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MODELLING OF TIME-HARMONIC SEISMIC DATA WITH THE HELMHOLTZ

EQUATION AND SCATTERING SERIES ∗

LINGYUN QIU† , MAARTEN V. DE HOOP‡ , AND ANTÔNIO SÁ BARRETO§

Abstract. We study the modelling of time-harmonic seismic data with the Helmholtz equation in R
d, d ≥ 2.

We follow a two-step approach. First we discuss conditions on the regularity of the underlying wavespeed model for
the direct solution of the Helmholtz equation. Secondly, we extend these conditions while considering the scattering
or distorted Born series supplemented with a frequency bound. This series arises upon decomposing the medium
in which the (time-harmonic) waves scatter into a heterogeneous background (with the regularity required in the
first step) and a contrast. We obtain a condition, that is, frequency bound for convergence of the series in the
Morrey-Campanato norm for relative contrasts in L∞.
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1. Introduction. We study the modelling of time-harmonic seismic data with the Helmholtz
equation in R

d, d ≥ 2. We follow a two-step approach. First we discuss conditions on the regularity
of the underlying wavespeed model for the (direct) solution of the Helmholtz equation. The model
can contain an interface. Secondly, we extend these conditions while considering the scattering or
distorted Born series supplemented with a frequency bound. Such a series arises upon decomposing
the medium in which the (time-harmonic) waves scatter into a background (with the regularity
required in the first step) and a contrast. We allow the contrast to be bounded and measurable
on a compact set, whereas the background can be heterogeneous and of limited smoothness. The
scattering problem is then formulated in terms of a Lippmann-Schwinger equation and the scat-
tering series corresponds with the Neumann series generating its solution. The series provides a
fundamental tool to analyze data by distinguishing multiple scattered waves of different orders.

The convergence of the scattering series is essentially tied to an estimate of the Born approxi-
mation. In physics, the validity of the Born approximation has been assessed through the principle
of accumulation of phase, that is, the total phase lag needs to be “small”. Our estimates for
convergence capture this principle.

In the setting of reflection seismology, the background is tied to tomography and the (typically
relatively small) contrast to inverse scattering. We note that time-harmonic seismic data can be
generated by using vibrator (vibroseis) sources. The setup we consider here is motivated by scat-
tering problems attributed to salt intrusions in sedimentary sequences on the one hand, and the
recent interest in low-frequency seismic sources [11] on the other hand. We exploit recently ob-
tained estimates [23, 8, 3, 24] to gain further insight in the scattering series, and obtain conditions
for convergence, for a heterogeneous background, in Morrey-Campanato norms.

The (fixed-frequency) Helmholtz equation,

−(∆+ n(x))u = f, x ∈ R
d,

where n(x) = ω2c(x)−2 if c = c(x) denotes the wavespeed and ω the angular frequency, is directly
related to the fixed-energy Schrödinger equation, (∆ − q(x))u = 0 with potential q through iden-
tifying q(x) with −n(x); n(x) is positive and bounded away from zero. (Starting from the wave
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equation, applying the Laplace transform instead of the Fourier transform, n(x) becomes negative
and bounded away from zero, that is, the potential becomes positive.) The Helmholtz equation is
also related to the equation for Electrical Impedance Tomography (EIT)

Lσu = ∇ · σ∇u = 0;

here, σ is the strictly positive conductivity and needs to be sufficiently regular. To cast this equation
into a Helmholtz equation, one uses the identity,

σ−1/2Lσ(σ
−1/2) = ∆+ n, n = −∆

√
σ√
σ

.

Thus certain results pertaining to the EIT and the Schrödinger equation hold for the Helmholtz
equation under consideration here [22, 4].

The problem of scattering of time-harmonic waves by obstacles in the context of the Born
series, which we adapt here to seismic applications, has been studied for many years. However,
here, the background is commonly assumed to be homogeneous and cannot be used to approximate
the original medium. We mention the work of Colton and Kress [6], Natterer [14], and Sylvester [20].
The conditions for convergence imply estimates for the Born approximation and its use in inverse
problems, see Ramm [18, 19]. Inverse scattering approaches based on the ‘inversion’ of the Born
series have been developed by Weglein et al. [25], Cheney and Rose [5], Tsihrintzis and Devaney
[21], and, for diffuse waves, by Moskow and Schotland [13]. These approaches originate from the
work of Jost and Kohn [10], Moses [12], and Prosser [17] concerning the quantum-mechanical inverse
backscattering problem.

We consider the following models. We decompose n(x) into a background component and a
contrast according to c(x)−2 = c0(x)

−2(1+α(x)); α is supported in a ball of radius R while n ∈ C2

outside a ball of radius Rs; see Fig. 1. The background component can contain an interface, Γ say,
across which n0(x) = ω2c0(x)

−2 can jump. The boundary of the domain of interest is Σ.

Γ

Σ

α(x) ∈ L∞

n+(x) ∈ W
1,∞
loc (Ω+)

n−(x) ∈ W
1,∞
loc (Ω−)

n(x) ∈ C2

R
Rs

Fig. 1. Illustration of the model assumptions and decomposition of the function n(x) into its components.

The paper is organized as follows. In the next section, we summarize results pertaining to
the existence and uniqueness of solutions to the Helmholtz equation making use of the limiting
absorption principle, and address how the solution models seismic data. In Section 3 we introduce
the scattering series and present our main results: (i) A condition (frequency bound) for convergence
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of the series in the Morrey-Campanato norm for relative contrasts in L∞ for dimension 3 and higher,
and (ii) for relative contrasts in C2, a recursive procedure coupling spectral content in the relative
contrast to the mentioned frequency bound. We also obtain an estimate for the distorted Born
approximation providing a measure of applicability of local linearization of the scattering problem.
In Section 4 we briefly discuss the convergence of the scattering series, now in a modified Morrey-
Campanato norm, for the two-dimensional case. We present a numerical verification of the condition
for convergence using a model representative of salt intrusions in a geological setting in Section 5.
We end with a discussion (Section 6).

2. The Helmholtz equation. In this section, we summarize results pertaining to the Helmholtz
equation, which we will use in the further analysis. The Helmholtz equation is given by

(2.1) −(∆+ n(x))u = f, x ∈ R
d,

where n(x) = ω2c(x)−2 if c = c(x) denotes the wavespeed and ω the angular frequency. Without
any restriction we assume that ω > 0; ω is fixed. We consider d ≥ 3.

It is a standard procedure to perturb (2.1) according to

(2.2) (iε+∆+ n)uε = −f, x ∈ R
d, ε > 0.

Because ε ∈ R, then, for any f ∈ L2, there exists a unique uε ∈ L2 which solves (2.2) and

(2.3) ‖uε‖L2 ≤ 1

ε
‖(iε+∆+ n)uε‖L2 , or ‖uε‖L2 ≤ 1

ε
‖f‖L2 ,

whence the problem is well posed.
The right-hand side of (2.3) blows up if ε → 0+, which necessitates the introduction of norms

different from the L2 norm to analyze the problem of solving the Helmholtz equation. In case
n(x) = const, at ε = 0, the following estimate holds (Agmon and Hörmander [1])

(2.4) ‖u‖B∗ ≤ C(d)

(1 + n)1/2
‖(∆+ n)u‖B , or ‖u‖B∗ ≤ C(d)

(1 + n)1/2
‖f‖B ;

here,

(2.5) ‖f‖B = ‖f‖L2(B0) +

∞∑

j=0

2j/2‖f‖L2(Aj),

‖u‖B∗ = max(‖u‖L2(B0), sup
j∈N0

2−j/2‖u‖L2(Aj)),

with Aj = {2j ≤ |x| ≤ 2j+1}, j = 0, 1, 2, . . . and B0 denoting the unit ball. The duality between
these two norms is expressed by

(2.6)

∫

Rd

|f(x)u(x)|dx ≤ ‖f‖B‖u‖B∗ .

2.1. Model assumptions. We consider models of variable wavespeed or n (wavenumber
squared), containing an interface; for the existence of solutions to the Helmholtz equation we re-
quire that n is at least W 1,∞

loc (or C0,1
loc ) away from the interface. For uniqueness, incorporating the

Sommerfeld radiation condition, we require that n is at least C2 outside a ball of some finite radius.
We introduce two unbounded domains Ω+ and Ω− such that Ω+ ∪ Ω− = Ω+ ∪ Ω− = R

d. The
boundary or interface, Γ = ∂Ω+ = ∂Ω−, is a smooth (at least Lipschitz) hypersurface. We write

n(x) =

{
n+(x), x ∈ Ω+,
n−(x), x ∈ Ω−,
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and denote, for x ∈ Γ, the jump by

[n](x) = n+(x)− n−(x).

We write ∇n instead of ∇n+ 1Ω+
+ ∇n− 1Ω−

, the gradient of n outside the interface. We denote
the unit normal vector at x ∈ Γ directed from Ω− to Ω+ by ν(x).

With the notation introduced above, we state the assumptions [23, 8]

Assumption 1. There is a constant γ > 0 such that the dth component of ν(x) satisfies

νd(x) ≥ γ for all x ∈ Γ.

Assumption 2. We have n+(x) ∈ W 1,∞
loc (Ω+), n−(x) ∈ W 1,∞

loc (Ω−) and n(x) ≥ n2 > 0.

Assumption 3. The jump function [n](x) has the same sign, σ, for all x ∈ Γ; σ = − if [n] is
non-negative and σ = + if [n] is non-positive.

Assumption 4. We have

(2.7) 2
∑

j∈Z

ess supAj

(x ·∇n(x))−
n(x)

= β1 < ∞;

(2.8)
1

γ

∑

j∈Z

ess supAj
2j+1 (∂dn(x))σ

n(x)
= β2 < ∞;

here, (a)− denotes the negative part of a ∈ R and (a)+ denotes the positive part of a; γ is the
constant appearing in Assumption 1. Moreover, β1 + β2 < 1.

Remark 2.1. Assumption 3 and 4 can be understood as conditions on the rays of geometrical
optics. Assumption 3 and (2.8) ensure that the energy flows from one side of the interface, Γ, to
the other. Equation (2.8) becomes a weaker assumption if the interface is close to a hyperplane (γ
approaches 1) [8].

Equation (2.7) is the virial condition, a reinforced version of the so-called non-trapping condi-
tion, which, together with Assumption 2, ensures that the rays of geometric optics leave any compact
set at a nonzero speed. To be precise, let (X(t),Ξ(t)) denote the Hamilton flow on T ∗

R
d associated

with the symbol, ξ2 − n(x), of the Helmholtz operator (cf. (2.1)), that is,

(2.9)
Ẋ(t) = Ξ(t) , X(0) = x,

Ξ̇(t) = 1
2∇xn(X(t)) , Ξ(0) = ξ.

We have that |Ξ(t)|2 = n(X(t)) determining the ray velocity. Assumptions 2 and 4 then imply that

(2.10)

d

dt
(X(t) · Ξ(t)) = Ξ(t)2 + 1

2X(t) ·∇xn(X(t))

= n(X(t)) + 1
2X(t) ·∇xn(X(t))

≥ (1− β1

4 )n(X(t))

> 3
4n2.



SCATTERING SERIES 173

Hence, for |t| sufficiently large, we have that |X(t) ·Ξ(t)| ≥ 3n2

4 |t|. It follows that all the trajectories
X(t) satisfy

X(t)2 ≥ 3n2

4
t2

for |t| sufficient large; this is stronger than the non-trapping condition,

|X(t)| → ∞ as t → ±∞

[3].

2.2. Morrey-Campanato estimates. We consider the Morrey-Campanato norm,

(2.11) |||u|||2 = sup
y∈Rd,R>0

1

R

∫

|x−y|<R

|u(x)|2dx,

and its dual norm

(2.12) N(f) =
∑

j∈Z

2(j+1)/2‖f‖L2(Aj).

The duality is expressed by

(2.13)

∣∣∣∣
∫

f(x)u(x)dx

∣∣∣∣ ≤
∫

|f(x)u(x)| dx =
∑

j∈Z

∫

Aj

|f(x)u(x)|dx

≤
∑

j∈Z

( ∫

Aj

2j+1|f(x)|2dx

)1/2 ( ∫

Aj

2−(j+1)|u(x)|2dx

)1/2

≤ N(f) |||u|||.

We have

Theorem 2.2 (Morrey-Campanato estimate [23, 8]). Let d ≥ 3. If Assumptions 1-4 hold true
then there exists a constant C̃ = C̃(d, γ,β1,β2) such that the solution of (2.2) satisfies,

(2.14) |||∇uε|||
2 + |||n1/2uε|||

2 ≤ C̃(d, γ,β1,β2)(ε+ ‖n‖L∞)N(n−1/2f)2,

for all ε > 0.

When ε is small, estimate (2.14) implies

(2.15) |||∇uε|||
2 + |||n1/2uε|||

2 ≤ C(d, γ,β1,β2)N(f)2.

With the aid of the uniform energy estimate (2.15), applying the limiting absorption principle, that
is, letting ε → 0+, one obtains the existence of solutions to (2.1). The limiting function, u, satisfies
the following Morrey-Campanato energy estimate:

Corollary 2.3 ([8]). Let d ≥ 3. If Assumptions 1-4 hold true then the solution of (2.1)
satisfies the Morrey-Campanato estimate,

(2.16) |||∇u|||2 + |||n1/2u|||2 ≤ C(d, γ,β1,β2)N(f)2.

The norm N(·) in the right-hand side of (2.16) is not translation invariant. To remedy this,
we consider a different norm for the energy estimate of the Helmholtz equation. One says that a
measurable function b is a block if it is supported in a ball BR with radius R in such a way that

(∫

BR

|b(x)|2dx

)1/2

≤ R−1/2.
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In fact, a block is an atom without cancelation. The block space B consists of measurable functions
f which can be written as

f =

∞∑

k=1

λkbk a.e.

with
∑

|λk| < ∞ and the bk denoting blocks;

(2.17) ‖f‖B = inf
{∑

|λk| | f =
∑

λkbk

}
,

where the infimum is taken over all possible decompositions of f into blocks. With the aid of the
translation operator, we obtain the following corollary,

Corollary 2.4. Let d ≥ 3. If Assumptions 1-4 hold true then the solution of (2.1) satisfies
the Morrey-Campanato estimate,

(2.18) |||∇u|||2 + |||n1/2u|||2 ≤ C(d, γ,β1,β2)‖f‖2B.

Proof. Assume that f =
∑

λkbk is a decomposition of f into blocks and let supp bk ⊂ BRk
(xk).

It is straightforward to check that N(τxk
bk) =

∑
j∈Z

2
j+1

2 ‖τxk
bk‖L2(Aj) ≤

√
2√

2−1
, where τh : u(x) ,→

u(x− h) is the translation operator. Let uk be the solution to the equation

−(∆+ τxk
n(x))uk(x) = τxk

bk.

Then u =
∑

λkτ−xk
uk solves the equation

−(∆+ n(x))u(x) = f.

Using Corollary 2.3, we find that

(2.19) |||∇u|||+ |||n1/2u||| = |||
∑

λk∇(τ−xk
uk)|||+ |||

∑
λkτ−xk

((τxk
n1/2)uk)|||

≤
∑

|λk|
(
|||∇uk|||+ |||(τxk

n1/2)uk|||
)
≤ C

∑
|λk|N(τxk

bk) ≤ C ′
∑

|λk|;

taking the infimum, we obtain (2.18).

Estimate (2.18) will be used in Subsection 3.1, while estimate (2.4) will be used in Section 4, to
establish convergence of the scattering (or distorted Born) series. To put the different estimates in
perspective, we note the following continuous inclusions (cf. (2.5), (2.11)-(2.12) and (2.17)):

(2.20) L2,δ(Rd) ⊂ L2(Rd, ‖ · ‖B) ⊂ L2(Rd, ‖ · ‖B) ⊂ L2(Rd)

⊂ L2(Rd, ||| · |||) ⊂ L2(Rd, ‖ · ‖B∗) ⊂ L2,−δ(Rd)

for each δ > 1
2 .

It is possible to introduce the limiting absorption principle using a complex angular frequency:
We replace n(x) by (ω + iτ)2c(x)−2 with 0 < τ < τ0 ≪ ω. Let c(x) ≥ c1 > 0. We set nτ (x) =
(ω2 − τ2)c(x)−2. We replace ε by τ upon identifying ε with 2ωτc(x)−2 ≤ 2ωτc−2

1 . The estimate
(2.14) changes to

|||∇uτ |||
2 + |||n1/2

τ uτ |||
2 ≤ C̃ ′(d, γ,β1,β2)

ω2 − τ2 + 2ωτ

c21
N(n−1/2

τ f)2.

When τ is small, this implies the estimate

|||∇uτ |||
2 + |||n1/2

τ uτ |||
2 ≤ C ′(d, γ,β1,β2)N(f)2,

which is uniform with respect to τ , whence the limiting absorption principle can be applied.
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2.3. Sommerfeld radiation condition. Assumptions 1, 2, 3 and 4 guarantee that the energy
estimate in Theorem 2.2 holds, which implies the existence of a solution to the Helmholtz equation
(2.1) by applying limiting absorption principle. If the following assumption is satisfied, the solution
can satisfy the Sommerfeld radiation condition and become unique.

Assumption 5 ([24]). The function n(x) admits the decomposition

(2.21) n(x) = λ+ p(x), λ > 0,

with p(x) ∈ C2(Rd\{|x| ≤ Rs}) for some Rs > 0, a real-valued, bounded function which satisfies the
estimates

(2.22) |∂α
x p(x)| ≤ C|x|−|α|, for all |x| ≥ Rs, |α| ≤ 2.

For the existence of a solution, we can allow n(x) to jump across the entire hypersurface Γ.
However, to satisfy the Sommerfeld condition, one uses the existence of the solution φ(x) of the
eikonal equation |∇φ|2 = n for |x| > Rs (Rs sufficiently large); see Barles [2] if n is C2. We hence
need to assume that the jump [n] vanishes outside a compact domain or a ball of finite radius, Rs.

Theorem 2.5 (Sommerfeld radiation condition). Let d ≥ 2 and Assumptions 1-5 hold true.
For λ ≫ ‖p‖C2(|x|>Rs) there exist a unique solution to the Helmholtz equation (2.1), and constants
Ca, which satisfy

(2.23)

∫

Rd

∣∣∣∣∇u(x)− in(x)1/2u(x)
x

|x|

∣∣∣∣
2

dx

1 + |x|
≤ Ca

∫

Rd

|f(x)|2(1 + |x|)adx

for all a > 1.

For the proof, see [24]. Applying this theorem, we can introduce the solution operator, S,

(2.24) S : L2(Rd, ‖ · ‖B) → L2(Rd, ||| · |||), f ,→ u,

where u is the unique solution to the Helmholtz equation −(∆ + n(x))u = f (cf. (2.1)) satisfying
the Sommerfeld radiation condition (cf. (2.23)).

3. Scattering series. We decompose n(x) = ω2c(x)−2 in (2.1) into a reference component
and a contrast according to

(3.1) c(x)−2 = c0(x)
−2(1 + α(x)),

and assume that n0(x) = ω2c0(x)
−2 satisfies Assumptions 1-5 introduced in the previous section.

Bounds for n0(x) follow from

(3.2) 0 < c1 ≤ c0(x) ≤ c2 < ∞.

The relative contrast function, α(x), satisfies

Assumption 6. The relative contrast, α is in L∞(Rd) and has compact support.

We have

(3.3) P : L2(Rd, ||| · |||) ∩H2
loc(R

d) → L2(Rd, ‖ · ‖B), u ,→ −(∆+ ω2c0(x)
−2)u.
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Lemma 3.1. Let α(x) satisfy Assumption 6, and E = suppα. Then the multiplication by α

satisfies the estimate

(3.4) ‖αu‖B ≤ Rα‖α‖L∞ |||u|||,

for all u ∈ L2(Rd, |||·|||), where Rα = inf{
∑

Rk | {Bk} is a covering of E by balls Bk with radii Rk}.

Proof. For any u with |||u||| = 1, it suffices to prove that ‖χEu‖B ≤ Rα. Assume that {Bk}
M
k=1 is

a covering of E by balls and Rk is the radius of Bk. Let {φk} be the partition of unity corresponding
to {Bk} and ũ =

∑
φku. Then ũ = χ∪Bk

u and |||ũ||| ≤ |||u||| = 1. Note that |||φku||| ≤ 1 implies that

‖φku‖L2 ≤ R
1/2
k . Let bk(x) = R−1

k φku; we have

‖bk(x)‖L2 = R−1
k ‖φku‖L2 ≤ R

−1/2
k ,

whence bk is a block. Then

‖χEu‖B ≤ ‖χ∪Bk
u‖B ≤

∑
Rk.

Taking the infimum over all coverings by balls yields ‖χEu‖B ≤ Rα.

We then introduce the multiplication operator, T , according to

(3.5) T : L2(Rd, ||| · |||) → L2(Rd, ‖ · ‖B), u ,→ ω2α(x)c0(x)
−2u.

Indeed, with Assumption 6 and Lemma 3.1,

(3.6) ‖ω2αc−2
0 u‖B ≤ ω2c−2

1 Rα‖α‖L∞ |||u|||.

Remark 3.2. Rα as defined Lemma 3.1 has the following properties: Rα is less than or equal
to half of the diameter of suppα. If α =

∑
αk then Rα ≤ ∑

Rαk
. In particular, Rα is less than or

equal to half of the sum of the diameters of the connected components of suppα.

The Helmholtz equation for u can be written in the contrast form,

(3.7) Pu = f + Tu;

then u solves the Lippmann-Schwinger equation,

(3.8) (I − ST )u = u0, with Pu0 = f.

This integral equation is equivalent to the scattering problem described by (3.7) subject to the
Sommerfeld radiation condition.

The so-called scattering or distorted Born series corresponds with the Neumann series solution
of (3.8):

(3.9) u = u0 + u1 + u2 + · · · , u0 = Sf, un = STun−1, n = 1, 2, . . .

(In Colton & Kress [6], Sf is identified as a volume potential.)
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3.1. Convergence, d ≥ 3. Here, we study the convergence of the distorted Born series for
d ≥ 3.

Theorem 3.3. Let n0(x) = ω2c0(x)
−2 satisfy Assumptions 1-5, and let α(x) satisfy Assump-

tion 6. If

(3.10) ω < Ω(c1, c2,β1,β2,α) =
c21

C1/2Rα‖α‖L∞c2
,

where C = C(d,β1,β2, γ) is the constant appearing in Corollary 2.4 and Rα is defined in Lemma 3.1,
then the scattering series (cf. (3.9)) converges in L2(Rd, ||| · |||). Furthermore, we have the remainder
estimate,

(3.11) |||u−
N∑

n=0

un||| ≤ C
c22
c21

Rα‖α‖L∞

(ω/Ω(c1, c2,β1,β2,α))
N

1− (ω/Ω(c1, c2,β1,β2,α))
‖f‖B.

Proof. We begin with establishing an estimate for ST : L2(Rd, ||| · |||) → L2(Rd, ||| · |||), u ,→ STu.
Using the energy-type estimate in Corollary 2.4, we obtain

(3.12) C‖f‖2B ≥ |||∇u|||2 + |||ωc−1
0 u|||2 ≥ |||ωc−1

0 u|||2 ≥ ω2

c22
|||u|||2.

Combining this estimate with (3.6) gives

(3.13) |||S(Tu)||| ≤ C1/2 c2
ω
‖ω2αc−2

0 u‖B ≤ C1/2Rαω‖α‖L∞

c2
c21

|||u|||.

Thus |||ST ||| ≤ ωΩ(c1, c2,β1,β2,α)
−1, whence the scattering series converges if ωΩ(c1, c2,β1,β2,α)

−1 <
1.

The estimate for the remainder follows straightforwardly,

|||u−
N∑

n=0

un||| = |||

∞∑

n=N+1

(ST )nu0||| ≤ |||u0|||

∞∑

n=N+1

|||ST |||n

≤ C1/2c2ω
−1‖f‖B

(ω/Ω(c1, c2,β1,β2,α))
N+1

1− (ω/Ω(c1, c2,β1,β2,α))
,

from which (3.11) follows.

For N = 1, (3.11) implies an estimate for the distorted Born approximation in the ||| · ||| norm.
Condition (3.10) can also be viewed, for given frequency or wavelength 2πc1ω

−1, as a bound on
Rα‖α‖L∞ .

3.2. Special case: Constant background wavespeed. To establish comparisons with re-
sults in the literature, in this section, we consider the case in which c0 is a constant and f ∈
L2(Rd, ‖ · ‖B). We will apply the (energy) estimates given by Agmon and Hörmander [1] and
recover a condition for convergence of the Born series given by Sylvester [20].

We have

(3.14) P0 : L2(Rd, ‖ · ‖B∗) ∩H2
loc(R

d) → L2(Rd, ‖ · ‖B), u ,→ −∆u− ω2c−2
0 u.

Applying Theorem 2.5, establishing uniqueness of the solution to P0u = f , we obtain the resolvent

(3.15) S0 : L2(Rd, ‖ · ‖B) → L2(Rd, ‖ · ‖B∗), f ,→
∫

Rd

G0(x− y)f(y)dy,
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where G0(.−y) denotes the fundamental solution satisfying P0G0(.−y) = δy. Now the multiplication
operator is

(3.16) T0 : L2(Rd, ‖ · ‖B∗) → L2(Rd, ‖ · ‖B), u ,→ ω2α(x)c−2
0 u;

indeed

(3.17) ‖ω2αc−2
0 u‖B ≤ ω2c−2

0 ‖α‖L∞

(
‖u‖L2(B0) +

M−1∑

j=0

2j/2‖u‖L2(Aj)

)

≤ ω2c−2
0 ‖α‖L∞

(
‖u‖B∗ +

M−1∑

j=0

2j‖u‖B∗

)
= Rω2c−2

0 ‖α‖L∞‖u‖B∗ .

The Born series

(3.18) u = u0 + u1 + u2 + · · · , u0 = S0f, un = S0T0un−1, n = 1, 2, . . .

converges in L2(Rd, ‖ · ‖B∗) if

(3.19) ω < Ω0(c0, ‖α‖L∞) =
c0

C0R‖α‖L∞

;

here, C0 = C(d) in (2.4). This condition corresponds with condition [20, (43)] with R replaced by
R(D) = supΘ∈Sd−1 R(D,Θ) in which D = suppα and

R(D,Θ) = sup
x∈D

µ({t |x+ tΘ ∈ D});

µ denotes the one-dimensional Lebesgue measure. Condition (3.19) follows from estimating the
operator norm of S0T0:

(3.20) | S0(T0u)‖B∗ ≤ C0

(1 + ω2c−2
0 )1/2

‖T0u‖B

≤ C0
ω2c−2

0

(1 + ω2c−2
0 )1/2

R‖α‖L∞‖u‖B∗ ≤ C0c
−1
0 ωR‖α‖L∞‖u‖B∗ .

Convergence of the Born series in the maximum norm was analyzed and discussed by Cheney
and Rose [5], De Hoop [7], and Colton and Kress [6]. Natterer [14] discusses the convergence in
L2(|x| < R) (for each R > 0) while Moskow and Schotland [13] discuss the L∞ convergence. These
results make use of an estimate for the fundamental solution G0, that is, for d = 3,

sup
|x|≤R

∫

|y|<R

∣∣∣∣
eik|x−y|

|x− y|

∣∣∣∣ dy =

∫

|y|<R

1

|y|
dy = 2πR2, k = ωc−1

0 ,

which is uniform in frequency. The condition for convergence follows to be

(3.21) ω < Ω∞(c0, ‖α‖L∞) =
2c0

R‖α‖1/2L∞

[6, Theorem 8.4]. As compared with our estimate, we note the difference in the power of ‖α‖L∞ .
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4. Convergence of the scattering series, d = 2. Here, we impose more restrictive assump-
tions on the background. The Morrey-Campanato norm for d = 2 is defined as [24]

(4.1) |||u|||2R0
= sup

y∈R2,R>R0

1

R

∫

|x−y|<R

|u(x)|2dx,

and its dual as

(4.2) NR0
(f) =

∑

j∈Z,j>J

2(j+1)/2‖f‖L2(Aj) +

(
R0

∫

|x|<R0

|f(x)|2dx

)1/2

,

where J is defined by 2J ≤ R0 < 2J+1.

Assumption 7. The function n(x) is in W 1,∞
loc (R2), n(x) ≥ n2 > 0, and admits the decompo-

sition

(4.3) n(x) = na(x) + nb(x),

where nb ∈ L∞(R2) and na satisfies the estimate

(4.4) ‖nav‖2 ≤ (1− Cn) ‖∇v‖2

for all v ∈ C∞
0 (R2) and some constant Cn > 0.

Assumption 8 (virial condition). We have

(4.5) 2
∑

j∈Z

ess supAj

(x ·∇n(x))−
n(x)

= β < 1;

here, (a)− denotes the negative part of a ∈ R.

Theorem 2.2 is replaced by

Theorem 4.1 (Morrey-Campanato estimate [24]). Let R0 = n
−1/2
2 . If Assumptions 7 and

8 hold true then there exists a constant C̃ = C̃(β) such that the solution of (2.2) satisfies, for all
ε > 0,

(4.6) |||∇uε|||
2
R0

+ |||n1/2uε|||
2
R0

≤ C̃(β)(ε+ ‖nb‖L∞)NR0
(n−1/2f)2.

With this estimate, the limiting absorption principle can be applied. The limiting function, u,
satisfies the following Morrey-Campanato energy estimate replacing (2.16):

Corollary 4.2. Let R0 = n
−1/2
2 . If Assumptions 7 and 8 hold true then the solution of (2.1)

satisfies the estimate,

(4.7) |||∇u|||2R0
+ |||n1/2u|||2R0

≤ C(n2,β)NR0
(f)2.

Invoking Assumption 5, and using Theorem 2.5, the existence and uniqueness of the solution
to the 2-D Helmholtz equation then follows. Thus we can introduce the solution operator, S,

(4.8) S : L2(R2, NR0
(·)) → L2(R2, ||| · |||R0

), f ,→ u,
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where u is the unique solution to the Helmholtz equation −(∆ + n(x))u = f (cf. (2.1)) satisfying
the Sommerfeld radiation condition (cf. (2.23)).

We introduce a background and a contrast as in (3.1), and invoke Assumption 6. We have

(4.9) P : L2(R2, ||| · |||R0
) ∩H2

loc(R
2) → L2(R2, NR0

(·)), u ,→ −(∆+ ω2c0(x)
−2)u.

and introduce the multiplication operator, T , according to

(4.10) T : L2(R2, ||| · |||R0
) → L2(R2, NR0

(·)), u ,→ ω2α(x)c0(x)
−2u.

Indeed, with R0 < R,

NR0
(ω2αc−2

0 u) =
∑

j∈Z,j>J

(
2j+1

∫

Aj

|α(x)ω2c0(x)
−2u(x)|2dx

)1/2

+

(
R0

∫

|x|<R0

|α(x)ω2c0(x)
−2u(x)|2dx

)1/2

≤
M−1∑

j=J−1

2j+1

(
1

2j+1

∫

|x|<R

|α(x)ω2c0(x)
−2u(x)|2dx

)1/2

+ ω2c−2
1 ‖α‖L∞(R0 + δ)

(
1

R0 + δ

∫

|x|<R0+δ

|u(x)|2dx

)1/2

≤ ω2c−2
1 ‖α‖L∞ |||u|||R0

M−1∑

j=J−1

2j+1 + ω2c−2
1 (R0 + δ)‖α‖L∞ |||u|||R0

= ω2c−2
1 (2R+ δ)‖α‖L∞ |||u|||R0

for all δ > 0. Hence,

(4.11) NR0
(ω2αc−2

0 u) ≤ 2ω2c−2
1 R‖α‖L∞ |||u|||R0

.

Combining this estimate with estimate (4.7) yields

(4.12) |||S(Tu)|||R0
≤ C(n2,β)

1/2

ωc−1
2

NR0
(Tu) ≤ 2C(n2,β)

1/2c2c
−2
1 ωR‖α‖L∞ |||u|||R0

.

It follows that the scattering series converges if

(4.13) ω < Ω2(c1, c2,β, ‖α‖L∞) =
c21

2C(n2,β)1/2R‖α‖L∞c2
.

5. Numerical examples. We illustrate the convergence of the (adaptive) scattering series by
computing u0, u1, . . . , u9 (the first 10 terms) where un = STun−1, n = 1, 2, . . . , 9 and u0 = Sf is the
incident field, cf. (3.9). The parameters that characterize the model are chosen to be: λ = 2πc1ω

−1,

ρ = Rλ−1 and η = c2c
−1
1 ‖α‖L∞ . As the source, we take a Gaussian function: fs(x) = e−|x|2/8. We

consider d = 2.
The background wavespeed model, c0(x), is shown in Fig. 2; the relative contrast, α(x), is

concentrated on the boundaries of the inclusions and is shown in Fig. 4. The complete model (c(x))
is illustrated in Fig. 5, and is motivated by salt intrusions in a sedimentary environment. The ‘star’
in the pictures indicates the position of the source.

We consider a set of ρ values by fixing R and varying ω = 2πf : f = 5, 15, 25, 30 and 40 Hz;
η = 2.25 is kept fixed. Fig. 6 shows the real parts of the truncated series expansions for the scattered
fields. In Fig. 7 we illustrate the real part of the incident field, and In Fig. 8 we illustrate the real part
of the series truncation error (which is about 0.2% here), for ρ = 11.16. The Morrey-Campanato
norms of the successive terms in Born series are given in Figure 9.
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Fig. 2. Background wavespeed model c0(x); c2c
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Fig. 3. Ray geometry – geodesics in the background
model originating at the source indicated by a star.

x(km)

z
(k

m
)

α(x)

 

 

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
−0.2

0

0.2

0.4

0.6

0.8

Fig. 4. The relative contrast model α(x). The dashed
circle has radius R. Note that the relative contrast is con-
centrated near the boundaries of the scatterers.
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Fig. 5. The wavespeed model, c(x).

Figure 12 shows the Morrey-Campanato norms for the recursion when the contrast function
represents the entire obstacles (Figure 11) and corresponding background (Figure 10) to form the
same model c(x)(η = 4.62 while the other parameters are the same). The series starts to diverge at
a much lower frequency (15 Hz).

6. Discussion. We studied the modelling of seismic data in terms of the trace of solutions to
the Helmholtz equation in R

d, d ≥ 2, subjected to the Sommerfeld radiation condition. Modelling
with the Helmholtz equation has become an important component in what seismologists call ‘full
waveform inversion’, that is, the reconstruction of n(x) through minimizing a data misfit; see, for
example, [16], and [15] for the method of adjoint states.

While using real-valued angular frequencies, we have restrictions on the regularity of the wavespeed
describing the model. Using a model satisfying these restictions as a backgound, via a contrast source
formulation, the Lippmann-Schwinger equation, and the corresponding scattering series, bounded
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Fig. 6. Real parts of the truncated scattering series – scattered field; top left: ρ = 2.23, top right: ρ = 6.70,
bottom left: ρ = 11.16, bottom right: ρ = 13.40.

and measureable variations in the wavespeed are introduced. In our formulation, in the context of
seismic applications, the background model is assumed to be consistent with tomographic recon-
structions.

We recover conditions for convergence of the scattering series in the framework of heteroge-
neous background models of limited smoothness. We allow the background models to contain an
isolated interface or discontinuity (Γ in Fig. 1). Such an interface can aid in the illumination of
scatterers in (seismic) inverse scattering problems with partial boundary data; see, for example, [9].
Our conditions are similar to the one for homogeneous background models, though convergence is
established in a particular, Morrey-Campanato norm. However, we show numerical evidence that
our conditions are conservative in as far as how they measure the support of the contrast.

The scattering series provides an expansion of the data, and hence of the Neumann-to-Dirichlet
map, in multiple sattered waves. This expansion can be exploited in further developing techniques for
analyzing the seismic wave field [25]. We also obtain an estimate of the distorted Born approximation
in the mentioned Morrey-Campanato norm. For continuous contrasts, this estimate can be applied
to develop an understanding of for which frequencies the spectral content of the contrast can be
sensed using the distorted Born approximation or the scattering series expansion. This can be viewed
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Fig. 7. The incident field, u0(x) for ρ = 11.16.
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Fig. 8. The error, u(x) − u1(x) − · · · − u9(x), for
ρ = 11.16.
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Fig. 9. Morrey-Campanato norms of un(n = 1, 2, . . . 9)

as a modelling counterpart to Pratt’s [16] strategy for ‘full waveform inversion’, and is elaborated
below.

Recursive scattering series. We carry out a multi-scale or frequency decomposition of α(x).
We restrict ourselves here to α ∈ C0. Let ϕ be a low-pass filter with ϕ̂(ξ) = 1 for |ξ| ≤ 1 and = 0
for |ξ| > 2. We introduce

α̃k(x) = (ϕ(2−k/2Dx)α)(x),

with the property that

‖α− α̃k‖L∞ ≤ Cf2
−k/2

for some constant Cf , uniform in k. We form

α(x) = α̃0(x) +

∞∑

k=1

αk(x), αk(x) = α̃k(x)− α̃k−1(x).
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x(km)

z
(k

m
)

background

 

 

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 2400

2600

2800

3000

3200

3400

Fig. 10. Background wavespeed model c0(x); c2c
−1

1
=

1.61.

x(km)

z
(k

m
)

α(x)

 

 

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 −0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 11. The relative contrast model α(x). Note that
the relative contrast fulfills the scatterers.
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Fig. 12. Morrey-Campanato norms of un(n = 1, 2, . . . 9)

We introduce the sequence of scattering series, u(k), k = 1, 2, . . ., where, u(k) is obtained using the
background

c(k−1)(x)−2 = c0(x)
−2(1 + α̃k−1(x)),

and relative contrast αk(x), with ‖αk‖L∞ = O(2−k/2). In the process, we assume that n(k−1)(x) =
ω2c(k−1)(x)−2 satisfies (2.7) and Assumption 5. The convergence conditions (cf. (3.10)) become

ω < Ωk(c1, c2,β1,β2, ‖α‖L∞) =
c21

C1/2Rα‖αk‖L∞c2
= O(2k/2).

Thus, if coarser scales in the contrast are included in the background leaving finer scale variations,
one can admit higher frequencies.
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