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AN INTERPRETATION OF CRS ATTRIBUTES OF TIME-MIGRATED REFLECTIONS

MARTIN TYGEL∗, BJøRN URSIN†, EINAR IVERSEN‡, AND MAARTEN V. DE HOOP§

Abstract. Applied to unmigrated data, the Common-Reflection-Surface (CRS) method is able to produce high-quality stacked
sections, as well as useful traveltime parameters for a number of imaging and inversion purposes. One difficulty of the CRS method
is the treatment of diffractions, especially when located close to reflections, and also triplications. In these regions, the CRS param-
eters obtained by coherence-measure procedures become inaccurate. In this context, and also for more general reasons, it might be
interesting to investigate the use of the CRS methodology in the time-migrated domain, where diffractions have been collapsed and
triplications untangled. The CRS method applied to the time-migrated domain approximates the zero-offset reflection traveltime as a
second-order Taylor expansion in image point coordinates, in the vicinity of a given image ray. It is to be remarked the analogy to the
conventional CRS application to the unmigrated, poststack domain, in which the zero-offset reflection traveltime is approximated as
a second-order Taylor expansion in midpoint coordinates, in the vicinity of a given normal ray. Based on pioneering work of the mid
eighties at NORSAR, we use the methodology of surface-to-surface propagator matrices for anisotropic media and obtain expressions
that relate reflector dip and curvature to first and second derivatives of the time-migration reflection time with respect to image point
coordinates. This provides an interpretation of the CRS coefficients. Besides its intrinsic interest, such quantitative relationships can
provide useful constraints for the construction of selected reflectors from interpreted reflection events in the time-migrated domain.
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1. Introduction. The Common-Reflection-Surface (CRS) stack produces, besides simulated zero-
offset sections, also first (slope) and second (curvature) derivatives of zero-offset reflection traveltime with
respect to source-receiver midpoint coordinates. As well known, such derivatives are identified as CRS
attributes or parameters and are given a physical interpretation, namely: (a) The first derivative is well
related to the ray-parameter vector of the normal ray at its emergence point and (b) the second derivative is
related to the curvature of the normal wave that starts on the normal-incidence point (NIP) of the reflector
and is measured also at the normal-ray emergence point.

Time migration, either post-stack or pre-stack, is widespread used in seismic processing to produce
initial time-domain images and velocity in a simple and efficient way (Hubral and Krey, 1980; Yilmaz,
2000). Together with its advantages of computational efficiency and robustness with respect to a back-
ground velocity model, time migration has the the drawback of producing distorted images, in some cases,
even under mild lateral velocity variations (Robein, 2003). An option to overcome the imaging difficulties
of time migration is to convert the time-migrated images into depth, which includes, as an obligatory step,
the conversion of the time-migrated velocities into a corresponding depth-velocity field.

The theoretical explanation of the time migration procedure has been given in Hubral (1977) by means
of the concept of image rays. For an isotropic medium, the image ray starts normally to the measurement
surface and travels down to hit, generally non-normally, the reflector. In this way, it can be seen as a “dual”
of a normal ray, which starts, generally non-normally, at the measurement surface and hits normally the
reflector. For an anisotropic medium, the duality between the image and normal rays is still valid: in this
case, it is not the ray but the slowness vector that is normal to the measurement surface (image ray) and the
reflector (normal ray).

Quite recently, Cameron et al. (2006, 2007) unveiled the theoretical relationship between the time-
migrated and depth velocity fields and presented algorithms to estimate depth velocities and trace image
rays from a given time-migrated velocity field. A modified algorithm for the same purposes has been also
presented in Iversen and Tygel (2008). Application of the theory to actual time-to-depth conversion has
been presented in Cameron et al. (2008). The above papers show that a depth velocity field and also image
rays can be fully constructed from a given time-migrated velocity field. As a consequence, individual time-
migrated reflection curves can be readily converted into depth by simply moving time samples along the
image ray.
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Considering prestack time-migrated data, one can apply the CRS method to obtain, besides a zero-
offset data volume, also linear (slope) and quadratic coefficients for zero-offset time-migrated reflections.
Such coefficients may be seen as dual with respect to their zero-offset unmigrated counterparts. A question
that naturally arises is what could be a physical meaning of the time-migrated CRS coefficients. For a given
depth velocity model (e.g., a model that has been directly extracted from the time-migrated velocity field)
and using the machinery of surface-to-surface propagator matrices (see, e.g., Bortfeld, 1989; Červený,
2001), we provide an interpretation of such coefficients in terms of reflector dip and curvature in depth.
Our approach is heavily based on the pioneering work carried out in the eighties by Iversen, Åstebøl
and Gjøystdal at NORSAR (see Iversen et al., 1987;1988). They show that the time-migrated reflection
traveltime and its derivative with respect to midpoint determines the reflector dip and, in addition, the
second derivatives provides the reflector curvature. Both quantities are evaluated at the point the image
ray hits the reflector. Explicit expressions for the reflector dip and curvature are provided in terms of the
propagator matrix in ray-centered coordinates of the image ray, assumed to be already derived from the
time-migrated velocity field. Here these works are reviewed and suitably modified, to provide the sought-
for interpretation of the CRS attributes of time-migrated reflections and to take into account anisotropic
media.

2. Parameters of zero-offset reflections in unmigrated and migrated time domain. The unmi-
grated and migrated time domains are both five-dimensional. For common-offset migration these domains
can be defined in terms of the coordinates (x,h, TX) and (m,h, TM ). Here, x defines the common mid-
point between source and receiver locations, while h is half of the source-receiver offset. The vector m
specifies a so-called common-image point in the time-migrated domain, i.e., the location of a common-
image gather. The coordinates (x,h) and (m,h) are curvilinear and are related to respective measurement
surfaces ΣX and Σ

M specified for the unmigrated and migrated domains. For practical reasons, one will
in most cases choose the surfaces ΣX and Σ

M identical; nevertheless, it is ultimate to distinguish between
midpoint coordinates x and image-point coordinates m along this common surface.

In the unmigrated domain the common-reflection surface has the form TX(x,h). It is common to
approximate this surface to second order in x and h, based on CRS coefficients known at some reference
location (x = x0,h = 0). In this respect, probably the most “natural” coefficients one can think of are the
traveltime derivatives

(2.1) TX
0

= TX(x0,h = 0) ,

(2.2) pXx
0

=

(

∂TX

∂xi

(x0,h = 0)

)

,

(2.3) MXxx
0

=

(

∂2TX

∂xi∂xj

(x0,h = 0)

)

,

(2.4) MXhh
0

=

(

∂2TX

∂hi∂hj

(x0,h = 0)

)

.

These coefficients can be computed directly from the seismic prestack data, without knowledge of the
depth-velocity model. For clarity of notation, subscript zero on the lefthand-side entities is generally
skipped. Moreover, in this paper we do not consider traveltime derivatives taken with respect to offset
or attributes related to such traveltime derivatives. This allows us to use a more simple notation, pX and
MX , for the traveltime slope and curvature entities in equations 2.2 and 2.3.

In the migrated domain, the common-reflection surface is given by the function TM (m,h), and the
traveltime parameters corresponding to those in equations 2.1-2.4 are,

(2.5) TM
0

= TM (m0,h = 0) ,

(2.6) pMm
0

=

(

∂TM

∂mi

(m0,h = 0)

)

,
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(2.7) MMmm
0

=

(

∂2TM

∂mi∂mj

(m0,h = 0)

)

,

(2.8) MMhh
0

=

(

∂2TM

∂hi∂hj

(m0,h = 0)

)

.

Observe that the matrix MMhh
0

vanishes if the seismic data have been perfectly time-migrated. The param-
eters subjected to our interest in this paper are those in equations 2.5-2.7, which are generally referred to
without subscript zero. For further simplification, we write the traveltime slope and curvature parameters
in these equations as pM and MM .

3. Parabolic reflection traveltime in the unmigrated domain. In the following, we find it conve-
nient to consider parabolic approximations of traveltime instead of the usual hyperbolic approximations.
There is no lack of generality in doing so, and moreover, the obtained results are the same for the two
approximations. We assume that, for a target reflection in the zero-offset volume, the reflection traveltime
in the vicinity of a reference common midpoint x0, is approximated by the Taylor parabolic polynomial

(3.1) TX(x) = TX(x0) +∆xTpX +
1

2
∆xTMX

∆x ,

where x = x0 + ∆x and pX and MX are the first-derivative vector and second-derivative matrix of
traveltime with respect to midpoint, both evaluated at x0. In order to draw attention to the wave-theoretical
interpretation of pX and MX , let us for a moment assume that the medium along the measurement surface
Σ

X is isotropic and homogeneous. The linear (2D-vector) coefficient, pX , can then be written as (see, e.g.,
Spinner, 2007, eq. 3.8)

(3.2) pX =
∂TX

∂x
=

(

∂TX

∂xi

)

=
2 sin θ

v0
(cosφ, sinφ)T ,

where θ is the emergence angle of the normal ray with respect to the normal to the surface Σ
X , φ is the

angle between the x1 axis and the projection of the ray onto Σ
X , and v0 is the isotropic medium velocity

at x0. In other words, pX corresponds to the ray parameter vector of the normal ray emerging at the point
x0. The quadratic (2× 2-matrix) coefficient, MX , has the expression (see, e.g., Spinner, 2007, eq. 3.10)

(3.3) MX =
∂2TX

∂x2
=

(

∂2TX

∂xi∂xj

)

=
2

v0
HKNHT ,

where KN is the wavefront curvature matrix of the normal wave (or N-wave; see, e.g., Hubral, 1983) and
H is a matrix describing the transformation

(3.4) ∆x = Hq ,

which relates the x-coordinates and the vector q of the first two wavefront-orthonormal coordinates of
the normal ray at x0. It is our aim to provide a similar interpretation of the coefficients of a parabolic
approximation of reflections in the time-migrated domain.

4. Parabolic reflection traveltime in time-migrated domain. As previously indicated, we use the
coordinate vectors m, to locate the zero-offset traces in the time-migrated domain. We consider the Taylor
parabolic approximation of the time-migrated reflection traveltime of a target reflector, TM (m), at trace
location, m = m0 +∆m, in the vicinity of a reference trace m0. It is given by

(4.1) TM (m) = TM (m0) +∆mTpM +
1

2
∆mTMM

∆m ,

in which the linear and quadratic coefficients, pM and MM are given by

(4.2) pM =
∂TM

∂m
=

(

∂TM

∂mi

)

and MM =
∂2TM

∂m2
=

(

∂2TM

∂mi ∂mj

)

,
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all derivatives being evaluated at m = m0. The above expression can be interpreted as twice the traveltime
along the image ray from the initial point with coordinate m to the point where it hits the reflector. The
time TM (m0) is twice the traveltime along the central image ray from the reference point to the image

incident point (IIP), namely the point where the (central) image ray hits the reflector.
It is our aim to characterize the geometric attributes, namely dip and curvature of the reflector at the

point IIP in depth, as functions of the coefficients pM and MM .

5. Propagator matrix of the central image ray. It is convenient to formulate our problem using the
theoretical framework of ray-propagator matrices (see, e.g., Červený, 2001; Iversen, 2006). In this way,
we introduce the 4× 4 surface-to-surface propagator matrix of the central (downgoing) image ray

(5.1) T =

(

A B

C D

)

,

which connects the (known) measurement surface Σ
M , called anterior surface, to the (unknown) target

reflector, ΣZ , called posterior surface.
Points on the reflector will be specified by 2D orthogonal curvilinear coordinates, z = (z1, z2)

T . The
initial and final points of the central image ray are specified by the coordinates m0 and z0, respectively.
With the above considerations, the (one-way) traveltime of a paraxial image ray that joins the point m =
m0 +∆m at ΣM to the point z = z0 +∆z at ΣZ can be expressed as

(5.2) T (z,m) = T (z0,m0) +∆zTpZ(z0)−∆mT
B

−1
∆z+

1

2
∆mT

B
−1

A∆m+
1

2
∆zTDB

−1
∆z .

In the above expression, pZ(z0) is the projection of the slowness vector of the central ray on the tangent
plane to the posterior surface at its end point. Observe that we have used the fact that for an image ray the
slowness projection, pM (m0), on the tangent plane to the anterior surface at its initial point vanishes.

The coordinates m and z, which refer to the initial and endpoints of a specified paraxial image ray, are
connected. To find that connection, we recall the properties of the propagator matrix to write

(5.3) ∆z = A∆m+B∆pM = A∆m .

Note that ∆pM = pM (m) − pM (m0) = 0, since both the central and paraxial rays are image rays, so
that pM (m) = pM (m0) = 0. Now, we express ∆z as a second-order expansion of ∆m,

(5.4) ∆zk =
∂zk
∂mj

∆mj +
1

2

∂2zk
∂mi∂mj

∆mi∆mj .

We recognize that the first derivative in equation 5.4 equals the matrix element Akj , while the second
derivative equals ∂Akj/∂mi. It should be noted that the latter term cannot be computed from standard
paraxial ray theory, which is based on first-order expansions of position and slowness. We insert equation
5.4 into equation 5.2, while neglecting terms of order three and higher in the resulting traveltime expansion,
and we use the property

(5.5) A
T
D − C

T
B = I

inherent in the formulation of surface-to-surface ray propagator matrices. The result is

(5.6) T (z,m) = T (z0,m0) +∆mT
A

TpZ +
1

2
∆mT

(

E + C
T
A

)

∆m ,

where the elements of matrix E are given by

(5.7) Eij =
∂2zk

∂mi∂mj

pZk =
∂Akj

∂mi

pZk .

We now require that the observed two-way traveltime parameters are consistent with the one-way
traveltime parameters simulated by the field of image rays. Comparison of equations 4.1 and 5.6 yields

(5.8) TM (m0) = 2T (z0,m0) ,
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(5.9) pM = 2ATpZ ,

(5.10) MM = 2
(

E + C
T
A

)

.

6. Wavefront-orthonormal local coordinate system. As indicated above, we assume that a depth-
velocity model is known. As a consequence, the central image ray can be traced into depth, so that the
point where it hits the reflector can also be assumed as known. That point, called IIP and specified by
the curvilinear coordinate, z0, is obtained by following the central image ray trajectory until the time
T = TM/2 is consumed. Moreover, the slowness vector is normal to the wavefront at the IIP, namely,

(6.1) p̂ =
1

c
n̂ ,

where c denotes phase velocity.
Following (Červený, 2001), it is helpful to introduce a local wavefront-orthonormal coordinate system

(y1, y2, y3) such that the third axis (y3) is normal to the wavefront. The other two axes can be freely speci-
fied so that a right-hand Cartesian system is obtained. Quantities belonging to the wavefront-orthonormal
coordinate system will be denoted with a superscript Y . Considering wavefront-orthonormal coordinates,
the slowness and ray-velocity vectors are written

(6.2) p̂Y =

(

0

1/c

)

, v̂Y =

(

vY

c

)

.

Moreover, the vector vY is zero if the medium is isotropic at the actual ray/interface intersection point.
As shown in (Iversen, 2006), the wavefront coordinate system allows for the computation of the sub-

matrix systems (QE ,PE) and (QD,PD), which correspond to hypothetical wavefront solutions initial-
ized, respectively, as an exploding reflector (E) and a point diffractor (D) at the anterior surface. The two
solutions form the 4× 4 matrix

(6.3) Φ =

(

QE QD

PE PD

)

,

which constitutes the surface-to-surface propagator matrix of the central image ray with respect to the given
measurement (anterior) surface and the wavefront surface that corresponds to the central image ray at the
IIP. We remark that the above-defined propagator matrix is an inherent property of the given central image
ray and measurement surface, defined independently of the interface. To account for that interface, we need
to introduce an additional local coordinate system. The new coordinate system enables the construction
of a so-called projection matrix, Y, which embodies the properties of the interface and provides the link
between the propagator matrices T and Φ in the form

(6.4) T = YΦ .

The explicit expression of Y will be given in the next section.

7. Interface local coordinate system. In accordance with the previous observation, the determina-
tion of the sought-for reflector dip and curvature at the point IIP will be obtained with the help of an
additional local 3D-Cartesian system, also having its origin at the IIP. This is the interface-orthonormal

coordinate system, defined such that the third axis is perpendicular to the interface. The remaining axes,
are arbitrarily defined so that the system is also right-hand oriented.

We observe that our results will be the same if we consider an orthogonal curvilinear coordinate sys-
tem for the interface or a continuum of local Cartesian interface-orthonormal systems, with axes tangential
to those of the curvilinear coordinate system at every point along the interface. Therefore, to avoid unnec-
essarily complications of notations in the following, the local interface coordinates are written simply as
ẑ = (z, z3).

Following Červený (2001) the transformation from wavefront-orthonormal to interface-orthonormal
coordinates is described to the first order by the relation

(7.1) ẑ = Ĝŷ .
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Being a coordinate transformation between orthonormal Cartesian coordinate systems, matrix Ĝ is an
orthonormal matrix. As such, it satisfies the relations

(7.2) Ĝ−1 = ĜT , Ĝ−1Ĝ = Î , ĜĜ−1 = Î .

Matrix Ĝ has as columns the unit vectors of the wavefront-orthonormal coordinate system expressed with
respect to the interface coordinate system. The third column of matrix Ĝ is therefore a unit vector normal
to the wavefront, for which we use the notation n̂Z . Here, superscript (z) signifies that the vector belongs
to the interface coordinate system. It is convenient to express vector n̂Z as a 3× 1 column matrix

(7.3) n̂Z =

(

nZ

nZ
3

)

,

where nZ = (nZ
1
, nZ

2
)T is the two-component vector (2 × 1 column matrix) of the vector n̂. In the same

way, the orthogonality of matrix Ĝ (equation 7.2), implies that the third line of that matrix is given by the
transpose of the unit vector normal to the interface

(7.4) ν̂
Y =

(

ν
Y

νY
3

)

,

where νZ = (νZ
1
, νZ

2
)T is the two-component vector (2×1 column matrix) of the vector ν̂. Note especially

that

(7.5) νY
3

= nZ
3
= G33 .

In accordance with Červený (2001), we let G denote the 2×2 upper left sub-matrix of matrix Ĝ. Moreover,
we adopt the form of matrix Ĝ used by Iversen (2005),

(7.6) Ĝ =

(

G nZ

ν
Y T

nZ
3

)

.

Here, νY is a two-component vector yet to be determined. It belongs to the wavefront-orthonormal coordi-
nate system, as indicated by the superscript (y), and constitutes the projection of the unit interface normal
into the tangent plane to the wavefront. Using equation 7.2 we find that

(7.7) GTG+ ν
Y
ν
Y T

= I , GGT + nZnZT
= I ,

as well as two equivalent results for the vector νY ,

(7.8) ν
Y = −GT nZ

nZ
3

, ν
Y = −nZ

3
G−1nZ .

With the help of the matrix Ĝ, we can obtain an explicit expression of the projection matrix, Y, of equa-
tion 6.4. We have

(7.9) Y =

(

(G−Aan)
−T

0
(

E− pZ
3
D
)

(G−Aan)
−T

(G−Aan)

)

.

Here, D is the curvature matrix of the posterior surface. More specifically, in the interface-orthonormal
coordinate system the equation of the reflector is

(7.10) z3 = −
1

2
zTDz .

The 2× 2 matrix E is given by

(7.11) Eij =
1

c

[

Gi3GjmηYm +Gj3Gikη
Y
k +Gi3Gj3(η

Y
3
−

1

c
ηYl vl

Y )

]

,
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and

(7.12) Aan ≡ pZvY T

is the 2 × 2 anisotropy matrix. Both matrices E and Aan are introduced and described in great detail
by Červený (2001). The entities vi

Y and ηi
Y , i = 1, 2, 3, are components of the ray-velocity vector v̂Y

and the slowness-derivative vector η̂Y = dp̂Y /dT , specified in wavefront-orthonormal coordinates. For
isotropic media, we have Aan = 0. It is to be observed that in many situations, one can also consider that
E = 0. For example, this is the case if the medium is locally homogeneous. Matrix E is also zero if the
slowness vector is normal to the interface.

8. Interpretation of CRS coefficients of time-migrated reflections. Interpretation of the CRS co-
efficients pM and MM of the time-migrated traveltime of equation 4.1, will be given in terms of the of
reflector dip and curvature determined by them. Accuracy of results will depend, of course, on the quality
of CRS parameter estimation and the given or obtained depth velocity field.

Expressions of the reflector dip and curvature can be readily derived once the propagator matrix, T , is
obtained. For that matter, we insert equation 7.9 into equation 6.4 to find, after some algebra,

(8.1) A = (G−Aan)
−T

QE ,

(8.2) C =
(

E− pZ
3
D
)

A+A
−TQE

TPE ,

and similarly

(8.3) B = (G−Aan)
−T

QD ,

(8.4) D =
(

E− pZ
3
D
)

B +B
−TQD

TPD .

8.1. Interpretation of pM : Estimation of reflector dip. A consequence of equations 7.5 and 7.8 is
that the projection of the slowness vector into the tangent plane of the interface can be expressed as

(8.5) pZ = −
1

c
Gf ,

where

(8.6) f ≡
ν
Y

νY
3

.

Vector f is of particular importance in the following, since it provides all the information required to
estimate the normal vector to the reflector. Matrix G, however, needs not be known for this purpose, which
will be shown below.

The image-ray field corresponds to an exploding reflector initial condition at the measurement surface
in the time-migration domain. We can therefore take QE as the 2×2 geometric spreading matrix belonging
to the image-ray wavefront and apply a slightly restated form of equation 8.1,

(8.7) A
−T = (G−Aan)QE

−T .

Using equation 8.5 and the definition of the anisotropy matrix Aan in equation 7.12, we find that

(8.8) A
−T = G

(

I+ f
vY

vY
3

)

QE
−T .

We apply equations 8.5 and 8.8 in equation 5.9, which yields

(8.9) f = −
c

2

(

1 +
1

2
vY T

QE
−TpM

)

QE
−TpM ,
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which applies to anisotropic conditions at the point where the image ray hits the reflector. For isotropic
conditions, equation 8.9 reduces to the simple result

(8.10) f = −
c

2
QE

−TpM .

Knowing vector f , we can compute the reflector normal as

(8.11) ν̂
Y =

1

±
√
1 + fT f

(

f

1

)

,

where a convention for the vector direction must be specified.

8.2. Interpretation of MM : Estimation of reflector curvature. Having estimated the reflector nor-
mal vector by equation 8.11, one can construct matrix Ĝ in equation 7.6 according to any preferred conven-
tion. Note especially that it is not necessary to require the local interface coordinate system to be aligned
with the plane of incidence. Using matrix Ĝ we can compute the anisotropy matrix Aan, the projected
geometric spreading matrix A, and the inhomogeneity matrix E. On these grounds we can consider all
the latter matrices to be known. Now we want to express the curvature matrix of the reflector, D, in terms
of the known matrices. For that, we use equation 8.2 in combination with the condition given in equation
5.10, which yields the formula

(8.12) D =
1

pZ
3

[

A
−T

(

QE
TPE + E −

1

2
MM

)

A
−1 +E

]

.

Equation 8.12 is exact. However, since matrix E can not be computed from conventional dynamic ray
tracing along a single image ray, it is tempting to assume that its effect is negligible. In particular, we
observe that matrix E is zero if the slowness vector of the image ray is normal to the reflector. The effect
of matrix E will clearly be quite small as long as the angle between the slowness vector and the reflector
normal is also small.

9. Conclusions. Application of the CRS method in the time-migrated domain provides, besides a
refined time-migrated volume, also linear and quadratic CRS coefficients. These coefficients can be inter-
preted in terms of the reflector dip and curvature in depth. For a given anisotropic depth-velocity model, the
CRS coefficients (or time-migrated CRS parameters) determine the dip and curvature of the reflector at the
point the reference image ray hits the reflector. Recent literature has shown how an isotropic depth-velocity
model can be constructed directly from the time-migrated velocity field, which is naturally obtained in the
pre-stack time-migration process. Potential application of the obtained results can be, for example, the
construction of selected reflectors in depth to help setting constraints for velocity-model building. We look
forward to seeing further research in this direction.
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