 20-25%, blue
curves have between 10-20%, black curves have between 5-10%, and finally, magenta curves have
less than 5% initial contact area fraction. From this, it is observed that the difference between
the curves is caused by the difference in their initial contact area. As expected, the dispersion
in the correlated patterns is much larger than that of the uncorrelated, but the same trend can
be seen. The stiffness-stress curves exhibit a similar divergence as the displacement stress curves.
However this is expected because fracture stiffness is just the inverse slope of the tangent line on
the displacement-stress curves.
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As stated before, the flow rate of each fracture was calculated for each stress step. Unfortunately,
the flow rate is dependent on more than only the initial contact area. Fluid flow through a fracture
depends on the void areas, rather than contact, and is fundamentally defined by its continuum
percolation properties. For these reasons, the flow-stress curves, Figure 6, can not be normalized
as simply as the mechanical attributes, as will be shown in section 6. However the flow rate can
be bounded, for both the correlated and uncorrelated together, by utilizing the initial void area
fraction.

6. Results and Disscussion. The different fracture geometry realizations yielded disparate
displacmenet-stress (Fig 5), stiffness-stress, and flow-stress (Fig 6) relationship. Using these numer-
ical results, we investigated whether or not these results could be collapsed to a single functional
relationships. Figure 7 shows the normalization found for the displacement and stiffness as a func-
tion of stress for the simulated fracture geometries. In Figure 7, the displacement is normalized by
the initial volume and the stress is normalized by the initial contact area fraction. This normaliza-
tion of the displacement effectively suppresses the maximum displacement of the uncorrelated and
correlated curves to the same value leaving only the “knees” of the curves unnormalized. Normaliz-
ing the stress by the initial contact area fraction suppresses the starting point of each curve to the
same value. To complete the stiffness normalization, the stress axis is divided by the initial contact
area fraction for the same reasons as the displacement curves. The stiffness is then divided by the
initial contact fraction as well to keep the unit area consistent.

These normalizations imply that the initial contact area fraction is a fundamental quantity of
the mechanical properties of fractures. In other words performing a finite-size scaling measurement
without this normalization would be impossible because there would be two disparate effects occur-
ring, (1) the dispersion due to the initial contact area fraction and (2) the scaling effect. Without
the dispersion due to the initial contact area fraction, future studies can study the scaling effects of
the mechanical properties of fractures, i.e. the change of fracture areal size.
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Fig. 7. Normalized displacement-Stress curves (left) and stiffness-stress curves (right) of the simulated fractures.
Open squares are the uncorrelated (random) fractures and open circles are the correlated fractures. The color of a
curve indicates its initial contact area fraction: Red = >25%, Green = 20-25%, Blue = 10-20%, Black = 5-10%,
Magenta = <5%.

The displacement as a function of the contact area fraction is shown on Figure 8. In this case,
each of the generation parameter sets are averaged into a single curve. To normalize this family of
curves, the initial contact area fraction is subtracted from the contact area fraction at each stress.
Then the displacement is multiplied by the contact area’s correlation length raised to the exponet
−1/1.33 and divided by the initial volume. The correlation length was determined by the decay



208 C. L. PETROVITCH, L. J. PYRAK-NOLTE, AND D. D. NOLTE

constant of the autocorrelation of the contact and the exponent is the critical exponent found in
2D percolation theory. This normalization does not remove the difference between the correlated
and uncorrelated fractures, yet it does reduce the family of curves to two functional relationships.
Whether the correlated and uncorrelated displacement-contact area fraction curves can be collapsed
to a single curved is not known at this time. This implies that within each subfamily (uncorrelated
and correlated), the initial contact area fraction and the correlation length are fundamental quanti-
ties required to study the scaling of the displacement as a function of contact area fraction. Within
the subfamilies, a finite-size scaling analysis can now be preformed to understand the critical phe-
nomena at threshold (Cf = 0). It is imperative that we understand this function in order to
determine if a relationship between the mechanical and the hydraulic properties exists that depends
on the criticality of the flow properties that are dominated by the void area fraction.
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Fig. 8. Normalized displacement for each set of simulation parameters, after averaging, as a function of contact
area.

As mentioned in section 5, a complete normalization of the hydraulic properties is not presented
here, rather a normalization that bounds the potential flow curves as a function of stress. To bound
the flow rate, scaling parameters from standard percolation theory are used, such as, (A − Ac)

−ν ,
where Ac is the critical area fraction – Ac = 0.6 for uncorrelated patterns and Ac = 0.5 for correlated
ones. As seen in Figure 9, the flow is scaled by dividing by the initial flow rate, and multiplying by
the ratio of (Af − Ac) to (Ao − Ac) raised to the -1.2 power. The stress is scaled by subtracting
the initial stress, multiplying by the ratio of the total displacement to the initial mean aperture,
and dividing by the initial volume to the 1/3 power. The normalized stress has the same units
as fracture specific stiffness, and thus Figure 9 can be viewed as a flow-stiffness normalization as
well. Figure 9 also shows two signatures expected from Percolation Theory. The curves are tightly
bounded at low stresses because void area fraction is very high, i.e. this regime can be considered
as an effective medium. As the stress is increased, the void area fraction grows and the percolation
properties approach the critical threshold. As this occurs, the length scales diverge and the flow
properties disperse as well.

7. Conclusion. In this paper, we attempt to remedy the issue of uniqueness for a fracture
at a given void/contact area fraction. This was done by normalizing the mechanical properties of
joint deformation, displacement and stiffness, onto a single curve. By doing this, we can correctly
identify the displacement or stiffness of any fracture with the knowledge of its initial contact area
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Fig. 9. Normalized flow-stress curves. ! are the uncorrelated (random) fractures and © are the correlated frac-
tures, where on the y-axis Q is the flow rate, Af is the void area fraction, Ac is the critical void area fraction, andAo

is the initial void area fraction. The x-axis consists of the stress, σ, the initial stress, σo, the total displacement, dT ,
the initial mean aperture height, ao, and the initial volume, Vo.

fraction, however, at the low initial contact area fraction limit the correlated fracture planes exhibit
dispersion. We also presented a normalization for the average behavior of the displacement as a
function contact area fraction. In this case, the correlated and uncorrelated sets could be normalized
individually only, which suggests that in order to consider the mechanical properties as a function of
contact area fraction requires another length scale. Lastly, we present a normalization that bounds
the flow-stress curves.
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