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MULTI-SCALE DISCRETE APPROXIMATION OF FOURIER INTEGRAL
OPERATORS

HERWIG WENDT ', MAARTEN V. DE HOOP , AND FREDRIK ANDERSSON 2

Abstract. We develop a discretization and computational procedures for the approximation of the action of
Fourier integral operators whose canonical relations are graphs. Such operators appear in many physical contexts
and computational problems, for instance in the formulation of imaging and inverse scattering of seismic re3ection
data. Our discretization and algorithms are based on a multi-scale low-rank expansion of the action of Fourier integral
operators using the dyadic parabolic decomposition of phase space, and on explicit constructions of low-rank separated
representations that directly re3ect the nature of such operators. The discretization and computational procedures
explicitly connect and can be seamlessly overlaid to the discrete almost symmetric wave packet transformation.
Numerical wave propagation and imaging examples illustrate our algorithms.

1. Introduction. Fourier integral operators, and their calculus, have played an important
role in analyzing many problems involving linear hyperbolic partial di! erental equations. We men-
tion parametrix constructions, and developments in scattering and inverse scattering theods. In
these developments, typically, the Fourier integral operators correspond with canonical reladns,
describing the propagation of singularities of these operators, which are the graphs of canaail
transformations. Here, we focus on discretizing the action of Fourier integral operators (FI@) in
this class and on developing computational algorithms. A natural way to initiate the discretization
and associated approximation is via the dyadic parabolic decomposition of phase space enalgiia
natural connection with the geometry of these operators.

The action of an FIO F in the mentioned class on a functionu(x) in L2 is given by

I

(1.1 (Fu)(y)=  a(y,!)exp(iS(y,!)a()d!,

where @ denotes the Fourier transform ofu, a(y,!) is the amplitude function and S(y,!) denotes
the generating function. The propagation of singularities byF, (x,!)! (y,"), follows from S and
is described by the transformation

# #
(1.2) wo S, $S

$T,. : y,g

These FIOs include the pseudodierential operators, for which S(y,!) = "y,!#and # is the identity.
We will assume that a is of order zero. The operatorF has a sparse matrix representation with
respect to the frame of curvelets [12, 51], which originates from the dyadic parabolic decompdisin

of phase space and which will be brieRy discussed below. We will refer to curvelets ([13] and
references therein) by their collective name Owave packetsO.

To arrive, through discretization, at an e" cient algorithm for the action of an FIO it is natural
to seek expansions of the amplitude function and complex exponential in terms of tensor produstin
phase space. (This strategy has been followed to develop algorithms for propagators since the adiven
of paraxial approximations of the wave equation, their higher-order extensions, and lpase-screen
methods and their generalizations. See Beylkin and Mohlenkamp [9] for a general analysis.)

In the case of pseudodierential operators, the generating function is linear in! and is natu-
rally separated. Typically, one introduces a radial partition of unity in !-space, the functions of
which scale dyadically. On each annulus of this partition, the amplitude function or symbol can
then be expanded in spherical harmonics. This results in a tensor product expansion [55]; dac
term in this expansion is also referred to as an elementary symbol. Bao and Symes [3] developed a
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computational method for pseudodl erential operators based on such a type of expansions: They
considered a Fourier series expansion of the symbol in the angular variables argand a polyhomo-
geneous expansion if! |. More recently, other, fastly converging separated symbol expansions were
introduced by Demanet and Ying [19] in adequate systems of rational Chebyshev functions or éi-
archical splines with control points placed in a multiscale way in! -space. Alternative expansions, of
the action of Calderen-Zygmund operators, using bases of wavelets, were introduced and anadyl
by Beylkin, Coifman and Rokhlin [6].

Here, we consider FIOs and focus on separated expansions of the complex exponential in (1.1).
Recently, De Hoop et al. ([18]) proposed an explicit multi-scale expansion of low phase space
separation rank of the action of FIOs in the class mentioned above using the dyadic parabali
decomposition of phase space. The brst-order term in the expansion provides an accura®y?2' ¥ 2)
at frequency scale . For each frequency scale, the separation rank depends dnbut is otherwise
independent of problem size. In the work presented here, we elaborate on this result and dgep
a discretization, approximation and numerical procedure for computing the action of ths class of
operators. We obtain an algorithm of complexity O(N o log(N)), or O(DN %log(N)) if D is the
number of signifcant tiles in the dyadic parabolic decomposition. We focus on explicit costructions
and corresponding numerical analysis that directly reect the nature of FIOs. We express au
separated representation in terms ofgeometric attributes of the canonical relation of the FIO. We
make use ofprolate spheroidal wave functions(PSWFs) in connection with the dyadic parabolic
decomposition, while the propagation of singularities or canonical transformation is accounted for
via an unequally spaced FFT (USFFT). The use of PSWFs was motivated by the work of Beylkn
and Sandberg [7]. An & cient algorithm to compute PSWFs was proposed by [62]. We note that
it is also possible to obtain low-rank separated representations of the complex exponential ifl.1)
purely numerically, at the cost of losing the explicit relationship with the geometry. We derive our
discretization from the inverse transform based on discrete almost symmetric wave packet&1].

The connection of our algorithm to discrete almost symmetric wave packets is important in
imaging and inverse scattering applications. In these applications, the FIO acts on the datqu in
the above). The wave packets can aid in regularizing the process of partitioninghte data in! -space
starting from a Pnite set of samples through sparsity promoting optimization (instead of stardard
interpolation). Moreover, in the context of directional pointwise regularity analysis [2, 26, 29, 30,
31, 32, 39], the mentioned connection enables the numerical estimation and study of propagation of
scaling exponents by the FIO extending the corresponding results for Calderen-Zygmuhoperators
using wavelets [40].

Indeed, imaging and inverse scattering of seismic rel3ection data can be formulated in terms
of FIOs in the class considered here. In the presence of caustics, the construction of such FIOs
requires an extension of standard scattering operators; see Stolk and De Hoop [52, 53, 54]. First-
order evolution equations and associated propagators also play a role in implementations of we
equation imaging and inverse scattering; we mention time and depth extrapolation (or downard
continuation), and velocity continuation. Also, extended imaging can be described in termsof
solving a Cauchy initial value problem for an evolution equation (Duchkov and De Hoop [23]).
Parametrices of such evolution equations are natural examples of the FIOs considered here. Ingh
present contribution, we consider situations without caustics. Extension to the causticcase will be
the subject of a forthcoming paper.

Our analysis is based on the work of Seeger, Sogge and Stein [45]. The fast computation of FIOs
(in dimension d = 2) was recently considered by Candes, Demanet and Ying [14]. In this work,
the ! -space is decomposed into angular wedges which satisfy a parabolic relationship reminiscent of
the dyadic parabolic decomposition for the Pnest available scale. The separated expansion of the
complex exponential in (1.1) makes use of the Taylor series for the exponential function B &g the
generalized-phase-screen expansions introduced by De Hoop, Le Rousseau and Wu [17] B and a polar
coordinates Taylor (or Maclaurin) expansion of its phase in!; the wedges can be chosen Swciently
narrow (which corresponds with largek in our analysis) so that only the brst term in the latter
expansion needs to be accounted for. In [15], a butter3y algorithm is obtained through adanced
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tiling of the space and frequency domain which also admits low-rank separated representatioms the
complex exponential. An alternative approach is based on compressing operators by decomposing
them in properly chosen bases of 2. Once a sparse representation has been obtained, the action

of the operator is carried out by applying a sparse matrix in the transform domain. In dimersion

1, such an approach was developed by Bradie, Coifman and Grossman [10] for the computation

of oscillatory integrals related to acoustic wave scattering. As far as applications in rel3eabin
seismology are concerned, we mention ObeamO migration [1, 27, 41] and ObeamletO propagators [60].

The outline of this paper is as follows. Below we give a brief introduction to the dyadic parabolic
decomposition of phase space, the co-partition of unity, and wave packets. In Section 2, we sum-
marize the multi-scale operator expansion proposed in [18], construct the separated expansion of
the complex exponential in (1.1) using PSWFs, and analyze the rank properties of this gpansion.
Details on PSWFs and on their numerical evaluation are collected in Appendices A and B. Section
3 proceeds with constructing the discretization of the operator expansion. We begin with asum-
mary of discrete almost symmetric wave packets and establish the connection with the appramate
operator action. Then we discuss the deformation of phase space discretization under the operator
leading to strategies for choosing the oversampling factors and for the discrete evaluah of the
canonical transformation by USFFT, and we relate wave packet decay properties to reduddn of
the size of the calculation domain. Based on the theoretical developments described in Section 2, we
propose a box (frequency tile) based algorithm, an individual packet based algorithm, and aybrid
packet-box algorithm, and investigate their computational complexity and properties. We aralyze
the algorithms in the example of solution operators of evolution equations represented as Trtdr
products and establish the relationship with a phase-space localized approximation. In SectioA
we detail, as an example within the class of FIOs considered in the present work, applicath to
parametrices of evolution equations. We establish the explicit relationship with paraxial ay theory
for this case, the expansion terms of the phase of the complex exponential being obtained as com-
binations of submatrices of the propagator matrix of the Hamilton-Jacobi system along paraxial
rays. The resulting computational procedure is a Oone stepO algorithm for (potentiallyery) large
time steps. Section 5 provides numerical illustrations for evolution-equation based proggation and
imaging. We compare the proposed algorithms in examples of wave propagation in heterogeneous
isotropic medium, and we illustrate imaging with an homogeneous anisotropic Hamiltonian. Findl,
in Section 6, we conclude on the present work and discuss future perspectives.

Wave packets. We brieRRy discuss the (co)frame of wave packets [13,$21, 51]. Let$ L?(RY)

represent a (seismic) velocity Peld. We consider the Fourier transformy@) =  u(x) exp[%i"x, ! # dx.
We begin with an overlapping covering of the positive! ; axis (! = !1) by boxes of the form
% . &% w8 g
P N L, L,
= 1 o5k 1" 4+ =k 0p—k “k
Bk sk /0 2 1k 2 & 0 2 ] 2 ’

where the centers!,, as well as the side lengthd., and L, satisfy the parabolic scaling condition
L' 26 Lt 2% L 292 ask!(

Next, for each k ) 1, let %vary over a set of approximately (@ /2 yniformly distributed unit
vectors. (We adhere to the convention that%0) = e; aligns with the !;-axis.) Let #, x denote a
choice of rotation matrix which maps %to e;, and

(1.3) Bk = #, Bu.
The B, k are illustrated in Fig. 1 (left). We denote for later use by 1, x (!) the indicator function

of By k. In the (co-)frame construction, we encounter two sequences of smooth function#, § and
& «, on RY, each supported inB, x, so that they form a co-partition of unity

(1.4) Bo(1)&(1) + B (& (1)=1,

k#1 !
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8

Fig. 1. Geometry for 2d wave packets: Frequency domain boxes and window functio n 6, x (") for one particular
box for scale k = 3 with orientation # (left). One wave packet corresponding to the box highlighted in the subbg ure
on the left and central locations of wave packets in this box (¢ enter). Orientations of "" and "™ in the Taylor series
expansion of S(y,") (right).

and satisfy the estimates

"% # 8 4 (V)] + %S H# $F 8 (1)] * Cj 2 KU+1#ID),

A function &, x is plotted in color in Fig. 1 (left). We then form

(1.5) Ok()= (&), Bak()= (MPBk(),
with (x the volume of By. These functions satisfy the estimates
Dkl |
(16) * CN 2k(d+1) 14 (2k|n%x#4 + 2k/ 2+X+). N
I" 1 k()]

for all N. To obtain a (co)frame, one introduces the integer lattice: Xj := (j1,...,jn) $ Z9, the

dilation matrix
" #
1 L, O13dr 1

Dy = - ,
KT 2% Omas1 Lylas

det Dy = (2*)' Y(«,

and points x; = # tD} 'X;, which change with (%k). The frame elements k ) 1) are then
debPned in the Fourier domain as

(17) Bs(1) = P k(1) expl%inx; 1, += (", %K),

and similarly for 'Og(1). A function ) 1 k,» as well as the corresponding lattice with pointsx} kK are
plotted in Fig. 1 (middle). We obtain the transform pair
|

(1.8) ug = u(x) s(x)dx, u(x)=  us)s(x)
$

with the property that ) s k'=k 1°=1 U s (1) = @(! )& k(M (1), for each %k.
2. Expansion of Fourier integral operators.

2.1. Dyadic parabolic decomposition and separated representation. In this section,
we summarize a result in [18] that will underly our discretization. Let) g(x), + = (j, %k), denote

a wave packet with central position xj! *"and orientation %at scalek.
The action of the operator F on a single wave packet is given by:
|

(2.1) (F)s)Y) = (% aly,!)expli(S(y,!) %", x; “A& « (1)d!,
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since)@(!) = (L v 2, k(1) exp[%i"!, x; # is the Fourier transform of ) . In [18], an approximation

of (F) g)(y) to order O(2' ¥ 2) is obtained via Taylor expansions ofS(y,!) and a(y,!) near the
microlocal support of ) . The amplitudes a(y,!) can be replaced bya(y, % without giving rise to
errors larger than O(2' ¥ 2) ([18], Lemma 3.1). By homogeneity in! of S(y,!), the brst order Taylor
expansion yields:
wool K $S !,k+
S(y,!) %", x; " #= !,$—|(y,%%xj + ha(y,!),

along the %axis, where the error term h,(y,!) is homogeneous of order 1 and of clasS? rag ON
N P 2
1y k(1) (cf. [18], (22)). We introduce the Ocoordinate transformO

2.2) VU T = e,

which describes the propagation of the wave packe} ¢ along rays according to geometrical optics
(cf. (1.2)). Replacing S(y,!) %", x; “#by !, Ty (y) %X " in (2.1) results in the approximation:

(2.3) (F) $)(¥) = ay, %) s(Ti x (¥)) + O(29),

with error term in the same smoothness class as the wave packets itself. We will refer to this
approximation as the zero-order approximation. Note that it di ! ers from what is commonly referred
to as rigid motion since the Row out is governed by all rays with wave vector 2%and origin on the
support of ) ¢, not only by the ray connecting the central positions X; * and yj! e T!"kl(xj! 'k).

To rebne the approximation to O(2' ¥ 2), we need to include the second order terms in theé ™
directions perpendicular to the radial %= !" direction in the Taylor expansion of S(y,!) (cf. Fig.
1 (right) for an illustration of the expansion directions). Using again homogeneity in!, this yields

the expansion:
* * +

+
2
Sw.D= LEER ¢ 1N IS09T sk,

7T Th
where hs(y,!) is S!%‘%ad o_r} 1, (1) (cf. [18], (22)). Approximation of the complex exponential

exp iz !, OZ‘?SZ (y,%!" for arguments bounded byc by a polynomial function leads to a tensor-

product representation separating they and ! variables. This yields the result [18, Theorem 4.1]:

Theorem 2.1. With functions T, (y) debPned by(2.2), functions , fr,i (y) and bfry,ﬂ(!) such that

*17 L s & ‘R .
(2.4) exp i !"",@(y,% R TOF K s,
one may express
'R
(25) F))¥) = aW.% W) (T +2' 21,
r=1

with R' k/ log(k), wherefg is a OcurveletO-like function (cf. [18], (23)) centered att(+).

Hence, an approximation of F) ¢)(y) to order O(2' ¥ 2) is obtained as the sum ofR modibed

wave packets 7 .g(x) = (frlz - ) ¢)(x) with amplitude corrections a(y, %, .(rlz (y), followed by a

coordinate transform T, x (y). This expansion can be extended to any order.
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Further approximations. Itis possible to replace the functionsa(y, %, %8 (y, % and Z5 (y, %

%" %2
with a(y, .9, 2(y*,% and £S5 (v, *, % with error remaining of order O(2' ¥ ?). This yields
the alternative result [18, Theorem 4.2]: With
% * +&

.. o 2 | "
26) By=en i o0 1),

one may express:

2.7) (F)s)() = aly % (-5 - ) s) (T (y) + 2" ¥ 21,

wherefg is a OcurveletO-like function centered a(+) (cf. [18], (23)).
Furthermore, the change of coordinatesT, x can be approximated by expansion o5(y, % about
(yj’ K %), yielding the approximation [18, Theorem 4.3]: One may express
1k 0 1.k 4 [ 21 1 k/I2
(2.8) (F)s)(y)=aly;” . %(-s-)s) DTs(y%y; ")+ Mga(y %y, ") +2° °“fs,

where fg is a OcurveletO-like function centered att(+) (cf. [18], (23)) , DTg = O"/I/jy'k ") =

ojﬁfy (yj! * 9 and Mg = %ﬂf;? (yj! * 9% In this approximation of T, , the quadratic term in y
corresponds to the curvature of an inbnitesimal plane wave attached ty s under the the underlying
canonical transformation, and the linear term is composed of a rigid motion, shear along the wave
front and dilations along and perpendicular to the wave front. It is importantto note that the further
approximations are tied to particular wave packetsunlike the expansion given in Theorem 2.5.

2.2. Prolate spheroidal wave functions (PSWFs) and tensor products. Here, we re-
visit (2.4). The phase of the exponential on the left-hand side consists of terms each of wdti reveals
a separation of variables in phase space. We discuss how to construct a separated representation as
expressed by the right-hand side of (2.4).

2.2.1. PSWFs. We make use of the eigenfunction$ of the integral operator F¢ with kernel
explicxz]:

by

(F®)x) = . explicxz]' (z)dz, c$ R*, x$ [%l,1]
[

These eigenfunctions turn out to be the prolate spheroidal wave functions, or Slepian functions.
We refer to Appendix A and to the references in this paragraph for a detailed treatment onthese
functions. Here, we give a brief summary. Originally, PSWFs were introduced and stdied in the
late 19th century in a classical mathematical physics context as the continuous eigenfunctions of
the di! erential operator:

2

(2.9) D¢=(1 %XZ);? %2x% %c*x?, c$ RY,
on the interval [%1, 1]. In the early 60s, in a series of seminal papers [36, 37, 48, 49, 50], it was
discovered that PSWFs are also the eigenfunctions of the above integral operator. It is this later
property that has drawn the interest of researchers from di erent belds, and will also be most useful
to us here. An extension of PSWFs to general dimensions, termed generalized PSWFs, has been
introduced in [48]: For eachc $ R*, there exists a countable set of numberg §, which are either
real or imaginary, such that the equation

|

(2.10) 1§ e(x)= explic'x, z#' g(z)dz, |Ix||* 1
R
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Fig. 2 . Illustration of PSWF coordinates for g(") and D =3 (d = 3). The Cartesian boxes f (y) and g(") need
to be included in the unit ball R on which $¢(%! ) form an orthonormal basis.

has a continuous solution onR, where R is the unit (hyper-)ball in D dimensions, and0 a multi-
index. These functions' § are the generalized PSWF$. They are bounded, purely real, orthonormal
and complete inL?(R). It can be shown that these functions are also the eigenfunctions of a dif-
ferential operator similar to (2.9), which allows to construct " cient procedures for their numerical
evaluation. Their eigenvalue spectrum consists of only very few eigenvalues with signibcant magni
tude (the precise number depending on the bandwidth parameterc) and then decays exponentially
fast to values close to zero [37, 35, 38]: For instance, f@ = 1, the spectrum contains roughly 2c/*
eigenvalues with magnitude close to 2*/c, then has exponential decay.

PSWFs have lately received considerable attention in the computational community and lave
been used in an important number of applications in various contexts (e.g. [9, 57]), mostly e to the
fact that a numerical tool for evaluating them for practically all values of ¢ encountered in practice
has become available [46, 62] (see also e.g. [42, 61] for asymptotic results and approximations). In
dimensionD =1, PSWFs can be numerically constructed by expansions in Legendre polynomials.
For D ) 2, they are constructed in polar coordinates (,$), in which their radial parts separate
from their angular parts:

te = a((08) = % (()Se($).

The radial functions % (() are obtained as expansions in Jacobi polynomials, while the angular
portions Sg($ are given by complete sets of orthonormal surface harmonics (in the practically most
important case D = 3, these are the spherical harmonics). The corresponding eigenvalues can be
obtained by numerical integration of (2.10) (or, for D ) 2, its counterpart for the radial functions

% (()). We refer to Appendix A for more details on the numerical construction of PSWFs.

2.2.2. Tensor product.  The kernel of operator (2.10) admits the representation:
(2.11) explic’x, z# = g e(¥) g@). Il llzll* 1.
&

Motivated by the above mentioned compactness of the eigenvalue spectrum, we will now use {4)
in the construction of the tensor-product (2.4). We start with debPning appropriate functions of

Wf’;{%w(y,% and .- mapping onto the unit ball R. Then we establish the relation between the

1In what follows, we will use the term PSWF for both PSWFs in one dimension, and generalized PSWFs.
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tensor product terms , ffﬁ(y) and ﬁffz(!) and the PSWFs. Finally, we investigate the numerical

rank R of the tensor product (2.4) when constructed from (2.11).

J

We begin with extracting from the matrices %f’ﬁ%w(y, % and L
j |
fi :RY! RP@ g:RII RD:

the vector-valued functions

3 4 % —-)
" $%s - L
$!8! !
where
0,
D(d) = (d%1)d
2
due to symmetry in partial derivatives and in !;"!". Let:
(2.12) c=c(%= 5 sup |g ! )IsupgT (y)g,
21,,() y
and debne:
(2.13) fi(y)=fi(y) ¢, g 'Y= ') c
By elementary manipulations of the left hand side of (2.4), we see that:
6 8
% * +& v d P

S 1 . $2S 1 L $2s

(2.14) exp 'ZT b W(yy% ! 1 k(') =exp 7Ié'| , J!i--l$!1;---$!|-"-(yy%9 L) =
8 "
1 P& v .
exp?is  gn (IO Lk () =explict (v).g( 1AL k(1) =
m=1
= & ey &g, 1)) Lk (1),
&

R by normalization with the bandwidth parameter c since PSWFs are debned on (hyper-) balls
(cf. illustration in Fig. 2). We note that in view of the parabolic scaling, cin (2.13) is (asymptoti-
cally) independent of scale since syp 1, ¢y !;1)"71" = supj; 1, ¢y (1] 29 2@ 217724 21171 (172) =

sup,, 1, . ! Y7 and 5 (y,9) are scale independent.

Now let the sequence of multi-indices0;, 0,, 4a &orrespond to the sorted sequence of eigenvalues
I7g,1) 1/5,]1) aaawWwe truncate the inPnite sum over the multi-index O at the Rth term, to within
precision 2(k):

% 1 * $ZS +& Ry
(2.15) exp iz !"",W(y,%!"" L= 1 &) & @) Lxk()+ 2Kk)
: ; r=1
Ry .
= L 0w+ 2Ak),
r=1

where in view of Theorem 2.1,2(k) ' 2' ¥ 2 in order to achieve accuracyO(2' ¥ ?) at frequency
scalek. We complete our construction (2.15) of the tensor-product (2.4) by identifying:

(218 )= g (),
@10 =186, @),
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exp(icf(x) oy)) ! i D) (oy)
11 1
S NS
1 f(%) 1 f(x)
1 0 1 11 0 1 0 5 10
"o(F (X)) "o(a(Y)) "1(F(x)) " 1(o(Y) "2(F(x)) " 2(a(Y)
1 1 1
013 0|3 ~ .. o3 Wk e
! f(x) L f (x) 1 f (%)
11 0 1 11 0 1 11 0 1

Fig. 3. Finite rank tensor-product approximation of complex exponential for D =1 and bandwidth ¢ = 10
(depicted are the real parts only): Exponential (top left), tensor-pro  duct approximation with R = 15 terms (top
center), eigenvalue spectrum |&9j | (top right). First three terms of tensor-product approximation (bo ttom).

Here, the eigenvalues § could alternatively be absorbed in either of the functiong , !(fﬁ(y) and

Df',l(' ). Fig. 3 depicts an example Pnite rank tensor-product approximation of expf (x)g(y)] for
D =1 and bandwidth c= 10.

It is important to note that in our application of (2.15), both the expansion coe" cients for
constructing the functions ' g and the eigenvalues can be pre-computed and tabulated for given
discrete sets of bandwidth parameters, say, ¢; < ¢, < aaéfor the highest desired accuracy?2. For
actual bandwidth c given by (2.12), the bandwidth used in (2.15) can then be chosen as the smallest
¢ such that ¢ ) c, which guarantees that the values of the functions (2.13) are conbned to the unit
ball. In order to keep the rank of (2.15) close to the smallest possible rank, the seat; has to be
chosen dense enough, for instance such th&(ci+1) = R(c) + 1. In the following paragraph, we
proceed with a more detailed analysis of the rank properties of tensor product (2.15).

Rank estimates. The rank R of approximation (2.15) is controlled by the desired precision2
and the bandwidth parameter ¢, which is in turn determined by the precise choice of the frequency
tiling (1.3), and by the largest value of |ojf%(y, %)| attained ony. The exponentially fast decay of the
eigenvalue spectrum, beyond a small number of eigenvaluég ,aad g with signiPcant magnitude
[37, 35, 38, 47, 62], and the orthonormality of the functions' { guarantee the fast convergence of
(2.15) and Pbnite rank R for arbitrarily small Pnite precision 2. We revisit here bounds on the

precision 2 for given rank R for D =1 (d = 2). We have:

ey e acrrwy it F, ey
2.18 [¢]= ———7 e A P oy’ o ¢ N
(2.18) vl @r)i&(r + 3) * 2b b @n)1&(r + 3)
2
and |' §(1)] <~ r +1/2 [47], hence:
D ) D
(2_19) |/E| * *Cr(r!) * ot * *7Cr2! rlog,(r) — - *72! rflog,(r)! Iogz(c)].

(2r)1&(r + 3) (2r)!

2\We omit explicit reference to the bandwidth parameter ¢ here for convenience of notation.
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Fig. 4. Plots of numerical evaluation of (2.23) for ¢ = {10, 20, 30,50} (blue solid line) in ! log(') (left) and
in ! log("')/ log(! log(')) (right) vs. R coordinates. Dashed solid lines correspond to linear bts in the res pective
coordinates. Plot of bound (2.21) (left, red dotted line).

Furthermore, for r ) 2c,
(2.20) [16]* 281,
which together with M ® = maXx soer Max; 10ex061 |' S(X)| * 2" T gives the following L4 bound, valid
for R) 2c[47]:
'R &
: , 8(R +2)
?un=§mw% [5 500 PR IEIME? * =g
r=1 & r=R+1

We use the fact that the functions' , form an orthonormal basis on the unit ball to obtain the L2
bound:

& Y 4
(2.21) 2R) = [e 2x)' 8(2) = & xSt R
r=R+1 L2(! 1,1) r=R+1 3
valid for R) 2c, and the rank estimate:
(2.22) R(2) ) % log,(2) +log ,(4/ 3) %1.

Note that these bounds are based on (2.20), which allows us to obtain closed form estimates, but
is very conservative. We aim at obtaining a Pner estimate on the order oR(2) and proceed with
investigating the right most inequality in (2.19). We evaluate numerically:

T T
(2.23) 2R)= < /2% " % 2! 2rllog,(r)! log,(c)]
r=R+1 r=R+1

for di! erent bandwidths c. Results are plotted in Fig. 4, together with (2.22). Clearly, the numerical
results indicate that:

(2.24) R(2) = O(%log(2)/ log(%log(2))).
For accuracy 2(k) = O(2' ¥ 2) we therefore have:
(2.25) R(k) = O(K/ log(k))

in agreement with Theorem 2.1.
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3. Discretization.  We develop an algorithm for the evaluation of the approximate action of
F on a function u at discrete frequency and space pointd; and y,, respectively, based on the
approximation (2.5) for a single wave packet and tensor product (2.15). Our choice of dcretization
will closely match the structure of the discrete wave packet transform [21]. The motivaton for this
is that data can be €' ciently and e! ectively stored, compressed, regularized, and pre-processed in
the wave packet domain (i.e., in form of wave packet coecients). Our overlay of discretizations
will enable to switch from wave packet coé cients to data in the frequency domain B the input to
(1.1) B € ciently through standard FFTs. We assume in this section that the generating function
S(y,!) B more specibcally, its partial derivatives;f%(y,% and the functions T, «(y) and T, (x)
b are known. The issue of how they can be computed for parametrices of evolution equations lwil
be the subject of Section 4. As a special case, we will revisit discretization of evolution time o a
sequence of short time steps (Othin-slabO propagation) in Section 3.5.

3.1. Discrete almost symmetric wave packets and approximate FIO action. We begin
with writing the convolutions ( - "} - ) §)(T: x(y)) in (2.5) in the Fourier domain:

Ry k

(3.1) S =(F) ), ay.AG 2 Ny dmemnamys().

r=1 "L
In what follows, we will absorb the amplitudes a(y, % in the functions , |(r|2 (y). The structure of
(3.1) is reminiscent of the (adjoint) discrete wave packet transform:

(3.2) u(x)=  ug)s(x) = e 6(1)8& k()8 k(1)
$ "ok
since:
' ' R1 k '
33) (Fu)y)=  usTs(y)= () M e6(1)8 4 (1)ay I (1),
$ 1k r=1 KA T

and we will indeed use the same discretization, which we recall here brieBy for convenien(see [21]
for details). We assume that the datau(x;) are given in discrete form at sampling pointsx; = N*' i,

i $ RY, %% * i, < %. Following the discretization of the OinnerO forward transform:

. 1 1 LK 1k gtk 1k
(3.4) Bk = (&TW | o(', )& k(1)) exp[2*i X" T, us,
thbe; (_:iiscaretization of the OinnerO adjoint transformud! )& , (! )#, x (1) = ) $1=1 =k Us s (1) is
obtained as:
= 2

' : /
35) 60" )& k(B = (TP cexp g2eing K @B (1)),
i

k

The points l,' are chosen on a (regular) rotated grid. Specibcally, we let
A é ) . W
N N N N
] vk — d 0, K % < Kk .9 K % < k
(3.6) 1$Z /o2 l1 > ,/o2 lq 5

The points in this set are denoted by' K. The parameters (N,,N,) are even natural numbers
with N, > L, and N, > L, while 3, = N, /L, and 3, = N, /L, are the oversampling factors,
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determining the accuracy of approximation (3.4) to the inverse Fourier transform. We choose the
11" (covering the box B, x) as

B . C
3.7 K= g L DStk + e

where the matrix Sy is debPned as
R #
Ny O154a1 1

k Ogr 131 Nylaz

The dot product in the phase of the exponential in (3.5) then becomes

G

B ..
(38)  "x*,1k#= DySLY F+ e

j1|1+ jolo + ...+ jalg
J L IR L)

! ja'y
D, 'Xj = ==K +
Lk Nk Nk

k

Thus, the specibc choice of pointd|* allows for a fast evaluation of uf!, *)& « (!} *) from & , x

(cf. (3.5)) for | $ ' X:

(3.9) a1 )& (1Y exp@*ijal /L) = (LYENGINGT Y e expRa2EiTX LA
j
where!; = | and x; = S 'j with j $ ' %, while (N;(N.)? 1) = det S¢. The number NX of discrete
frequency points! f *in (3.9) is of order:
NK 33y 125 Nk 3 (30) 8 TN 260) T
One can use am-dimensional FFT for the fast evaluation of K'I')(!l! ’k) and & ,k(!,’ 'k) in (3.9) when

the values foru,  are given at x]-! *i.e., from the forward wave packet transform of the data. The
discrete outer transform:

(3.10) u(xi) , & 10601 (1B (1)

Lk rk
completes the discretization of (3.2). It is evaluated by USFFT [4, 24, 25] from irregularly spaced
points !l! * to regularly spacedx;.

We proceed with the discretization of (3.3). First, note that the (arguments of) the gererating
function S(y,!) bear physical units, and consequently the same is the case for the functionsf',,z ),
ﬁfr’&(!) and x = T, x(y). If the data u(x;) are sampled at sampling intervals( ¥ in direction n, then
xPs = N( Xx;, and !BWvs = 1, /(N( X). We absorb the normalization factors in the functions
' .(r,z ), -ﬁf",z(!) and T, x and continue, with slight abuse of notation, to use the same symbols for
them. Now let y; = T/ (x;). Then,

T (yi), i#= X N
and we obtain the discretization of (3.3):

' Rik .
@1 Fu), RO AR (RO IO (O LT

Tk r=1 1" 1k

We note that in contrast to (3.10), the OouterO transform! f k1 x; (USFFT) has to be evaluated

per box (%k), since the functionsT, x (y), , .(r,z (y) are di! erent for each box: (3.11) is organized as

.12 Fu)(y) . (Fur)(yi),

1k
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where u,  denotes the data component of the box %Kk),

(3.13) U k(xi) = Us') s (Xi).
$ ik =k, 1=

For use in estimates below, let us be more specibc on the general procedure for tiling tvit
boxesB, x outlined in Section 1, yielding discrete almost symmetric wave packets (see [21] for more
details): First, the radial direction is partitioned according to |!'| = co2%, k Tl agaKmgz , Where
the parameter ¢, debnes the radius of the coarsest scale = 0 and kmnax = log, ZI\‘TO . Then,

for d) 3, the set of rotated boxes (1.3) is constructed for eaclk > 0 with the cubed sphere, thed
dimensignal cube gonsisting of @ (d%1)-dimensional sides. On each side, a grid is constructed, with

Nek = ¢ 2! /2 points in one direction. The number of orientations %at scalek is then given
k(d! 1) k(d! 1)

by %axk = 2d(Ncx)® 1, ( 2de)® 127z ' 27z , the parameter ¢; debning the number
of orientations for k = 1, and the total number of boxes is:
(3.14) N ' N7

3.2. Deformation, compression and oversampling. The action of F on (3.13) is twofold:

Modibcation of its spatial support, resulting from application of the frequency windowsﬁ!(") , and de-
formation under the transformation y ! T, x (y). Both need to be accounted for in the discretization
by introduction of additional oversampling factors.

Oversampling and calculation domain. Let E(x) = T!"kl(x) denote the co-moving frame of
reference offF u, , and consider the data component (3.13) with support:
Uk =supp u x(x)/ %} }&d
o v 2'2
Under the action of F:
. ' 1 1&d .
U k =supp (Fur k)(E(X)) / KarTRoN 4) 1, Uk O Uk,
since the functions “(E(x)) = ( F) s)(E(x)) constituting ( Fu, x)(E(x)) have enlarged spatial sup-
port w.r.t. ) g(x) in the !"™ directions. Consequently, the sampling density in! has to be increased
by a factor 4 ) 1 w.r.t. the original discretization !l! . To account for this, we construct the
above discretization for zero-padded data, i.e. discretization is performed for data“P (x;) obtained
from the original data u(x;) by augmenting in each direction with 1(4 % 1)N 2 zeros. We denote
the resulting box data components (3.13) byu!zf’k. Note that the frequency support of Fg(E(x))
and hence of Fu; x)(E(x)) remains in 1, « (1), as is clear from (3.11) and the fact that# ,(!) and
# « (1) are supported on1, x(!).
The amount of spreading of “(E(x)) in the ! ™ directions can be related to the parameterscy, ¢; of

the wave packet transform and to ;f—sz by geometrically imposing connectivity of wave packets at

of ) $(x) and “§(E(x)), respectively, for d = 2. Then, I, max(l'i;",zt,jﬁ‘?fvs2 tan(C*/ Y%axk )), Where C
is a constant depending on the overlap of two neighboring boxes.

In general, only a fraction of the wave-packets) -, + : k' = k,% = %will yield numerically
signibcant contributions to u, x and (Fu, k), resulting in e! ective compression in the wave packet
domain [12, 51]. Together with the decay properties (1.6), we obtain an leective reduction of the
calculation domain on which (Fu, ) actually needs to be evaluated. Indeed, a wave packet ¢(x)
has, to precision2, support in a box by, 1 k:

(3.15) ) )
supp') s = inf D)) 20DBk, bkl = &)Y e 2k 292
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and the support of € ectively non-zerou, x is therefore:

H
(3.16) Vik= Dbk, Vik 0 U .

]
Consequently, for 7 1 x (x) and (Fu, x)(x), we have:

supp' 51k O Er”" B, kll=f& @)Y R 2% R 2K
Vik= Bk, Vik 0Ok, VigOVig.
j
Note that the volum% of e ectivg supports of ) s(x) and 1 k(E(x)) decay with increasing fre-

quency scalek as: O 2' k2! k¥t Oversampling and compression in the evaluation of (3.11) are
schematically depicted in Fig. 5.

Deformation and spatial grid resolution. Application of the coordinate transform y %
X=Ti(y), ik @ W, = T!!,kl (Vi k) maps the co-moving reference fram&(x) onto y and results
in a translation and deformation in space of ¥, k (y) and V. This yields irregularly spaced samples
yi in W, x from regularly spaced samples; in V, x (and vice versa, irregularly spaced sampleg,
in V¥, x from regularly spaced samplesy, in W, x) and may induce a local change in frequency in
the output domain y, since the mapx % T!!’kl(x) can locally contract or expand. Indeed, for two
points x and y connected byy== T, (), it follows from (2.8) that:

$x§ _ $2S(v, 9

(3.17) $y5 SISy

The €' cient evaluation of the sum over boxes) |k requires (Fuy k)(y) to be evaluated on (for
convenience of visualization, regularly spaced) pointg, on a grid that is common for each box.
The simplest choice is given by debnition of an (arbitrary) common reference poiny, ¢ and global
sampling density ( y, chosen to be at least as dense as the densest local samplm!gkl(xj ) (y=

Cmin Yy =infj 0 [T) 200G + () %T, J(x))]. Alternatively, we can locally adapt the grid resolution

through a hierarchical set of resolution levels{( |y}, reRecting (3.17) and constructed, for instance,
in a multiresolution manner as {( 1y =2'( min Y}, | =0,1,444in order to keep the visualization of
(Fu)(yn) €" cient.

Once the grid is bxed, the coordinate transform is evaluated by USFFT from discret frequen-
cies!f K1, k(1) to irregularly spaced discrete samples, = Ty x(yn) in V .
We note that the rate of compression is data-dependent, and so is the resulting reductiomical-
culation domain V, i, i.e. the € ective number of points x, = T, x(yn) that actually need to be
evaluated per box @pk). Also, the output sampling density ( y is controlled by the derivatives of
S and hence problem-dependent. In our analyses of computational complexity given below, the
resulting alterations of number of operations will be absorbed in the oversampling faadr 4.

3.3. OBoxO algorithm. Here we analyze the sequence pf operations ’that need to be per-
formed per box in the evaluation of (3.11). We start from the Oinner adjointO discrete @nsform
(3.9), 67°(!, *)& « (1| *), obtained for zero-padded datau?(x;), and perform the following Row of
operations:

1. evaluate tensor product functions, ') (yn) and &) (1] %), r =1,4448R, , 1| * $ 1,
2. for each tensor product term:
() window % 57} (1} %)a(1 | *)& (1] )81 k(1))
(b) adjoint USFFT from !,! g1, k(M) to xp =T k(yn) %

(c) multiply with amplitudes .(r,z (Yn)

) 0 " 1
ik )ik (Xn)
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A\

Tk Tr ok

Fig. 5. lllustration of oversampling and OcompressionO of calculation domain for one  single wave packet (top;
left: zero order approximation, right: approximations to 0(2% ¥ 2)) and for three wave packets with common central
position and frequency scale and di ! erent orientations (bottom; approximation to O (2% ¥/ 2),

3. stack contributions)of t)ensor—prodL@t terms 1
%W (Fur)n). ;0 e )k (Xn)
The operations count per box @k), including explicitly the constants involved, yields:
- evaluation of R, x PSWFs® at (4N )? spatial points: Q(cR « (4N)“)
- evaluation of R, x PSWFs at N« frgquency pointls: O cR ,chd%l
- 4R, ¢ N~ point muItipIications:BO R!,k(4N)d+T1
- Ry x (4N)Y point addition: O R, y(4N)¢
- Ry x USFFTs from || * $ 1, , to (4N)? spatial points: O(dR, xCu (344N )9 log(N)), where
3,y is the oversampling factor of the USFFT.
Overall, the number of operations to be performed per box is hence:

B C
(3.18) ' O dN%log(N) .

3Evaluation of a PSWF at one pointis  O(c) [62]
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log, (1)

log,(N)
6 7 8 9 ‘10

Fig. 6 . Computation time as a function of sample size N (red dots and broken line) and complexity estimate
(3.19) (black solid) for parametrix of half-wave equation (cf. Section 5.1) in d = 2 dimensions in homogeneous
medium (v = 2km/s ). Evolution timeis T =5s).

We continue with describing a modibcation of the above algorithm in which we seek taeduce
the number of USFFTs by substituting them with standard FFTs. Standard FFT has same com-
putational complexity as USFFT but signibcantly smaller constants, hence requires less compu-
tation time. Here, we start from the Oinner adjointO discrete transform (3.9),u!; *)& « (1| ),
for original data u(x;). We Prst obtain the box contribution u, x on the regularly spaced points
X; by UGFFT and thgn zero-pad, use standard FFTs to obtain the tensor-product contributions
, ,(r,Z (yi) - frﬁ -)ij 1k (xi), and evaluate the change of coordinates tox, = T x(yn) by one Pnal
USFFT:

compute adjoint USFFT of 6(!; *)& « (!| *)# « (1| *) from 1] $ 1, (1) to x; % uy x (Xi)
zero-pad%l  uy’} (xi)

compute FFT of uf} (x;), inducing regularly spaced frequencies” % 6(H& « (HB « (F)
compute tensor product functions, fr,Z (yi) and Dfri(") r=1,444R x, "$ 1 (1)

for each tensor product term:

() window % S} (Fa(F)& k(D k() 1

(b) inverse FFT from F$ 1, to x; %4 - f',ﬂ itk (xi)

(c) multiply with amplitudes , .(rli (i)

6. stack contributions) of }ensor-prodgct terms 4
WoFud) . ) =) e ()
7. coordinate transform: FFT x; ! Fand adjoint USFFT F$ 1, k(1) ! Xn = Ty k(Yn)
This requires only one USFFT from irregularly spaced! ,! k31, x to N9 regularly spaced pointsx; ,
and one USFFT from regularly spaced™$ 1, x to (4N)Y irregularly spaced pointsx,,. In addition,
R, k +2 FFTs between "'$ 1, x and (4N )¢ spatial points x; have to be evaluated. The last item in
the operations count for the previous algorithm is now replaced by:
- one USFFT without and one with additional oversampling 4: O(d(1+ 4%)c, (3,N)%log(N))
- Rk +2 FFTs: O(d(R: x +2) ¢ (4N)%log(N))
The computational complexity remains the same as for the previous algorithm and is given by3.18).

o wNPE

Finally, the accumulative complexity for the evaluation of all N, xy boxes (cf. (3.14)) is:
1

3d! 1

0
(3.19) * 0 dN*7" log(N)

Actual computation time as a function of problem sizeN for d=2 (D = 1) is plotted in Fig. 6 and
compared to the complexity estimate (3.19).
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3.4. Further approximations: OPacketO algorithms. We proceed with analyzing the dis-
cretization of approximations (2.7) and (2.8). In approximation (2.7), the functions - ¢(!) are in
general di erent for each data wave packet) s(x). Therefore, the computation of =\ k (E(xi)) =
(-s-)j 1 .x)(E(xi)) must be performed for each packet individually. The change of coordinated,
can still be evaluated for all packets of a box $k) at once, sinceT, i is independent of indexj . We
start from the set of data wave packet coé cients (3.4) for zero-padded datau?P(x;) and obtain the
following Ohybrid packet-boxO algorithm:

for each box @k):
b for each+ : k' = k,% = % )
1. FFT from us to || $ 1, (1) % 65 (!] )& (1] ™)
2. window % B (1/ F)eg (1] )& k(1] )y k(1))
3. multiply with amplitude %4 21} *) = O5(1 )tig (1} *)& k(1] )y 1 (1] )
Bsum’ ¢ Pe (1)
b adjoint USFFT fI’OI‘Sl !,! kg Lik()to xn = Ty k(yn)

W (Fu)yn), ~ jaly " A-s-)s)(xn)
stack contributions of boxes @k), yielding the bnal approximation (2.7) for (Fu)(yn).

In contrast, for approximation (2.8), the approximate change of coordinates also has to bevaluated
packet per packet. We obtain a pure OpacketO algorithm, with operations per indivigal packet:

1. FFTfrom ug to || * $ 1 k(1) % 6g(!; )& « (1] )

2. window % 95(1| *)as (1] )& k(1) B k(1] F)

3. multiply with amplitude % %51, ) 5) s (!} *)bs (1, *)& k(1] )81 1 (1)

4. adjoint USFFT from || * $ 1, (1) to  DTs(yn %y, )+ Ms &yn %y, “)?2 % (F) s)(¥n)
Summing the contributions from all data wave packets yields the action F£u) under approximation
(2.8). The operations count for evaluating approximations (2.7) and (2.8) for one single ave packet
is: 0 1

- oneN- point FFT: O d(4N)d+T1 log(N) 0

- four N- point multiplications and one multiplication with a constant: O (4N)d+71
- ong adjoint USFFT frgm N- frequency points to (4N irregularly spaced points in space:
O dc,(3y4N)%1og(N)
yielding:

B C
(3.20) ' O dN%log(N) .

The total number of wave packet coé cients is roughly O(NY), yet the number of data wave
packets with practically non-zero coé cients strongly depends on the data and typically amounts
to only a small fraction of this number. Let us nonetheless write out the complexity underthe
assumption that F needs to be evaluated for all frame elements, bearing in mind that this situation
corresponds to limit cases such as a Dirac impulse or the absence of coherent structures (viandom
noise). For approximation (2.8), this gives:

B C
(3.21) " O dN?log(N) ,

and for the hybrid packet-box approximation (2.7):

O 3d+1 1
(3.22) * 0 dN*7log(N)

which is above approximation (2.5), but below approximation (2.7) since the coordnate transform
USFFT can be performed per box ¢k).
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040 | &b 4 (# )

usf}t
In
u#P(xi) u(xi) ! uP(xp)
fl fl
n I
6489 \ (# *y 649 x &by x ()
SEF# (1) 14 K %ﬂ# r)
T 0 ) b4
window window
640, a9, &) (4 ) 640 &9« a8} (A
usfft "1 <1 X, fft

T o) [ o)

r r
a(y.!) a(y,!)
. I

Pl ; . tod r r #
ayn.& , ;AN SNk (xe)  ayi& . UWRO) STk ()

I
ffty ! ™= u‘sfft "1 Xp
[/

L : #
ayn. & , ;%0 0n) S0 ik (Xn)

Table 3.1
OBoxO algorithm (left), with FFTs replacing USFFTs (right), for one box (#,k). Double arrows indicate opera-
tions performed for each individual tensor-product term, r =1,444R, .

3.5. Example: Trotter product. Here, we analyze approximations (2.5), (2.7) and (2.8) for
evolution equations for the specibc case of discretization of evolution time into a sequence shall
time steps. Consider the evolution equation

(3.23) B +iP(t,x,Dx)Ju=0, Uuf=t, = Uo,
on the interval t $ [to, T], where P is a pseudodi ersntial operator with symbol in Si,, in R? (in
the case of the half wave equationP = P(x,!) =  c(x)?||!||2). The solution operator, F(t,to)

say, can be written in the form of a Trotter product, resulting in a computational scheme driven
by marching-on-int. If t) ty >ty 1 > da& to, we let the operator Wy (t,tg) be debned as

Wy (t,to) = P(t,tn)) Ly P(ti,ti 1), assuming that T ) ty+ ) t) ty. We have! ; = t; %t 1,
I;* 1 =0O(N'Y)asN ! ( . We consider a single component operato(t;; 1 + ! i,t;, 1), and
sett"=tj ; and! =1 ;. It can be approximated by the Oshort-timeO propagator, given by

!
(3.24) Bt + !, tHut, )y)=@2*)' " expli(P(t,y,!)! %", y#lat,!)d!,

whereP(t",y,!) denotes the symbol of the operatorP in (3.23). This is a Fourier integral operator
of order 0 in the class considered in this paper, with the simple substitution

(3.25) a(y,!)=1, S(y,!)= P(t,y,1)! %", y#
The associated canonical transformation is given by
#0 (USSP, +y, D) (LSS P(E Y, + )
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ur! U
. it
1 I

o 89, (1) o 49 4 (")

Windovéi amp windowi amp
gl 1l
a(y, ", #)6, a0, %\ 8% (") a(y, *, #)6, a0, 4%\ a%: (")

sk usfft "/ L DTy &yn" ¥/ )+ My &yn " ¥ ™)?
‘I K P |

usfft # ! X, slplogor e

! "k r"" ! "k " ‘ "k "k #
jaly; " #) (% #& ) (xn) jaly; " #) (% #&) DT, alyn " y;t)+ My alyn "y )?
Table 3.2

OHybrid box-packetO algorithm (left) and OpacketO algorithm (right) for o ne box (#,k). Double arrows indicate
operations performed for each individual wave packet.

with the Hamilton system,

dx $P d! $P
- = — | — = 0p—— |
it follows that
" " # " o #
. O ——(t v.I) 1 1 I+ —(t v 1
# . y/odt(tlyr) LA - y"+ dt(t,y,)

which describes straight rays in the interval ',t" + ! ]. The canonical transformation # reRects a
numerical integration scheme for the Hamilton system, viz., the Euler method.

The brst-order term in the expansion of the phase yieldsT, x = $:P(t",y,%. Under the map
T, k, y follows from solving x + $P(t",y,%! =y which involves backtracking a straight ray that

related to solving the Hamilton-Jacobi system for paraxial rays (in ray centered coordinaés) using
EulerOs method and discretization step ; this is discussed in more detail in Section 4.

In the case of depth extrapolation,t is replaced by the depthz and x is replaced by the transverse
coordinates and time, ,t) $ R". The principal symbol of P becomes

(3.27) P(z,(x,t),(!,5)) = %52 c(z,x)' 2%5' 2|12,
and
(3.28) S((y,1),(1,5) = P(z,(y,t),(!,5))! %", y#%5t.

N
We introduce (!,,5 ) using projective coordinates &' !,,1)/ 5 ?|! .] 2+1= %5 30; %deter-

mines5' !, and the propagation direction at depth z°, c(z", y)(5' !\, c(Z,y)' 2%5 2|1, |?). The
expansion ofS yields the (principal) symbol of the paraxial wave equation, directionally developed
relative to %

s 5 1, i

(329) 7(2"1(y!t)1%: ! - y
3 oz'y) 2%s 2 0

oz’ y) ?
o(z',y)' 2%5 4| |2

(Z,(y,1),% = %l
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(in the classical paraxial expansion,!, = 0), and
" VY2048 211, 1211 o4 B! 2] |
(330) 5 S0z (y,0,0p= S NS ANTIL%S T AL
o(Z,y)' 2%5 2|\ 2
$ c Z" ! 25' 21,12
s @ 0.0,9= w22V 3l
oz, y) 2 %5 2, |2
$P c(z',y) 25 11,
5 grag (10,9 = g 2N 3
oz, y) 2 %5 2
Hence, with (!",!™) = R} 1(!,5) and ! " = R} (!, 5) 4, and with:
$e oy PG R = REYSe ) PG G ) R, /
T
$-2P (L ()R = RED RN (S0))2P) LR
the expression for the phase expansion of the operator is:
* * $2P " ""+
_ "!!,5’ 1!!#%5c(z ,y)' 2 N
o(Z',y) 2 %5 2| 2
= 6 = 28
J (ea M Tk Y L HAT R 7 c(z"y)’z),'l_ r?
E O il v R -
2! SR o) ) %c(zy>)|||
[c(z",y)! 2] )!! 2|..! |2]3/2 [C(Z y), 2 )Il 2 |2]3/2
Indeed, for!, =0 (thatis, !" = 5and!"” = 1), this expression reduces to the standard paraxial

(15*) approximation %5c(z",y)" * + 1')' c(z y); then T, x debnes the so-called comovmg frame of
reference. We refer to the corresponding Oshort-timeO propagator as the Othin-slabO propagator

The operator Wy (z, z) is reminiscent of the Trotter product representation of a Fourier integral
operator °; it converges in Sobolev operator norm td- (t,to) as! ¥ 2, with s depending on the Helder
regularity , of P w.rt. z: For £ * ,, s =1, and balance of accuraciesO(! ¥?) and O(2' ¥ 2)
requires! ' 2' % [16, 43]. Multi-composition of Fourier integral operators to approximate Cauchy
IVPs were initially proposed by Kumano-go and Taniguchi; their approximation tends to the exact
solution up to a regularizing operator. The underlying method is based on the computationand
estimation of phase functions and amplitudes of the Fourier integral operators appearingni these
multi-products, and is formalized in the Kumano-go-Taniguchi theorem.

We can now construct a process similar to beam migration. We decompose the data into its
wave packet components. Each wave packet initializes a solution to the (half-)way equation, which,
through the Trotter product representation, reveals a phase-space localizegharaxial approximation.
The standard paraxial approximation is commonly exploited in beam migration, for example, ex-
pressed in terms of geodesic coordinates. In Fig. 7 (left), we show curvilinear coordinatesugicular
to wave packets, which enable to debne tubes to which the propagation is conbrfe(see e.g. [11],
Fig. 1 and 2).

4Thatis, RY ! is R{ ! without the brst row.

5 Geometrically. Wy (z,2z0) has some similarities with the wavefront construction method for computing the
propagation of singularities.

6Here, we use elliptic coordinates x = acosh(u)cos((), z = asinh(p)sin((). In d = 3 dimensions, the
corresponding curvilinear coordinates are the oblate spheroidal coordinates, x = acosh(u)cos(()cos()), y =
acosh(u) cos(()sin() ), z = asinh(y)sin((), with tubes in the z direction.
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Fig. 7. A ObeamO of wave packets in homogeneous background under approximation (2.5) for the half-wave
equation, in Cartesian coordinates (x,z) (left; z horizontal) and elliptic coordinates x = acosh(u)cos((), z =
asinh(p) sin(() (right; p horizontal); elliptic coordinate system (black grids). The h  orizontal elliptic coordinate axis
on the right has been transformed according to g = sinh( p) in order to achieve regular horizontal spacing. Propagation
is conbned to a tube in curvilinear coordinates.

4. Parametrix.  In order to perform actual computations, the values of 3% (y, % and (,Z‘f% A%
need to be known. The generating functionS(y, !) is the solution to the Hamilton-Jacobi equation,
which is in general not accessible in global closed form expression. Yet, the proposed algorithms
do not require knowledge ofS(y,!) itself, but only of its Prst and second order derivatives at a
Pnite number of discrete points §,%. Here, we detail how these derivatives can be obtained nu-
merically for parametrices of evolution equations, which represent examples of the FIOs consid=dt
in the present work. Evolution equations play an important role in imaging and inverse scattering
applications and generate extended imaging [22, 23]. As a special case, this includes Othin-slabO
propagation as described in Section 3.5, in which straight rays and closed form expressions app+o
imate the brst and second order terms of the phase expansion, respectively, for small time steps.
Here, we establish the connection with paraxial ray theory for (arbitrarily) large time steps and show
that the derivatives of S can be obtained numerically from paraxial solutions to the Hamilton-Jacobi
system in Fermi coordinates as specibc combinations of blocks of propagator matrices. We note that
el ectively, this turns the numerical procedures described in the previous section to approximate
one-step solvers for Cauchy initial value problems for evolution equations for (potentidy very) large
time steps.

4.1. First-order derivatives of generating function S. Coordinate transform. Let
H(y,") be the Hamiltonian governing the Hamiltonian Row associated with an evolution equation,
and let evolution time be fromt = to to t = T, where potentially T 5 ty. For convenience, we
parametrize the initial conditions in this section by (yo,"0) = (y(t = to)," (t = tg)); consistency with
the notation in previous sections is obtained by setting &,!) = (yo,"0). Our choice of notation is
summarized in the diagram Fig. 8. We will freely switch between these notations to link wih
expressions in previous sections. Let us denote the solution for bxed initial conditionsy " (t)) =
Y(Yo,"0,1)," (Yo, "0,1)). We have (cf. (1.2) and (2.2)):

x=  yo= i—,s(y(T),%:T!,k(y(T»
(4.1) :

“(T)= i‘;’(y(T),%.

The bi-characteristic (y(t), " (t)), commonly referred to as a ray, is the solution to the characteristic
system:

d " y # P (]/d_' (y'*) Q
(4.2) — = "

" H (y,*)
dt %Y
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(y(t)," (1)

X=Yo= Yy(to)

Fig. 8 . lllustration of evolution under the system (4.2).

X2

X1 Y1

Fig. 9. Schematic illustration of discrete evaluation of the coordinate trans  form T, y: ym (T) = Tl#’kl(xm) from
regularly spaced xm (left); interpolation of xm = T k (ym (T)) at regularly spaced yn gives xn = Ti k (yn (T)) (right).

Integration of the system (4.2) yields the map:
(4.3) y(T)= T/ (%),

and givesyj! K = y(T) = T!!’kl(xj 'k) for approximation (2.8). For numerical evaluation of approxi-
mations (2.5) and (2.7), the inverse relationx, = T, x (Yn(T)) needs to be evaluated for regularly
spaced pointsy,. It can be obtained by brst solving (4.2) fromty to T with initial conditions
(Xm,"0), where x, is a discrete set of points onV, , yielding the irregularly spaced set of points
ym(T) = Tfykl(xm) on the bi-characteristic. Then, x, = T, x(yn(T)) is evaluated by back-tracking
rays from (yn,"n) subject to !, = ! and evolution from time tg to T. Alternatively, x, can be
obtained by interpolation of the map (Xm,!)! (Ym,"m) on (projections of) the Lagrangian of the
operator (e.g. [34]). In the absence of caustics, this is equivalent to (standard) interplation of
Ym ! Xy at regularly spaced pointsy, (cf. Fig. 9).

4.2. Second-order derivatives of generating function S. The second-order derivatives of
the generating function S(y(T), % can be obtained from the derivatives:
$(y,")
4.4 ————(Yo,"0, T
(4.4) Sty g 0o 0 T)

evaluated in Fermi coordinates (cf. e.g. [33]) for standard plane wave and point source iiial con-

ditions. Fermi coordinates have similar properties as ray-centered coordinates, commonly engled
in the geophysical literature (see e.g. in [56]), and are debned as follows. L&f,daéafy be a set
of orthonormal vectors in the plane tangent to the wave front att = to, and let f; = f%’(yo, "0,10)-

The subsetf,, | =2,a4ad can be chosen with arbitrary orientation in the tangent plane. Denote
by fi(t) the coordinate systemf; transported parallel along the ray. The Fermi coordinatesy; are
coordinates in this system, wherey? = t is time along ray, and y?, a4 ayf essentially describe the
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Fig. 10 . Parametrix of half-wave equation: A wave packet in
wave packet (top left) and resulting packet after propagation for
right); corresponding cross-sections (bottom line; normal to / in plan

d = 3 dimensions. Iso-amplitude plot of initial
" 5 wave lengths in homogeneous background (top
e with axis of symmetry, respectively).

distance from the ray (y(t)," (t)). The transformation matrices with global Cartesian coordinates
read:

$y' i $y;
(4.5) Hy (1) = $§%(t, =M, Wi®= grt0,  HE=lag

Wherefji is the i-th component of f; with corresponding cotangent vectors"! . The componentsf
in the tangent plane satisfy:

*

+
dy () $H(x,")
4. = 0/ nn Il# f 0/ n
(4.6) ai ol/ ", I, 07$X ,
and f ; is known from the solution of (4.2). We bxf,, | =2,44ad to coincide with the unit vectors

lying on the ! axes (cf. Fig. 1, right).
In Cartesian coordinates, the derivatives (4.4) are the solution to the linear system:

# %H (v,")

W H (v.,*)

$(y! ") " 05 *0) 0p*2 z $(y! ") n
47 . /7., n N ] 1t 0, N * 0, ’ * ain 1 ’t .
“.7) dt  $((yo."0) ¥o."0. 1) %/&';'/q(,‘z" ) %/3;/1/5/{; ) $((yo."0) ¥o."0.1)
Transformation to Fermi coordinates and reduction to the subsystemf,, | =2,a44d, in the tangent
plane yields (cf. e.g. [56]):
" # " #
d $(yf|1"f|) Af Bf - $(yf|’"f|)
4.8 — —=1 17 (0,0,t) = : ! a————--(0,0,t).
( ) dt $(Yf|,0,"f|,0)( ) Cf| Dfl $(yf|,01 f|,0)( )
where
" #
$2H(y,") 1, $Hy.")
4.9 A = Wy, H % "
( ) fi ,MN Mn FImN $"n$ym 0 g n $Ym
$2H 1"
(4.10) Bf, vn = Mun Bm %
n m
$2H(y,")
4,11 C =HwHmw —i—"
( ) fi ,MN nM mN ..$Yn $ym 4
$2H(y,") ., SH(y,") $H(y.")
4,12 D =Hwm %
( ) fi ,MN nM FtNm $yn $"m 0 $yn $Ym
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Let ) + denote the fundamental matrix of (4.8):

#
_ W1 W;
(4.13) )T = Ws W,
$(yf|'"f|) $(yf|!"f|)

T T (Ty= ) 1 0 (1),

SO0 TG0 o)
that is, ) T is the solution to (4.8) with standard (plane wave + point source) initial condition s:

" #
$yr, . ") (to) = lar1sar1 Ograsar 2
$((yr, 0", ,0) Odt 13t 1 lar1sar 1
Then, we have:
2

(4.14) TS OT). % = 9w W,

Packet algorithm.  We Pnally give the explicit expressions for the matricedDTg and Mg in
the approximate coordinate transform:

DTs(yn %Y, ™) + Ms &(yn %y, “)?
in approximation (2.8). For convenience of notation, denote:
Hi= H(t), M =(H() Y

and let G', @& be the respective transformation matrices between global Cartesian coordinates and
the local Cartesian coordinate systemg; (t) = {g:(t),f2(t),...,fq(t)}, where g, (t) is the unit vector
normal to the wavefront at its intersection with ray ( y(t), " (t)). The matrix DTg consists of dilation
terms in directions g;(T), shear terms in directions g (T), and rotation from g (T) to gi(to), or
equivalently, dilations in f;(T) and transformation from f;(T) to f;(tp). Let be:

% 1 Oisar 1 1
(4.15) Tsr = Ogt 151 Wi
Then, DTg is given by:
(4.16) DTs = HOHT Tg 7).

The matrix Mg consists of quadratic terms in thef; (T ) directions, and rotation from g;(T) to g;(to).
With:

% 0 o &
4.17 Ps1 = sdlt
( ) 5T O 151 WaW; !
we obtain:
1 k 0 1 K 1K 1
(4.18) Ms &(yn %Y “)* = @ (yn %Y ") (G" Ps1)(yn %Y, “)au(T)
5. Applications and numerical examples. In this section, we illustrate and compare the

proposed approximations in numerical examples. The brst example consists in wave evolution i
isotropic homogeneous medium and in isotropic heterogeneous medium th= 2 dimensions. It
will serve us as a basis for analyzing and comparing the Herent approximations proposed in the
present work. The second example demonstrates evolution equation based imaging and involves an
anisotropic, homogeneous Hamiltonian. In general, the formulation of imaging operators in terms of
solution operators of evolution equations is obtained through extension to an extended image donrai
[22, 23], with at least d = 3 dimensions. For the purpose of illustration, we restrict ourselves here
to d = 2 dimensions.
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- —2 —2.6
25 : 1.9 : 25
1.8 2.4
35 : 1.7 : 2.3
1.6 2.2
45 y 15 2.1
110 0 10
14 —2

Fig. 11 . Lens (5.4): low velocity lens (left) and high velocity lens (right) used in numerical exam  ples in Section
5.1.

5.1. Wave propagation b isotropic, heterogeneous case. Consider the initial value prob-
lem:

(5.1) ($: %iP)u=0, u(x,to) = f (x),
for the half-wave equation, i.e.:

2
(5.2) P(x,1)=cx)?I'I?,

where ¢(x) is the medium velocity. We compare the accuracy of the OboxO algorithm approxi-
mation (2.5), the Ohybrid packet-boxO algorithm approximation (2.7), and the Opaek algorithmO
approximation (2.8) to zero order approximation for (5.1) with band-limited Dirac ini tial conditions
u(x,t = 0) and large evolution time T. We debne the band-limited Dirac source in the! domain
as:

(5.3) o(!,6) = B ke (1),
K rn 1%

i.e., & debnes a wedge with half-opening anglé and smooth cut-d . We set% = (0, 1) (vertical
downwards), ( = 21 degrees, and let the initial data domain extend overx $ [%5km, 5km] &
[¥65km, 5km]. The initial data consist of N & N = 256 & 256 samples, resulting in maximum scale
kmax = 4. The band-limited Dirac is inserted in the center of the initial data domain.

We consider two background velocities: homogeneous with(x) = ¢, and heterogeneous with a low
velocity lens

(5.4) c(x) = co+ pexp(%ix %xol*/ 3%),

wherecy = 2km/s, p = %0.3km/s, 3 =5km and xo = (0, 35)km. The low velocity lens is depicted

in Fig. 11 (left). The output spatial sampling density ( y is set equal to the initial sampling
density ( x. We consider evolution time T = 30s for the homogeneous case, and = 20s for
the heterogeneous case. With this parameter setup, the boundaries of the calculation domainsap
roughly N; &N, = 1900& 300 and 110@. 300 samples for the homogeneous and for the heterogeneous
case, respectively.

Fig. 12 (homogeneous case) and Fig. 13D14 (heterogeneous case) compare therdnt approx-
imations of (Fu)(yn): zero-order approximation (top row); approximations (2.5), (2.7) and (2.8)
(second row for homogeneous case, second to fourth row for heterogeneous case). The bottom row
compares the amplitudes along the wavefront. The left columns correspond to initial (53) with
k" = 3 only, the columns on the right with all frequency scalesk” = 1 %4. In Fig. 14 we include
physical amplitudes a(y, %, while in Fig. 13, we seta(y,% = 1 for better visual comparison of the

di! erent approximations. Note that in the homogeneous case, approximations (2.5), (2.7) and (2.8)

are equivalent since(;fﬁ?‘2 (v, % = T is independent ofy, T, x describes, for bxed %k), parallel
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Fig. 12. Wave propagation in isotropic, homogeneous medium for initial conditions (5.3) with k" = 2 (left
column) and k" =1 ! 4 (right column): zero order approximation (top row), approximations (2.5), (2.7) and (2.8)

(center row), and corresponding amplitudes along wave front (bottom ro  w, solid black line corresponds to zero order
approximation). The white dot-dashed lines indicate rays of seven wave-pa ckets at scale k = 3. Note that the aspect
ration is not equal to one.

straight rays of path length ¢oT, DTg = l4549 and Mg = 04¢ 4. Consequently, in this case, the zero
order approximation is equal to rigid motion.

We start with investigating the homogeneous (Ostraight raysO) case (cf. Fig. 12). As observed
in [20], under the zero order approximation, the wave front breaks apart, with constiuting wave
packets at given scale ending up disconnected (top row): The wave packets do not receive any
deformation and are merely de-placed data wave packets, resulting in large gaps in the wavront
due to the geometry of propagation whencyT is large w.r.t. initial data domain x. As a further
consequence, only the center points of the wave packets sit exactly on the wave frontWe note
that the error of the zero order approximation does not decrease with increasing scale. Indeed,
including all scalesk” = 2 %4 does not bll up the gaps. In contrast, under the approximations
to order O(2' ¥ 2), the wave packets spread out and bend to perfectly align and overlap along
the wave front, without any visible artifacts. These di! erences between zero order approximation
and the proposed algorithms are also rel3ected by amplitudes along the wave front (bottomow):
Whereas amplitudes under approximations (2.5), (2.7) and (2.8) are essentially constant, zero-der
approximation results in strong RBuctuations, regardless of scal&.

Let us now turn our attention to the heterogeneous case, cf. Fig. 13 and 14. As above, the wave
front breaks apart under the zero order approximation (top rows), with error not decreasingwith
increasing scalek. Yet, unlike rigid motion, the coordinate transformation T, x accounts for the full
deformation resulting from the underlying canonical transformation. Still, as in the homogeneous
case, only center pointwf K sit precisely on the singularity. In contrast, under approximation (2.5)
(second rows), the data wave packets bend, spread out and connect along the singularity andrin
a visually perfect wave front. We note the dilations in the vicinity of the vertical symmetry axis
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Fig. 13. Wave propagation in isotropic, heterogeneous medium for initial conditio ns (5.3) with k" = 2 (left
column) and k" =1 ! 4 (right column), and physical amplitudes set to a(y,#) = 1: zero order approximation (top
row), approximation (2.5) (second row), (2.7) (third row) and (2.8) (fourth row); corresponding amplitudes along
wave front (bottom row): zero order approximation (solid black), approximation (2.5) (red dot), approximation (2.7)
(black circle), approximation (2.8) (triangle). The white dot-dashed lines indicate rays of seven wave-packets at scale
k = 3. Note that the aspect ration is not equal to one.

at x = 0 caused by the low velocity lens, resulting in packets being OsqueezedO in their alition

of propagation. Results obtained under approximation (2.7) (third rows) are very similar, despite

the further approximation of ojf%(y,% by the center location values #S (yj! % 99. The reason for

%2
this lies in the fact that in this example, the dependence ofojﬁ?‘z (y,% on vy is very weak within
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Fig. 14 . Wave propagation in isotropic, heterogeneous medium for initial conditio ns (5.3) with k" = 2 (left
column) and k" =1 ! 4 (right column) including physical amplitudes  a(y, #): zero order approximation (top row),
approximation (2.5) (second row), (2.7) (third row) and (2.8) (fourth row); corresponding amplitudes along wave
front (bottom row): zero order approximation (solid black), approximation (2.5) (red dot), approximation (2.7) (black
circle), approximation (2.8) (triangle). The white dot-dashed lines indicate rays of seven wave-packets at scale k = 3.
Note that the aspect ration is not equal to one.

B, k, the domain of support of the individual wave packets. In contrast, under approximation (2.8)
(fourth rows), signibcant artifacts result from the additional approximate (second order) expansion
of the coordinate transform. Since the spatial extent of the modibed wave packetsilarge w.r.t
the spatial extent of the perturbation of the background, the error of the appraximate coordinate
transform is small only close to the center Iocationwj! K n particular, we observe artifacts from
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Fig. 15. Retrofocus experiment. Top row: initial single wave packet * x(x) at scale k = ko = 3 (left), and
retrofocussed wave packet $x(x) = ( FF!*4)(x) (right). Bottom row: downwards propagated wave packet Y (y) =
(F'*4)(y) (left) and di ! erence ((FF' ! 1)*)(x) (right, magnibed by a factor 8).

wave packets that Ostick outO of the wave front into regions towards the vertal symmetry axis,
close to which the coordinate transform gradually contracts more and more violently due ¢ the
low velocity lens at position (0, 35)km. Nevertheless, approximation (2.8) appears to produce a
more accurate approximation of wave front than zero-order approximation. The above statemerg
are further conbrmed by investigation of the amplitudes along the wave fronts (botom rows): zero
order approximation produces large gaps, while amplitudes under approximation (2.5) ath (2.7) are
nearly Buctuation free. We note that, unlike zero-order approximation, amplitude Ructuation under
approximation (2.8) decrease for bner scales.

In Fig. 14, we include the physical amplitudesa(y,%). As expected, we observe an amplitude
peak close to the focus point of the lens (contraction of Row), followed by a dip (exgnsion of Bow),
and again increase when reaching (close to) homogeneous medium fdr the location of the low
velocity lens, and amplitudes dying out eventually due to the directional band-imiting of the input

u(x).

Limiteq aperture array retrofocussing via phase space localization. We apply the
proposed Obox algorithmO approximation (2.5) in a retrofocus experiment for one single wapacket

)s:
(5.5) FO,T)(F(O,T))s)(x),

where F is the solution operator to (5.1)D(5.2). As the backgroundc we use the high velocity
lens depicted in Fig. 11 (right), given by (5.4) with ¢ = 2km/s, p = +0 .3km/s, 3 = 6km and
xo = (5,16)km. The initial conditions u(x,tg) consist of one single wave packe) s(x) at scale
k = ko = 3, with %= % = (0,1) in vertical direction, and is depicted in Fig. 15 (top left). The

initial data are discretized at N & N =512 & 512 sample points, resulting in maximum frequency
scalekmax = 5. Spatial sampling density ( y is set to equal the initial sampling density ( x, and
the evolution time is T = 8s.

We begin with evaluating “s(y) = (F(0,T)") g)(y), plotted in Fig. 15 (second row, left). Then, we
compress™g(y) by simple hard thresholding of wave packet cog cients below 10% of the magnitude
of the largest coé cient. We note that this also € ectively results in a band-limiting operation,

signibcant boxes being concentrated in a narrow cone about the central wave vector 8§ (y). Finally,

we evaluate'g(x) = ( F (0, T)™s)(X) on the limited aperture array detected by *5)(x), and obtain
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Fig. 16 . Decay properties of e, 4 = # 4 ,FF '* 4 $versus Cy 4 = # 4, *4$ Top row: logarithmic magnitude of
Cu" 2 ”(Ieft) and ey 4 (right) for the b9x Bi=14k=ko- Bottom row: degay of coe " cients max; |cy" 4| and max; [€x «]
for # = #o bxed as a function of k = ko = [0, 1, 2] (left), and for k = ko Pxed as a function of ang(# ,#) (right);
blue dots correspond to cy" 4, red circles to ey 4.

the retrofocussed wave packet (Fig. 15, top right). Fig. 15 (second row, right) depits the di! erence
"“$(X) %) g(x) between retrofocused and the original wave packet, i.e.,HF' %]1)) s(x) (magnibed
by a factor 8). In Fig. 16, we visualize in more detail the decay oftg ¢ = ") ', “s#= ") ¢",FF ') #
away from the diagonal and compare it to the decay of the original wave packetcs ¢ = ) ¢,) s#

magnitude of ¢ ¢ (top left) and &g ¢ (top right) for the box ( k" = ko, % = %); maxima of cg' ¢

and e ¢ as a function of scalek’ (% = %, bottom left) and of orientation % (k" = ko, bottom

right). Note that this corresponds to the analysis of the decay properties of the kerel of the
pseudo-dl erential operator FF- .

We observe that the propagated wave packet™s(y) = (F') s)(y) remains well-localized in space.
The original and retrofocussed wave packetg g(x) and “(x) are visually very close, and'“g(X)
essentially preserves the decay properties 0fs(x) while detecting 5 (y) on a limited aperture array
only. These properties can be exploited in illumination analysis [59], interferometry 44] and partial
reconstruction [18].

5.2. Common-o ! set imaging B anisotropic, homogeneous case. Many processes in seis-
mic data analysis and imaging can be identiped with solution operators of evolution equatia® In
[22], isochrons debned by imaging operators are identibed with wave fronts of solatis of evolution
equations. The bicharacteristics of the Hamiltonian associated with such evolution equationprovide
a natural way for implementing prestack map migration by evolution in the pre-stack imaging vol-
ume. We illustrate the principle of imaging with common o! set isochrons for homogeneous medium
in d = 2 dimensions. The Hamiltonian governing the evolution of the common & set isochron fronts
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Fig. 17 . lllustration of the geometrical properties of Hamiltonian (5.6). Left: isochron front (black thick solid),
isochron ray (blue solid), wave front tangent (black solid) and normal (b lack dashed), illustrating the anisotropy
of (5.6). Right: two isochrons for small and large evolution times (curved black so lid lines) and evolution under
Hamiltonian (5.6) of a piece of plane wave tangent to the Oearly isochronO (thick black line seg ment and bundle of
rays in blue solid): Hamiltonian (5.6) can create caustics for initial conditions di ! ering from an isochron.

T T T T T

14 12 0 2 4

Fig. 18 . Source-receiver geometry and initial band-limited isochron front (left). Geom etry of evolution of initial
isochron front under the Row of Hamiltonian  (5.6) (right): Initial isochron and front after evolution for T =5s (small
and large black solid curves, respectively) and isochron rays (red solid).  The small dashed rectangle corresponds to the
region of the initial data depicted in the left bgure, the larger dashed r ectangle to the calculation domain considered
in our example.

is in this case given by:
P 2

(5.6) H(y,z,6,ky,k;) = 6% c 5, Q.
kyZ 2 Q + Q.

Qs = Z2(k7 + k)% + (2 hkyk, + (k] %kﬁ))qIi ,
G =2hkyk, £ 4h2k2k2 + Z2(KC + k2)2.

Q

Restriction from the pre-stack imaging volume formulation to d = 2 is chosen here for illustration
purposes and implies that the Hamiltonian (5.6) has a singularity atz = 0. Hence, evolution must
be initialized at z > 0, i.e. the initial conditions have to be isochrons at early two-way travel times
To [28]. Hamiltonian (5.6) is anisotropic and can create caustics for initial conditions that di er
from isochron fronts. This is illustrated in Fig. 17.

We use backgroundc = ¢y = 2km/s and half-o! set h = 100m. As initial condition, we use an
isochron front for To = 0.39s (resulting in maximum initial depth z < 400m). The initial isochron
is band-limited and compressed by hard-thresholding of its wave packet cdecients, and is plotted
in Fig. 18 (left). We evaluate evolution of the isochron front under approximation (2.8) for T =5s
and compare it to evolution under the zero order approximation. The geometry of the problem is



124 H. WENDT, F. ANDERSSON, AND M. V. DE HOOP
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Fig. 19 . Evolution of initial isochron front Fig. 18 (left) under Hamiltonian (5.6) for zero order approximation
(left column) and approximation  (2.8): isochron front band-limited to frequencies scales k =2 (top row) and k =3
(second row) and corresponding amplitudes along the fronts (third and bot tom row, respectively). The red dotted line
indicates the theoretical position of the isochron.

depicted in Fig. 18 (right). Note that the area including the calculation domain is signibPcantly larger
than the area including the initial conditions. Results are plotted in Fig. 19 for frequency scales
k =2 and k = 3, and in Fig. 20 including all frequency scalesk. The zero-order approximation fails
to correctly image the isochron front at the di! erent frequency scales and produces an image with
large gaps and amplitude RBuctuations along the isochron. Resorting to Pner scales or inding all
scales does not improve the image. In contrast, approximation (2.8) produces a very satisfactpr
image isochron that is sharply aligned along the theoretical position of the front, wittout gaps or
major amplitude variations. We note that the smooth amplitude variation results from the initial
conditions we have used: The hard-thresholding preprocessing step does not guaranteeattthe
energy from dil erent orientations %is kept balanced. Indeed, it is clear from inspection of the
amplitudes of the zero order approximation in Fig. 19 (bottom left) that di ! erent box orientations
do not contribute equal energy, and that amplitude Buctuations under approximation (2.8) depicted
in Fig. 19 (bottom right) merely reRect these variations.
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Fig. 20 . Evolution of initial isochron front Fig. 18 (left) under Hamiltonian (5.6) for zero order approximation

(left column) and approximation  (2.8): isochron fronts obtained using all frequencies scales k (pbrst row) and corre-
sponding amplitudes along the fronts (second row). Third row: magnibcation o  f the image regions indicated in the
brst row by red dashed rectangles. The red dotted line indicates the the oretical position of the isochron.

6. Discussion. In the present work, we have devised numerical procedures enabling the dis-
crete evaluation of the action of Fourier integral operators on general input functions throwgh ap-
proximations, yielding accuracy O(2' ¥ 2) at frequency scalek. While numerical examples have been
given in d = 2 dimensions, the procedures are valid for arbitrary Pnite dimension. Discretizatbn be-
ing initiated from dyadic parabolic decomposition of phase space, the algorithms ref3ect the geometr
of the operators and are tightly interwoven with discrete almost symmetric wave packet tansforms.
This accounts for the inherent practical Rexibility common to all of the three approximations (2.5),
(2.7) and (2.8): Indeed, they naturally enable, for instance, the embedding of data regalkization,
emphasis or muting of coherent data structures, and modeling or imaging with subsets of wav
packets at selected orientations, frequency scales and spatial positions, viz. phase-space bltgrin
The elementary building blocks being directly connected to geometric phase-space attriltes, such
operations are particularly useful in modeling and in illumination analysis, partial reconstruction
or target-oriented imaging applications. Another consequence is that in the case of parametrices of
evolution equations, which also generate extended imaging, we obtairl ective one-step procedures
for (arbitrarily) large time step that are insensitive to numerical dispersion and error accumulation.
We mention that it would be possible to construct alternative discretizations, potentially resulting
in faster algorithms, yet at the price of losing the explicit connection with discrete almost synmetric
wave packets and the geometry of the operators. Here, we promote the idea of geometry. We note
that approximation (2.5) can in principle be used to bnd arbitrarily accurate solutions to evolution
equations through iterations of Volterra equations.

Any of the described algorithms can be & ciently parallelized, since computations per individual
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box, tensor product term or packet can be performed independently. Also, the procedws d er the
possibility for incorporating Oreal-timeO image visualization: Computations can be hierardbally
organized such that useful intermediary results B for instance, successively bPner and bner scales,
and updated output points for successively rebned grid resolution B can be visualized oney as
they become available during computations.

When all boxes contribute to the output, the computational complexity of the OboxQalgorithm (2.5)

is O(RN (@ D/210g(N)) above diagonal approximation. The additional factor R is fundamental in
this approximation, stemming from the necessity for separating a complex exponential and reftt-
ing its numerical rank, while the factor O(N (4" D/2) results from the total number of frequency
boxes that have to be evaluated separately. This factor demands further comments: The action
of (Fu, x)(y) on portions u; x (x) of data corresponding to di erent boxes does in general result in
contributions to di! erent regions in the output domain. Consequently, £ u)(y) potentially provides
information on an output image that can be (signibcantly) larger than the original N¢ data cube
u(x). Obviously, the output is practically restricted to the domain on which a model is given (i.e.,
on which a(y, % and derivatives of S(y, % are accessible).

In the context of imaging, comparison with the Generalized Radon Transform (GRT) is very fa-
vorable: ind = 2 (d = 3) dimensions, the OboxO algorithm yields complexityO(N 2 log(N ))
(O(N*log(N))), as compared to the GRT with O(N 3) (O(N®)), respectively.

The Ohybrid packet-boxO and OpacketO algorithms for approximations (2.7) and (2.8) aggr very
attractive at brst, since no tensor product representation as in approximation (2.5) reeds to be ob-
tained. Indeed, when applied to one single wave packet, they yield low complexit® (dN 9 log(N)).
Yet, when used as approximations to the global operator action for complicated input data with
diverse coherent structures, they become less advantageous since the organization of computations
by boxes @4k) is partially lost, and certain computations need to be performed packet-per-packet,
worsening overall complexity. In particular, while being the simplest of the proposed pocedures
when applied to individual packets, approximation (2.8) loses any organization of computaibns by
boxes.

We note that these procedures have similarities with beam migration (e.g. [1, 27, 41, 58]), wherco-
herent data components are extracted and migrated individually. Here, we obtain ObeamsO as data
wave packets which are one-step propagated using a phase-space localized paraxial approximation
For approximations (2.5) and (2.7), we can also form Oboxed beamsO as data wave packetatth
share the same frequency scale and dip. We Pnally mention the ective reduction in calculation
domain resulting from the spatial decay properties of individual wave packets.

Future work will include the extension of the proposed procedures to the presence @fustics.
This is currently being investigated. The idea of further separation of variables B witin y and
within ! D to uni-directional separated representations has been put forward for computations in
high dimensions by Beylkin et al. [5, 9]. Incorporation of such strategies promises computational
advantages, in particular for dimensionsd > 3, while typically resulting in purely numerical al-
gorithms. We also mention the development of quadratures for special functions [8, 62]. Finall
we envision the adaptation of the present work to Gaussian wave packets, which! @r signibcantly
better decay properties than almost symmetric wave packets, and potentially very high compgssion
rates through sparsity promoting optimization. Also, since the Fourier transform and many elemen
tary manipulations of a Gaussians yield Gaussians, we expect to be able to speed-up theoposed
approximations by replacing certain computations by analytic calculus.
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Appendix A. Prolate spheroidal wave functions.
For ¢ > O real, debne the operatorF¢ : L?(R) ! L?(R) on the unit (hyper)ball R in D

dimensions: |

(A1) (FC.)(x) = . exp[ic'x,z#. (z)dz.
R

Denote by / g,,/ &,,... its eigenvalues in decreasing ordef/ ¢, ,| ) |/ & |, and by ' g the corre-
sponding eigenfunctions:
!

(A.2) lg" g (X)= explic'x,z#' ;(z)dz, x$ R.
R

We adhere here to the normalization convention||' j||Lz(r) = 1. The eigenvalues are non-zero
and either real or imaginary. The eigenfunctions' ; are real, orthonormal and complete inL?(R),
either even or odd. ForD = 1, they turn out to be the the PSWFs from classical mathematical
physics [36, 50]; forD ) 2, they are referred to as generalized PSWFs [48]. In mathematics, PSWFs
are known as a set of functions obtained by a time-limiting, low-passing, and second time-limitig
operation.
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A.l. PSWFs on an interval (D =1). The functions ' ; are also the eigenfunctions of the
self-adjoint operator [36, 50]:
|

(A3) Q%)) = =

sin(c(x %2z))

1y X%z (2)dz, x$ [%L11]

with eigenvaluesy; = 5|/ |2, and of the di! erential operator:

d? d
c = 0 %2 0 0 2
D®=(1 %x )dx2 L % C?x2,
i.e., they are the bounded and continuous solutions of:
d® (x) d (x) :
(A.4) (1 %x?) e % 2x ™ +(# %cx?)' (x)=0,

on [%1, 1], where#; is a sequence of strictly increasing positive real numbers [36, 50]. Each function
' j (x) can be expanded in a Legendre series on the intervall, 1]:

'8
(A.5) )= dPr(X),
k=0

where Py (x) are normalized Legendre polynomials (cf. B.1). It can be shown that the coecients
d. have superalgebraic decay (cf. e.g. [62], Lemma 3.3 and Theorem 3.4).

~ Construction.  Substitution of (A.5) into (A.4) gives a three-term recursion for the coe" cients
d\.. This recursion can be restated in matrix form as [62]:

(BN %#; al)d =0,

N — 2k(k+1) ! 1 N - N - (k+2)( k+1) .
where By = k(k+1)+ oigpirnC and By, = B, i 3 2hDES c¢?. The matrix
BN is inbnite, but the eigenvectorsd of interest (corresponding to the expansion coe cients of the
brst m PSWFs) lie almost entirely in the leading rows and columns o8N ([62], Theorem 3.4). The

eigenvalues/ j can be obtained by numerical evaluation of, for instance, (A.2) or (A.3) for bxedx,
or of the relation ([62], Corollary 3.2):

$ .
12, _ g1y n(¥) m(x)dx

12 iy w0 a()dx

A.2. Generalized PSWFsonadisc( D =2). Inpolarcoordinates ((, 7), the eigenfunctions
and eigenvalues of (A.1) are given by [48]:

1
"on((,7) = - 2—*0/00,n () lon =2*&on
1

“nat (G7) = %0 (OSN (D) e =2%1N &n

with:
! 1

&in Youn (() = i In (e(( ) %un ((Hd(,

where Jy (X) is the Bessel function of the prst kind, and:

S3(7) =cos(N7)
SL(7) =sin(N7)
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Substituting , nn = C&un and) nn (() =~ Yvn (() gives the equivalent equation:
|

Ly P -
(A.6) N ) N () = . In(e(() () N (()dC

Similar to the caseD = 1, the solutions of (A.6) are solutions to a di! erential equation:
L€) (x) = %0) (x)
with self-adjoint di! erential operator L¢:

&) (x)

(A.7) LS (x) = (1 %x?) o

% 2X

" #
d) (x) % %N ? 2
+ 9 .
i " % cE2x2 ) (X)
Construction.  The strategy consists in expanding) (x) in series [46, 48]:

&
(A.8) Y ()= A" ik (%),
k=0

with polynomials Vy k (x) debned by:
2
Wk (1) = 2@k + N +1)rN*1/2pN 0 g 052r2): 1 [0, 1],

where Pf"'(x) are Jacobi polynomials (see B.3). The polynomialsvyx are orthonormal on [0 1]

w.r.t. Kk,

by

Wk (OWng (Od( = La-
0
They are the eigenfunctions of the di erential operator (A.7) with ¢=0, i.e. L°, with eigenvalues:
6Nk = (N +2k + %)(N +2k + g).

Expansion co€ cients. To construct the matrix of L¢ w.r.t. the basis Vyk , we note that L°Vyx =
%6Nk Bk %X2CVnk . To obtain x2Vyk (x) as a linear combination of Vi x (x), we substitute
x 1 1%2x2 in the recursion for Jacobi polynomials. This gives a three term recursion fox?Vy k (x)
[46, 48]. The matrix BN of L¢ has coé cients [46, 62]:

BR) = "V, LWy, #
which are zero except for the diagonal elements and the elements above and below the diagonal,
given by:
2k(k+1)+ N(2k+ N +1)
(2k + N)(2k§- N +2)

BN —BN 2 (k+1)(k+ N +1) 2k+ N +1
k+l k = Pkk+l — (2k+N+1)(2k+N+2) k+ N +3°

BRk = YBnk %C

Now
"LC) N,n ,VN’| #= (‘VO#N’n le,n

and sincel € is self adjoint [46, 48]:

&
"LC) N s VN #= "WNik LCVN’| #
k=0
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Hence:
(BN + #y, )dV" =0,

which is an eigenproblem similar to the one dimensional case. The elements of the eigenvectdhs”
are the expansion co& cients d'k“'n for ) nn (X) in (A.8).
Eigenvalues. The eigenvalues/ , are given by:

N 2F
I'Nn =|Nﬁ, N,n
where, nn can be obtained by numerical evaluation of (A.6) for Pxed(.

A.3. Generalized PSWFs on a (hyper-)ball ( D) 3). Write x = ($ and z = r*, where
$ and * are unit vectors in D dimensions, and let be:

D=2+ p, p=1,2,44a
It can be shown [48] that the eigenfunctions and eigenvalues of (A.1) are given by:
“nad ((8) = %0 (OSy($)
I = N (@)Y P 280
where

(N + p%1)!
S\ (%), l=1,...,2N + p)W
are a complete set of orthonormal surface harmonics of degré¢, and:

_ | RiL
&in = +NnC 2

%nn () =) nn (OC "2,

and) nn ((), +nn are the solutions of:

' 2 o
(A.9) N ) N () = . Inwz (@) o) nn (O)dC.

This is, however, (A.6) for the two dimensional case withN replaced byN + p/2. The expressions in
A.2 for the construction of ) v (() can hence be taken over exactly withN replaced byN = N + p/2
[48].

In Fig. 21, we depict radial functions % (() for several choices ofc, N and n (left), and
eigenvalue spectra forr = 1 and ¢ = 10 in logarithmic scale (center and right; on the right we depict
cross-section of the eigenvalue spectra).

A.4. SUMMARY: Numerical recipe for the construction of PSWFs.

Dimension D =1.
1. Construct the normalized Legendre polynomialsPy (x).
2. Construct K rows and columns of the matrix BN with non-zero entries B{(“’k = k(k+1)+

2k(k+1) ! 1 4 and B|’<\fk+2 — B||(\1+2 P (k+2)( k+1)

@k+3)2 k! 1) (2k+3)  (2k+1)(2 k+5)
3. Solve the eigenvalue problenB\ d = #;d', yielding the expansion coé cients d, .
4. Compute the PSWFs:' j(x) =~ d Pi(X).

5. Compute the eigenvalues by evaluation of ;' ; (x) = !11 exp (icxz) ' j (z)dz for bxedx.
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Fig. 21 . Radial functions $nn (% (left), logarithmic plots of eigenvalue spectra (center), and cross-sect ions of
the eigenvalue spectra (right) for di ! erent bandwidths and D =3.

Dimension D) 2. Letp= D %2andN = N + p/2.

1. Construct the Jacobi polynomials P,ENI % (x).

2. Construct the polynomials Vi, (()=  2(2k+ N +1) r’\T+1’2Pk(N‘ D1%2(2); ($][01].
3. Construct K rows and columns of the matrixB™ with non-zero entriesB,’fk = %px’r +2k+

1\ nd 3y0s2 2K(K+1)+ N (2k+ N +1) N - pN — (k+1)( k+ N'+1) 2k+ N +1
2)(N+2k+ 2)/002 (2k+ N')(2 k+ N +2) andBk*fl,k Bk,k+l 02(2k+N‘+1)(2 k+ N+2)  2k+ N+3°

Solve the eigenproblenBN d¥:n = #; d¥:" | wielding the expansion co& cients dX ™" .

Compute the functions: ) ¢, (() =" de'” Tk (O

Compute the set of orthonormal surface harmonicsSy, ($).

Compute the PSWFs: ' nn ((,$) = (' P™72) ¢ (OSy (8).

. Compute the eigenvalued y,, = iN(2*)¥ P2 (D72 ¢ by evaluation of , ¢ ), (() =
OlJN-(cr()' Cr() ., (r)dr for Pxed (.

For D = 2, the hyperparameter is $ = 7 (polar angle), and the functions S|, ($) are given by:

© No g A~

oy _ 1 o1 * _ _
Sy = oo SN—?COSQ\|7%|§), N=1,2,..., I=0,1L
For D = 3, the hyperparameter is $ = (7,.) (polar and azimuthal angle), and the functions
S, ($), I=1,...,2N +1 are given by the spherical harmonics of degred&l (cf. B.4).
Evaluation of PSWFs. The eigenvalued ¢, and expansion coé cients djk can be precomputed
and stored for any given value ofc. Subsequent evaluation of a PSWF then take€(c) operations.
Appendix B. Special functions.
B.1. Legendre polynomials. The Legendre polynomialsPy(x) are given by the recursion:
2k+1
- 0,
Pirr (X) = 7 XPu(X) %1 ——

with Po(x) =1 and P;(x) = x. They are orthogonal over the interval [20l, 1]:
!

Pr 1(x),

1
_ 1
. Pe(X)Pi(x)dx = 1 K+l
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The normalized Legendre polynomials are given by:
R

. 1 .
Pk(x) = Pk(x) k+ > IPkllLzp 1,9 = 1.

B.2. Associated Legendre polynomials. For positive m, the associated Legendre polyno-
mials are debned in terms of Legendre polynomials as:

m
PR () = (%L)" (1 %x%) ddxm Pn (%)

For negative m, they are debned as:

(N %m)!

Py 00 = (%)™ (M

PN (%)

They also obey the recurrence relation:

2N %1 m %1
Py (X) = N %m XP 1(x) /OTPI{P! 2(X).
They are part of the §pher|cal harmonics (cf. B.4) and orthogonal over %01, 1] with the weighting
function 1 w.rt. N, 7 PR (X)PJ-(x)dx = 2(N + m)!/ (2N + l%( N %m)‘)lN n *, and orthogonal

over [%1,1] w.r.t. m W|th the weighting function (1 % x?)" %, Pm(x)Pm (X)L %x2)! dx =
(N +m)/(m(N %m))Lnm-.

B.3. Jacobi polynomials.  Jacobi polynomials Pk(#'+)(x) are debned by the three term recur-
sion:

P& (x) % P(# 7 (x)

# agkX Yoag
F)k(+l+) (X) = a

with? P (x) = 1 and P (x) = 1(, w&+(, + &+2)x) [P{FP(x) = 1 and PFO(x) =
3G +(, +2)x)] and

ak = 2(k+1)(k+, + &+1)2k+, + &) [F2(k+1)(k+, +1)2k+ )]
ax = %k+, +&+1)(, %+ &) [= %2k+, +1),7]
ag =Rk+, + &2k+, + &+1)2k+, + &+2) [=(2k+ ,)2k+, +1)2k+, +2)]
au = 2(k+ ) )(k+ &R2k+, + &+2) =2 k(k+,)2k+, +2)].
They are orthogonal on Pel, 1] w.r.t. the weight function w(x) = (1 %x)* (1 + x)*:
I % &
©1 2+l gk+, +1) &K+ &+1) 21
(#,+) (#.+) - - _
! 1P'< COPT0WO)AX = Ta 57 K&k + , + &+1) R r—)
and satisfy the di! erential equation:
2p (#,+) p#.+)
(1%x2)dpk72()()+(&% %(, + &+2)x )w+ k(k+, + &+1)=0
3 dx dx 4

2P (x) de(#’ (x)
dx?

(1 %x?) %(, +(, + &+2)x) +k(k+, +1)=0

#)
Their derivatives are obtained asi(x) l(k +, 0+ &)Pk(ﬁl D (x).

"We state in square brackets [ § the special case + = 0 used in A.2 and A.3.
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B.4. Spherical harmonics. Spherical harmonics of orderN are given by:
S

2L +1 (N %m)!
2 (N + m)!

SM(7,.)= P (cos@)€M™ , m=%N,...,N %1,N

where 7 $ [0,*] is the polar (colatitudinal) . $ [0,2*) is the azimuthal (longitudinal) coordinate,
and P (x) are the associated Legendre polynomials. They are the angular portion of the solution
to LaplaceOs equation in spherical coordinates. The normalization is usually chosen such that:
Lot
ST (7,.)8R-(7,.)sin(Nd7d. = Iy - Lom -
0o 0

They are aL? basis on the sphere and obey:

S\™(7..) = ()" F(7,.).



