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MULTI-SCALE DISCRETE APPROXIMATION OF FOURIER INTEGRAL
OPERATORS

HERWIG WENDT ! , MAARTEN V. DE HOOP   , AND FREDRIK ANDERSSON à

Abstract. We develop a discretization and computational procedures for the approximation of the action of
Fourier integral operators whose canonical relations are graphs. Such operators appear in many physical contexts
and computational problems, for instance in the formulation of imaging and inverse scattering of seismic reßection
data. Our discretization and algorithms are based on a multi-scale low-rank expansion of the action of Fourier integral
operators using the dyadic parabolic decomposition of phase space, and on explicit constructions of low-rank separated
representations that directly reßect the nature of such operators. The discretization and computational procedures
explicitly connect and can be seamlessly overlaid to the discrete almost symmetric wave packet transformation.
Numerical wave propagation and imaging examples illustrate our algorithms.

1. Introduction. Fourier integral operators, and their calculus, have played an important
role in analyzing many problems involving linear hyperbolic partial di! erental equations. We men-
tion parametrix constructions, and developments in scattering and inverse scattering theories. In
these developments, typically, the Fourier integral operators correspond with canonical relations,
describing the propagation of singularities of these operators, which are the graphs of canonical
transformations. Here, we focus on discretizing the action of Fourier integral operators (FIOs) in
this class and on developing computational algorithms. A natural way to initiate the discretization
and associated approximation is via the dyadic parabolic decomposition of phase space enabling a
natural connection with the geometry of these operators.

The action of an FIO F in the mentioned class on a functionu(x) in L 2 is given by

(1.1) (F u)(y) =
!

a(y, ! ) exp(iS(y, ! ))öu(! )d! ,

where öu denotes the Fourier transform of u, a(y, ! ) is the amplitude function and S(y, ! ) denotes
the generating function. The propagation of singularities byF , (x, ! ) ! (y, " ), follows from S and
is described by the transformation

(1.2) # :
"

$S
$!

, !
#

!
"

y,
$S
$y

#
.

These FIOs include the pseudodi! erential operators, for which S(y, ! ) = "y, ! #and # is the identity.
We will assume that a is of order zero. The operatorF has a sparse matrix representation with
respect to the frame of curvelets [12, 51], which originates from the dyadic parabolic decomposition
of phase space and which will be brießy discussed below. We will refer to curvelets ([13] and
references therein) by their collective name Òwave packetsÓ.

To arrive, through discretization, at an e" cient algorithm for the action of an FIO it is natural
to seek expansions of the amplitude function and complex exponential in terms of tensor products in
phase space. (This strategy has been followed to develop algorithms for propagators since the advent
of paraxial approximations of the wave equation, their higher-order extensions, and phase-screen
methods and their generalizations. See Beylkin and Mohlenkamp [9] for a general analysis.)

In the case of pseudodi! erential operators, the generating function is linear in ! and is natu-
rally separated. Typically, one introduces a radial partition of unity in ! -space, the functions of
which scale dyadically. On each annulus of this partition, the amplitude function or symbol can
then be expanded in spherical harmonics. This results in a tensor product expansion [55]; each
term in this expansion is also referred to as an elementary symbol. Bao and Symes [3] developed a
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computational method for pseudodi! erential operators based on such a type of expansions: They
considered a Fourier series expansion of the symbol in the angular variables arg! and a polyhomo-
geneous expansion in|! |. More recently, other, fastly converging separated symbol expansions were
introduced by Demanet and Ying [19] in adequate systems of rational Chebyshev functions or hier-
archical splines with control points placed in a multiscale way in! -space. Alternative expansions, of
the action of Calder«on-Zygmund operators, using bases of wavelets, were introduced and analyzed
by Beylkin, Coifman and Rokhlin [6].

Here, we consider FIOs and focus on separated expansions of the complex exponential in (1.1).
Recently, De Hoop et al. ([18]) proposed an explicit multi-scale expansion of low phase space
separation rank of the action of FIOs in the class mentioned above using the dyadic parabolic
decomposition of phase space. The Þrst-order term in the expansion provides an accuracyO(2! k/ 2)
at frequency scale 2k . For each frequency scale, the separation rank depends onk but is otherwise
independent of problem size. In the work presented here, we elaborate on this result and develop
a discretization, approximation and numerical procedure for computing the action of this class of
operators. We obtain an algorithm of complexity O(N

3d ! 1
2 log(N )), or O(D N d log(N )) if D is the

number of signifcant tiles in the dyadic parabolic decomposition. We focus on explicit constructions
and corresponding numerical analysis that directly reßect the nature of FIOs. We express our
separated representation in terms ofgeometric attributes of the canonical relation of the FIO. We
make use ofprolate spheroidal wave functions(PSWFs) in connection with the dyadic parabolic
decomposition, while the propagation of singularities or canonical transformation is accounted for
via an unequally spaced FFT (USFFT). The use of PSWFs was motivated by the work of Beylkin
and Sandberg [7]. An e" cient algorithm to compute PSWFs was proposed by [62]. We note that
it is also possible to obtain low-rank separated representations of the complex exponential in(1.1)
purely numerically, at the cost of losing the explicit relationship with the geometry. We derive our
discretization from the inverse transform based on discrete almost symmetric wave packets [21].

The connection of our algorithm to discrete almost symmetric wave packets is important in
imaging and inverse scattering applications. In these applications, the FIO acts on the data(u in
the above). The wave packets can aid in regularizing the process of partitioning the data in ! -space
starting from a Þnite set of samples through sparsity promoting optimization (instead of standard
interpolation). Moreover, in the context of directional pointwise regularity analysi s [2, 26, 29, 30,
31, 32, 39], the mentioned connection enables the numerical estimation and study of propagation of
scaling exponents by the FIO extending the corresponding results for Calder«on-Zygmund operators
using wavelets [40].

Indeed, imaging and inverse scattering of seismic reßection data can be formulated in terms
of FIOs in the class considered here. In the presence of caustics, the construction of such FIOs
requires an extension of standard scattering operators; see Stolk and De Hoop [52, 53, 54]. First-
order evolution equations and associated propagators also play a role in implementations of wave-
equation imaging and inverse scattering; we mention time and depth extrapolation (or downward
continuation), and velocity continuation. Also, extended imaging can be described in termsof
solving a Cauchy initial value problem for an evolution equation (Duchkov and De Hoop [23]).
Parametrices of such evolution equations are natural examples of the FIOs considered here. In the
present contribution, we consider situations without caustics. Extension to the causticcase will be
the subject of a forthcoming paper.

Our analysis is based on the work of Seeger, Sogge and Stein [45]. The fast computation of FIOs
(in dimension d = 2) was recently considered by Candès, Demanet and Ying [14]. In this work,
the ! -space is decomposed into angular wedges which satisfy a parabolic relationship reminiscent of
the dyadic parabolic decomposition for the Þnest available scale. The separated expansion of the
complex exponential in (1.1) makes use of the Taylor series for the exponential function Ð asin the
generalized-phase-screen expansions introduced by De Hoop, Le Rousseau and Wu [17] Ð and a polar
coordinates Taylor (or Maclaurin) expansion of its phase in! ; the wedges can be chosen su" ciently
narrow (which corresponds with largek in our analysis) so that only the Þrst term in the latter
expansion needs to be accounted for. In [15], a butterßy algorithm is obtained through a balanced
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tiling of the space and frequency domain which also admits low-rank separated representationsof the
complex exponential. An alternative approach is based on compressing operators by decomposing
them in properly chosen bases ofL 2. Once a sparse representation has been obtained, the action
of the operator is carried out by applying a sparse matrix in the transform domain. In dimension
1, such an approach was developed by Bradie, Coifman and Grossman [10] for the computation
of oscillatory integrals related to acoustic wave scattering. As far as applications in reßection
seismology are concerned, we mention ÒbeamÓ migration [1, 27, 41] and ÒbeamletÓ propagators [60].

The outline of this paper is as follows. Below we give a brief introduction to the dyadic parabolic
decomposition of phase space, the co-partition of unity, and wave packets. In Section 2, we sum-
marize the multi-scale operator expansion proposed in [18], construct the separated expansion of
the complex exponential in (1.1) using PSWFs, and analyze the rank properties of this expansion.
Details on PSWFs and on their numerical evaluation are collected in Appendices A and B. Section
3 proceeds with constructing the discretization of the operator expansion. We begin with asum-
mary of discrete almost symmetric wave packets and establish the connection with the approximate
operator action. Then we discuss the deformation of phase space discretization under the operator,
leading to strategies for choosing the oversampling factors and for the discrete evaluation of the
canonical transformation by USFFT, and we relate wave packet decay properties to reduction of
the size of the calculation domain. Based on the theoretical developments described in Section 2, we
propose a box (frequency tile) based algorithm, an individual packet based algorithm, and a hybrid
packet-box algorithm, and investigate their computational complexity and properties. We analyze
the algorithms in the example of solution operators of evolution equations represented as Trotter
products and establish the relationship with a phase-space localized approximation. In Section4
we detail, as an example within the class of FIOs considered in the present work, application to
parametrices of evolution equations. We establish the explicit relationship with paraxial ray theory
for this case, the expansion terms of the phase of the complex exponential being obtained as com-
binations of submatrices of the propagator matrix of the Hamilton-Jacobi system along paraxial
rays. The resulting computational procedure is a Óone stepÓ algorithm for (potentially very) large
time steps. Section 5 provides numerical illustrations for evolution-equation based propagation and
imaging. We compare the proposed algorithms in examples of wave propagation in heterogeneous
isotropic medium, and we illustrate imaging with an homogeneous anisotropic Hamiltonian. Finally,
in Section 6, we conclude on the present work and discuss future perspectives.

Wave packets. We brießy discuss the (co)frame of wave packets [13, 21, 51]. Letu $ L 2(Rd)
represent a (seismic) velocity Þeld. We consider the Fourier transform, öu(! ) =

$
u(x) exp[%i"x, ! #] dx.

We begin with an overlapping covering of the positive! 1 axis (! " = ! 1) by boxes of the form

Bk =
%
! "

k %
L "

k

2
, ! "

k +
L "

k

2

&
&

%
%

L ""
k

2
,

L ""
k

2

&d! 1

,

where the centers! "
k , as well as the side lengthsL "

k and L ""
k , satisfy the parabolic scaling condition

! "
k ' 2k , L "

k ' 2k , L ""
k ' 2k/ 2, as k ! ( .

Next, for each k ) 1, let %vary over a set of approximately 2k (d! 1) / 2 uniformly distributed unit
vectors. (We adhere to the convention that %(0) = e1 aligns with the ! 1-axis.) Let # ! ,k denote a
choice of rotation matrix which maps %to e1, and

(1.3) B ! ,k = # ! 1
! ,k Bk .

The B ! ,k are illustrated in Fig. 1 (left). We denote for later use by 1! ,k (! ) the indicator function
of B ! ,k . In the (co-)frame construction, we encounter two sequences of smooth functions, ö# ! ,k and
ö&! ,k , on Rd, each supported inB ! ,k , so that they form a co-partition of unity

(1.4) ö#0(! ) ö&0(! ) +
'

k# 1

'

!

ö# ! ,k (! ) ö&! ,k (! ) = 1 ,
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"

Fig. 1 . Geometry for 2d wave packets: Frequency domain boxes and window functio n ö! ! ,k (" ) for one particular
box for scale k = 3 with orientation # (left). One wave packet corresponding to the box highlighted in the subÞg ure
on the left and central locations of wave packets in this box (c enter). Orientations of " " and " "" in the Taylor series
expansion of S(y, " ) (right).

and satisfy the estimates

|"%, $" #j $#
" ö# ! ,k (! )| + |"%, $" #j $#

"
ö&! ,k (! )| * Cj, # 2! k ( j + |# |/ 2) .

A function ö# ! ,k is plotted in color in Fig. 1 (left). We then form

(1.5) ö' ! ,k (! ) = ( ! 1/ 2
k

ö&! ,k (! ) , ö) ! ,k (! ) = ( ! 1/ 2
k ö# ! ,k (! ),

with ( k the volume of Bk . These functions satisfy the estimates

(1.6)
|) ! ,k (x)|

|' ! ,k (x)|

(

* CN 2k (d+1) / 4 ( 2k |"%, x#| + 2 k/ 2+x+)! N

for all N . To obtain a (co)frame, one introduces the integer lattice: X j := ( j 1, . . . , j n ) $ Zd, the
dilation matrix

D k =
1

2*

"
L "

k 01$ d! 1

0d! 1$ 1 L ""
k I d! 1

#
, det D k = (2 * )! d( k ,

and points x ! ,k
j = # ! 1

! ,k D ! 1
k X j , which change with (%, k). The frame elements (k ) 1) are then

deÞned in the Fourier domain as

(1.7) ö) $ (! ) = ö) ! ,k (! ) exp[%i"x ! ,k
j , ! #], + = ( x ! ,k

j , %, k),

and similarly for ö' $ (! ). A function ) ! ,k , as well as the corresponding lattice with pointsx ! ,k
j , are

plotted in Fig. 1 (middle). We obtain the transform pair

(1.8) u$ =
!

u(x)' $ (x) dx, u(x) =
'

$

u$ ) $ (x)

with the property that
)

$ " : k " = k, ! " = ! u$ " ö) $ " (! ) = öu(! ) ö&! ,k (! )ö# ! ,k (! ), for each %, k.

2. Expansion of Fourier integral operators.

2.1. Dyadic parabolic decomposition and separated representation. In this section,
we summarize a result in [18] that will underly our discretization. Let ) $ (x), + = ( j, %, k), denote
a wave packet with central position x ! ,k

j and orientation %at scalek.
The action of the operator F on a single wave packet is given by:

(2.1) (F ) $ )(y) = ( ! 1/ 2
k

!
a(y, ! ) exp[i(S(y, ! ) % "! , x ! ,k

j #)]ö# ! ,k (! )d! ,
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since ö) $ (! ) = ( ! 1/ 2
k ö# ! ,k (! ) exp[%i"! , x j #] is the Fourier transform of ) $ . In [18], an approximation

of (F ) $ )(y) to order O(2! k/ 2) is obtained via Taylor expansions of S(y, ! ) and a(y, ! ) near the
microlocal support of ) $ . The amplitudes a(y, ! ) can be replaced bya(y, %) without giving rise to
errors larger than O(2! k/ 2) ([18], Lemma 3.1). By homogeneity in! of S(y, ! ), the Þrst order Taylor
expansion yields:

S(y, ! ) % "! , x ! ,k
j #=

*
! ,

$S
$!

(y, %) %x ! ,k
j

+
+ h2(y, ! ),

along the %axis, where the error term h2(y, ! ) is homogeneous of order 1 and of classS0
1
2 ,rad on

1! ,k (! ) (cf. [18], (22)). We introduce the Òcoordinate transformÓ:

(2.2) y ! T! ,k (y) =
$S
$!

(y, %),

which describes the propagation of the wave packet) $ along rays according to geometrical optics

(cf. (1.2)). Replacing S(y, ! ) % "! , x ! ,k
j #by

,
! , T! ,k (y) %x ! ,k

j

-
in (2.1) results in the approximation:

(2.3) (F ) $ )(y) = a(y, %)) $ (T! ,k (y)) + O(20),

with error term in the same smoothness class as the wave packet) $ itself. We will refer to this
approximation as the zero-order approximation. Note that it di ! ers from what is commonly referred
to as rigid motion since the ßow out is governed by all rays with wave vector 2k %and origin on the
support of ) $ , not only by the ray connecting the central positions x ! ,k

j and y! ,k
j = T ! 1

! ,k (x ! ,k
j ).

To reÞne the approximation to O(2! k/ 2), we need to include the second order terms in the! ""

directions perpendicular to the radial %= ! " direction in the Taylor expansion of S(y, ! ) (cf. Fig.
1 (right) for an illustration of the expansion directions). Using again homogeneity in ! , this yields
the expansion:

S(y, ! ) =
*

! ,
$S
$!

(y, %)
+

+
1

2! "

*
! "",

$2S
$! ""2 (y, %) ! ""

+
+ h3(y, ! ),

where h3(y, ! ) is S
! 1

2
1
2 ,rad

on 1! ,k (! ) (cf. [18], (22)). Approximation of the complex exponential

exp
.
i 1

2" "

,
! "", %2 S

%""" 2 (y, %) ! ""
-/

for arguments bounded byc by a polynomial function leads to a tensor-

product representation separating they and ! variables. This yields the result [18, Theorem 4.1]:

Theorem 2.1. With functions T! ,k (y) deÞned by(2.2), functions , ( r )
! ,k (y) and ö- ( r )

! ,k (! ) such that

(2.4) exp
%
i

1
2! "

*
! "",

$2S
$! ""2 (y, %) ! ""

+&
1! ,k (! ) ,

R'

r =1

, ( r )
! ,k (y) ö- ( r )

! ,k (! ),

one may express

(2.5) (F ) $ )(y) = a(y, %)
R'

r =1

, ( r )
! ,k (y)( - ( r )

! ,k - ) $ )(T! ,k (y)) + 2 ! k/ 2f $ ,

with R ' k/ log(k), where f $ is a ÒcurveletÓ-like function (cf. [18], (23)) centered at#(+).

Hence, an approximation of (F ) $ )(y) to order O(2! k/ 2) is obtained as the sum ofR modiÞed
wave packets ÷. r ;$ (x) = ( - ( r )

! ,k - ) $ )(x) with amplitude corrections a(y, %), ( r )
! ,k (y), followed by a

coordinate transform T! ,k (y). This expansion can be extended to any order.
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Further approximations. It is possible to replace the functionsa(y, %), %S
%" (y, %) and %2 S

%""" 2 (y, %)

with a(y! ,k
j , %), %S

%" (y
! ,k
j , %) and %2 S

%""" 2 (y! ,k
j , %) with error remaining of order O(2! k/ 2). This yields

the alternative result [18, Theorem 4.2]: With

(2.6) ö- $ (! ) = exp
%
i

1
2! "

*
! "",

$2S
$! ""2 (y! ,k

j , %) ! ""
+&

1! ,k (! ),

one may express:

(2.7) (F ) $ )(y) = a(y! ,k
j , %) ( - $ - ) $ ) (T! ,k (y)) + 2 ! k/ 2f $ ,

where f $ is a ÒcurveletÓ-like function centered at#(+) (cf. [18], (23)).
Furthermore, the change of coordinatesT! ,k can be approximated by expansion ofS(y, %) about

(y! ,k
j , %), yielding the approximation [18, Theorem 4.3]: One may express

(2.8) (F ) $ )(y) = a(y! ,k
j , %) ( - $ - ) $ )

0
DT$ (y %y! ,k

j ) + M $ á(y %y! ,k
j )2

1
+ 2 ! k/ 2f $ ,

where f $ is a ÒcurveletÓ-like function centered at#(+) (cf. [18], (23)) , DT$ = %T ! ,k

%y (y! ,k
j ) =

%2 S
%"%y (y! ,k

j , %) and M $ = 1
2

%2 S
%y2 (y! ,k

j , %)%. In this approximation of T! ,k , the quadratic term in y
corresponds to the curvature of an inÞnitesimal plane wave attached to) $ under the the underlying
canonical transformation, and the linear term is composed of a rigid motion, shear along the wave
front and dilations along and perpendicular to the wave front. It is important to note that the further
approximations are tied to particular wave packetsunlike the expansion given in Theorem 2.5.

2.2. Prolate spheroidal wave functions (PSWFs) and tensor products. Here, we re-
visit (2.4). The phase of the exponential on the left-hand side consists of terms each of which reveals
a separation of variables in phase space. We discuss how to construct a separated representation as
expressed by the right-hand side of (2.4).

2.2.1. PSWFs. We make use of the eigenfunctions' of the integral operator F c with kernel
exp[icxz]:

(F c ' )(x) =
! 1

! 1
exp [icxz] ' (z)dz, c$ R+ , x $ [%1, 1].

These eigenfunctions' turn out to be the prolate spheroidal wave functions, or Slepian functions.
We refer to Appendix A and to the references in this paragraph for a detailed treatment onthese
functions. Here, we give a brief summary. Originally, PSWFs were introduced and studied in the
late 19th century in a classical mathematical physics context as the continuous eigenfunctions of
the di! erential operator:

(2.9) D c = (1 %x2)
d2

dx2 %2x
d

dx
%c2x2, c $ R+ ,

on the interval [%1, 1]. In the early 60s, in a series of seminal papers [36, 37, 48, 49, 50], it was
discovered that PSWFs are also the eigenfunctions' of the above integral operator. It is this later
property that has drawn the interest of researchers from di! erent Þelds, and will also be most useful
to us here. An extension of PSWFs to general dimensions, termed generalized PSWFs, has been
introduced in [48]: For eachc $ R+ , there exists a countable set of numbers/ c

&, which are either
real or imaginary, such that the equation

(2.10) / c
&' c

&(x) =
!

R
exp[ic"x, z#]' c

&(z)dz, ||x|| * 1
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2 / ! !
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g1( ! )

! ! ! 2
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Fig. 2 . Illustration of PSWF coordinates for g(" ) and D = 3 (d = 3 ). The Cartesian boxes f (y) and g(" ) need
to be included in the unit ball R on which $ c

" (%, ! ) form an orthonormal basis.

has a continuous solution onR, where R is the unit (hyper-)ball in D dimensions, and0 a multi-
index. These functions' c

& are the generalized PSWFs1. They are bounded, purely real, orthonormal
and complete in L 2(R). It can be shown that these functions are also the eigenfunctions of a dif-
ferential operator similar to (2.9), which allows to construct e" cient procedures for their numerical
evaluation. Their eigenvalue spectrum consists of only very few eigenvalues with signiÞcant magni-
tude (the precise number depending on the bandwidth parameterc) and then decays exponentially
fast to values close to zero [37, 35, 38]: For instance, forD = 1, the spectrum contains roughly 2c/ *
eigenvalues with magnitude close to

2
2* /c , then has exponential decay.

PSWFs have lately received considerable attention in the computational community and have
been used in an important number of applications in various contexts (e.g. [9, 57]), mostly due to the
fact that a numerical tool for evaluating them for practically all values of c encountered in practice
has become available [46, 62] (see also e.g. [42, 61] for asymptotic results and approximations). In
dimension D = 1, PSWFs can be numerically constructed by expansions in Legendre polynomials.
For D ) 2, they are constructed in polar coordinates (( , $ ), in which their radial parts separate
from their angular parts:

' c
& = ' c

&(( , $ ) = %c
&(( )S&($ ).

The radial functions %c
&(( ) are obtained as expansions in Jacobi polynomials, while the angular

portions S&($ are given by complete sets of orthonormal surface harmonics (in the practically most
important case D = 3, these are the spherical harmonics). The corresponding eigenvalues can be
obtained by numerical integration of (2.10) (or, for D ) 2, its counterpart for the radial functions
%c

&(( )). We refer to Appendix A for more details on the numerical construction of PSWFs.

2.2.2. Tensor product. The kernel of operator (2.10) admits the representation:

(2.11) exp[ic"x, z#] =
'

&

/ c
&' c

&(x)' c
&(z), ||x||, ||z|| * 1.

Motivated by the above mentioned compactness of the eigenvalue spectrum, we will now use (2.11)
in the construction of the tensor-product (2.4). We start with deÞning appropriate functions of

%2 S
%"""j %"""l

(y, %) and
" ""

j " ""
l

" " mapping onto the unit ball R . Then we establish the relation between the

1 In what follows, we will use the term PSWF for both PSWFs in one dimension, and generalized PSWFs.
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tensor product terms , ( r )
! ,k (y) and ö- ( r )

! ,k (! ) and the PSWFs. Finally, we investigate the numerical
rank R of the tensor product (2.4) when constructed from (2.11).

We begin with extracting from the matrices %2 S
%"""j %"""l

(y, %) and
" ""

j " ""
l

" " the vector-valued functions
÷f ! : Rd ! RD (d) ÷g : Rd ! RD (d) :

÷f ! (y) =

3

(2 %1jl )
$2S

$! ""
j $! ""

l
(y, %)

4

, ÷g(! ", ! "") =
%
(2 %1jl )

! ""
j ! ""

l

! "

&
,

where

D(d) =
(d %1)d

2

due to symmetry in partial derivatives and in ! ""
j ! ""

l . Let:

(2.12) c = c(%) =
1
2

sup
1 ! ,k ( " )

|÷g(! ", ! "")| sup
y

5
5
5÷f ! (y)

5
5
5,

and deÞne:

(2.13) f ! (y) = ÷f ! (y)/
.

c, g(! ", ! "") = ÷g(! ", ! "")/
.

c.

By elementary manipulations of the left hand side of (2.4), we see that:

(2.14) exp
%
i

1
2! "

*
! "",

$2S
$! ""2 (y, %) ! ""

+&
1! ,k (! ) = exp

6

7i
1
2

d'

j,l =2

! ""
j ! ""

l

! "

$2S
$! ""

j $! ""
l

(y, %)

8

9 1! ,k (! ) =

exp

6

7i
1
2

D (d)'

m =1

÷gm (! ", ! "") ÷f m (y)

8

9 1! ,k (! ) = exp [i c"f (y), g(! ", ! "")#] 1! ,k (! ) =

=
'

&

/ c
&' c

&(f (y)) ' c
&(g(! ", ! "")) 1! ,k (! ).

The (transformed) Cartesian boxesf (y) and g(! ", ! "") in (2.13) have been included in the unit ball
R by normalization with the bandwidth parameter c since PSWFs are deÞned on (hyper-) balls
(cf. illustration in Fig. 2). We note that in view of the parabolic scaling, c in (2.13) is (asymptoti-
cally) independent of scale since supj,l, 1 ! ,k ( " ) ! ""

j ! ""
l / ! " = sup j,l, 1 ! , 1 ( " ) (!

""
j 2k/ 2)(2k/ 2! ""

l 2k/ 2)/ ! "/ (! "2k ) =

supj,l, 1 ! , 1 ( " ) ! ""
j ! ""

l / ! " and %2 S
%""" 2 (y, %) are scale independent.

Now let the sequence of multi-indices01, 02, á á ácorrespond to the sorted sequence of eigenvalues
|/ c

&1
| ) |/ c

&2
| ) á á á. We truncate the inÞnite sum over the multi-index 0 at the Rth term, to within

precision 2(k):

(2.15) exp
%
i

1
2! "

*
! "",

$2S
$! ""2 (y, %) ! ""

+&
1! ,k (! ) =

R ! ,k'

r =1

/ c
&r

' c
&r

(f (y)) ' c
&r

(g(! ", ! "")) 1! ,k (! ) + 2(k)

=
R ! ,k'

r =1

, ( r )
! ,k (y) ö- ( r )

! ,k (! ) + 2(k),

where in view of Theorem 2.1,2(k) ' 2! k/ 2 in order to achieve accuracyO(2! k/ 2) at frequency
scalek. We complete our construction (2.15) of the tensor-product (2.4) by identifying:

, ( r )
! ,k (y) = ' c

&r
(f (y)) ,(2.16)

ö- ( r )
! ,k (! ) = / c

&r
' c

&r
(g(! ", ! "")) .(2.17)
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f (x)

g(
y)

e x p( ic f (x) g(y) )

! 1 0 1

! 1

0

1 f (x)

g(
y)

!
j ! j " j (f (x)) " j (g(y))

! 1 0 1

! 1

0

1

0 5 10

! 4

! 2

0

j

l og10
| ! j |
| ! 0 |

f (x)

g(
y)

" 0(f (x)) " 0(g(y))

! 1 0 1

! 1

0

1 f (x)

g(
y)

" 1(f (x)) " 1(g(y))

! 1 0 1

! 1

0

1 f (x)

g(
y)

" 2(f (x)) " 2(g(y))

! 1 0 1

! 1

0

1

Fig. 3 . Finite rank tensor-product approximation of complex exponential for D = 1 and bandwidth c = 10
(depicted are the real parts only): Exponential (top left), tensor-pro duct approximation with R = 15 terms (top
center), eigenvalue spectrum |&c

" j
| (top right). First three terms of tensor-product approximation (bo ttom).

Here, the eigenvalues/ c
& could alternatively be absorbed in either of the functions2 , ( r )

! ,k (y) and
ö- ( r )

! ,k (! ). Fig. 3 depicts an example Þnite rank tensor-product approximation of exp[icf (x)g(y)] for
D = 1 and bandwidth c = 10.

It is important to note that in our application of (2.15), both the expansion coe" cients for
constructing the functions ' c

&r
and the eigenvalues can be pre-computed and tabulated for given

discrete sets of bandwidth parametersc, say, c1 < c 2 < á á á, for the highest desired accuracy2. For
actual bandwidth c given by (2.12), the bandwidth used in (2.15) can then be chosen as the smallest
ci such that ci ) c, which guarantees that the values of the functions (2.13) are conÞned to the unit
ball. In order to keep the rank of (2.15) close to the smallest possible rank, the setci has to be
chosen dense enough, for instance such thatR(ci +1 ) = R(ci ) + 1. In the following paragraph, we
proceed with a more detailed analysis of the rank properties of tensor product (2.15).

Rank estimates. The rank R of approximation (2.15) is controlled by the desired precision2
and the bandwidth parameter c, which is in turn determined by the precise choice of the frequency
tiling (1.3), and by the largest value of | %2 S

%""" 2 (y, %)| attained on y. The exponentially fast decay of the
eigenvalue spectrum, beyond a small number of eigenvalues/ c

&1
, á á á, / c

&L
with signiÞcant magnitude

[37, 35, 38, 47, 62], and the orthonormality of the functions' c
j guarantee the fast convergence of

(2.15) and Þnite rank R for arbitrarily small Þnite precision 2. We revisit here bounds on the
precision 2 for given rank R for D = 1 ( d = 2). We have:

(2.18) |/ c
r | =

.
* cr (r !)2

(2r )!&(r + 3
2 )

exp
%! c

0

"
2(' b

r (1))2 %1)
2b

%
r
b

#
db

&
*

.
* cr (r !)2

(2r )!&(r + 3
2 )

and |' c
r (1)| <

2
r + 1 / 2 [47], hence:

(2.19) |/ c
r | *

.
* cr (r !)2

(2r )!&(r + 3
2 )

*
.

* cr r !
(2r )!

*
.

* cr 2! r log 2 ( r ) =
.

* 2! r [log 2 ( r ) ! log 2 (c)] .

2We omit explicit reference to the bandwidth parameter c here for convenience of notation.
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Fig. 4 . Plots of numerical evaluation of (2.23) for c = { 10, 20, 30, 50} (blue solid line) in ! log( ' ) (left) and
in ! log( ' )/ log( ! log( ' )) (right) vs. R coordinates. Dashed solid lines correspond to linear Þts in the res pective
coordinates. Plot of bound (2.21) (left, red dotted line).

Furthermore, for r ) 2c,

(2.20) |/ c
r | * 2! r +1 .

which together with M c
r = max s%r max! 1%x %1 |' c

s(x)| * 2
.

r gives the following L & bound, valid
for R ) 2c [47]:

2& (R) =

5
5
5
5
5
F (x, y) %

R'

r =1

/ c
r ' c

r (x)' c
r (y)

5
5
5
5
5
&

*
&'

r = R +1

|/ c
r |(M c

r )2 *
8(R + 2)

2R .

We use the fact that the functions ' r form an orthonormal basis on the unit ball to obtain the L 2

bound:

(2.21) 2(R) =

5
5
5
5
5

5
5
5
5
5

&'

r = R +1

/ r ' c
r (x)' c

r (z)

5
5
5
5
5

5
5
5
5
5
L 2 ( ! 1,1)

=

:;
;
<

&'

r = R +1

|/ r |2 *
4

.
3

2! (R +1) ,

valid for R ) 2c, and the rank estimate:

(2.22) R(2) ) % log2(2) + log 2(4/
.

3) %1.

Note that these bounds are based on (2.20), which allows us to obtain closed form estimates, but
is very conservative. We aim at obtaining a Þner estimate on the order ofR(2) and proceed with
investigating the right most inequality in (2.19). We evaluate numerically:

(2.23) 2(R) =

:;
;
<

&'

r = R +1

|/ r |2 *
.

*

:;
;
<

&'

r = R +1

2! 2r [log 2 ( r ) ! log 2 (c)]

for di! erent bandwidths c. Results are plotted in Fig. 4, together with (2.22). Clearly, the numerical
results indicate that:

(2.24) R(2) = O(%log(2)/ log(%log(2))) .

For accuracy 2(k) = O(2! k/ 2) we therefore have:

(2.25) R(k) = O(k/ log(k))

in agreement with Theorem 2.1.
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3. Discretization. We develop an algorithm for the evaluation of the approximate action of
F on a function u at discrete frequency and space points! l and yn , respectively, based on the
approximation (2.5) for a single wave packet and tensor product (2.15). Our choice of discretization
will closely match the structure of the discrete wave packet transform [21]. The motivation for this
is that data can be e" ciently and e! ectively stored, compressed, regularized, and pre-processed in
the wave packet domain (i.e., in form of wave packet coe" cients). Our overlay of discretizations
will enable to switch from wave packet coe" cients to data in the frequency domain Ð the input to
(1.1) Ð e" ciently through standard FFTs. We assume in this section that the generating function
S(y, ! ) Ð more speciÞcally, its partial derivatives %2 S

%""" 2 (y, %) and the functions T! ,k (y) and T ! 1
! ,k (x)

Ð are known. The issue of how they can be computed for parametrices of evolution equations will
be the subject of Section 4. As a special case, we will revisit discretization of evolution time into a
sequence of short time steps (Óthin-slabÓ propagation) in Section 3.5.

3.1. Discrete almost symmetric wave packets and approximate FIO action. We begin
with writing the convolutions ( - ( r )

! ,k - ) $ )(T! ,k (y)) in (2.5) in the Fourier domain:

(3.1) ÷. $ (y) = ( F ) $ )(y) , a(y, %)( ! 1/ 2
k

R ! ,k'

r =1

, ( r )
! ,k (y)

'

" ' 1 ! ,k

ei (T ! ,k (y ) ," ) ö- ( r )
! ,k (! )ö#(! ).

In what follows, we will absorb the amplitudes a(y, %) in the functions , ( r )
! ,k (y). The structure of

(3.1) is reminiscent of the (adjoint) discrete wave packet transform:

(3.2) u(x) =
'

$

u$ ) $ (x) =
'

"

'

! ,k

ei ( x, " ) öu(! ) ö&! ,k (! )ö# ! ,k (! ),

since:

(3.3) (F u)(y) =
'

$

u$
÷. $ (y) =

'

! ,k

R ! ,k'

r =1

, ( r )
! ,k (y)

'

" ' 1 ! ,k

ei (T ! ,k (y ) ," ) öu(! ) ö&! ,k (! )ö# ! ,k
ö- ( r )

! ,k (! ),

and we will indeed use the same discretization, which we recall here brießy for convenience(see [21]
for details). We assume that the datau(x i ) are given in discrete form at sampling pointsx i = N ! 1i ,
i $ Rd, %N

2 * i n < N
2 . Following the discretization of the ÓinnerÓ forward transform:

(3.4) ÷uj, ! ,k =
1

( 1/ 2
k

1
3"

k (3""
k )n ! 1

'

l

öu(! ! ,k
l ) ö&! ,k (! ! ,k

l ) exp[2* i"x ! ,k
j , ! ! ,k

l #] , u$ ,

the discretization of the ÒinnerÓ adjoint transform öu(! ) ö&! ,k (! )ö# ! ,k (! ) =
)

$ " :! " = ! ,k " = k u$ " ö) $ " (! ) is
obtained as:

(3.5) öu(! ! ,k
l ) ö&! ,k (! ! ,k

l )ö# ! ,k (! ! ,k
l ) = ( ! 1/ 2

k

=

>
'

j

÷uj, ! ,k exp
.
%2* i"x ! ,k

j , ! ! ,k
l #

/
?

@ ö# ! ,k (! ! ,k
l ).

The points ! ! ,k
l are chosen on a (regular) rotated grid. SpeciÞcally, we let

(3.6) ' k =

A

l $ Zd

5
5
5
5
5

%
N "

k

2
* l1 <

N "
k

2
, . . . , %

N ""
k

2
* ld <

N ""
k

2

(

.

The points in this set are denoted by ' k
l . The parameters (N "

k , N ""
k ) are even natural numbers

with N "
k > L "

k and N ""
k > L ""

k , while 3"
k = N "

k /L "
k and 3""

k = N ""
k /L ""

k are the oversampling factors,
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determining the accuracy of approximation (3.4) to the inverse Fourier transform. We choose the
! ! ,k

l (covering the box B ! ,k ) as

(3.7) ! ! ,k
l = # ! 1

! ,k

B
D k S! 1

k ' k
l + ! "

k e1
C

,

where the matrix Sk is deÞned as

Sk =
"

N "
k 01$ d! 1

0d! 1$ 1 N ""
k I d! 1

#
.

The dot product in the phase of the exponential in (3.5) then becomes

(3.8) "x ! ,k
j , ! ! ,k

l #=
B
D k S! 1

k ' k
l + ! "

k e1
Ct

D ! 1
k X j =

j 1! "
k

L "
k

+
"

j 1l1
N "

k
+

j 2l2 + . . . + j d ld
N ""

k

#
.

Thus, the speciÞc choice of points! ! ,k
l allows for a fast evaluation of öu(! ! ,k

l ) ö&! ,k (! ! ,k
l ) from ú÷uj, ! ,k

(cf. (3.5)) for l $ ' k :

(3.9) öu(! ! ,k
l ) ö&! ,k (! ! ,k

l ) exp(2* ij 1! "
k /L "

k ) = ( ! 1/ 2
k N "

k (N ""
k )d! 1

'

j

÷uj, ! ,k exp [%2* i"x j , ! l #] .

where ! l = l and x j = S! 1
k j with j $ ' k , while (N "

k (N ""
k )d! 1) = det Sk . The number N k

" of discrete

frequency points ! ! ,k
l in (3.9) is of order:

N k
" ' 3"

k (3""
k )d! 12k 2

k ( d ! 1)
2 , N kmax

" ' 3"
k (3""

k )d! 1 (N/ 2c0)
d +1

2 .

One can use ann-dimensional FFT for the fast evaluation of öu(! ! ,k
l ) and ö&! ,k (! ! ,k

l ) in (3.9) when
the values for ÷uj, ! ,k are given at x ! ,k

j , i.e., from the forward wave packet transform of the data. The
discrete outer transform:

(3.10) u(x i ) ,
'

! ,k

'

l ' ! k

e2' i ( x i ," ! ,k
l ) öu(! ! ,k

l ) ö&! ,k (! ! ,k
l )ö# ! ,k (! ! ,k

l )

completes the discretization of (3.2). It is evaluated by USFFT [4, 24, 25] from irregularly spaced
points ! ! ,k

l to regularly spacedx i .

We proceed with the discretization of (3.3). First, note that the (arguments of) the generating
function S(y, ! ) bear physical units, and consequently the same is the case for the functions, ( r )

! ,k (y),
ö- ( r )

! ,k (! ) and x = T! ,k (y). If the data u(x i ) are sampled at sampling intervals( x
n in direction n, then

xphys
n = N ( x

n x l n and ! phys
n = ! l n / (N ( x

n ). We absorb the normalization factors in the functions
, ( r )

! ,k (y), ö- ( r )
! ,k (! ) and T! ,k and continue, with slight abuse of notation, to use the same symbols for

them. Now let yi = T ! 1
! ,k (x i ). Then,

"T! ,k (yi ), ! l #= "x i , ! l #,

and we obtain the discretization of (3.3):

(3.11) (F u)(yi ) ,
'

! ,k

R ! ,k'

r =1

, ( r )
! ,k (yi )

'

l ' ! k

e2' i ( x i ," ! ,k
l ) öu(! ! ,k

l ) ö&! ,k (! ! ,k
l )ö# ! ,k (! ! ,k

l ) ö- ( r )
! ,k (! ! ,k

l ).

We note that in contrast to (3.10), the ÓouterÓ transform! ! ,k
l ! x i (USFFT) has to be evaluated

per box (%, k), since the functionsT! ,k (y), , ( r )
! ,k (y) are di! erent for each box: (3.11) is organized as

(3.12) (Fu)(yi ) ,
'

! ,k

(Fu! ,k )(yi ),



MULTI-SCALE DISCRETE APPROXIMATION OF FIOS 105

where u! ,k denotes the data component of the box (%, k),

(3.13) u! ,k (x i ) =
'

$ " :k " = k, ! " = !

u$ " ) $ " (x i ).

For use in estimates below, let us be more speciÞc on the general procedure for tiling with
boxesB ! ,k outlined in Section 1, yielding discrete almost symmetric wave packets (see [21] for more
details): First, the radial direction is partitioned according to |! "| = c02k , k = 1 , á á á, kmax , where

the parameter c0 deÞnes the radius of the coarsest scalek = 0 and kmax =
D
log2

0
N

2c0

1E
. Then,

for d ) 3, the set of rotated boxes (1.3) is constructed for eachk > 0 with the cubed sphere, thed
dimensional cube consisting of 2d (d%1)-dimensional sides. On each side, a grid is constructed, with
Nc,k =

F
c12(k ! 1) / 2

G
points in one direction. The number of orientations %at scale k is then given

by %max,k = 2d(Nc,k )d! 1 ,
.
(
.

2dc1)d! 12
k ( d ! 1)

2

/
' 2

k ( d ! 1)
2 , the parameter c1 deÞning the number

of orientations for k = 1, and the total number of boxes is:

(3.14) N ( ! ,k ) ' N
d ! 1

2 .

3.2. Deformation, compression and oversampling. The action of F on (3.13) is twofold:
ModiÞcation of its spatial support, resulting from application of the frequency windows ö- ( r )

! ,k , and de-
formation under the transformation y ! T! ,k (y). Both need to be accounted for in the discretization
by introduction of additional oversampling factors.

Oversampling and calculation domain. Let E(x) = T ! 1
! ,k (x) denote the co-moving frame of

reference ofF u! ,k , and consider the data component (3.13) with support:

U! ,k = supp u! ,k (x) /
"

%
1
2

,
1
2

&d

.

Under the action of F :

÷U! ,k = supp (F u! ,k )(E(x)) /
"

%4
1
2

, 4
1
2

&d

, 4 ) 1, U! ,k 0 ÷U! ,k ,

since the functions ÷. $ (E(x)) = ( F ) $ )(E(x)) constituting ( Fu! ,k )(E(x)) have enlarged spatial sup-
port w.r.t. ) $ (x) in the ! "" directions. Consequently, the sampling density in! has to be increased
by a factor 4 ) 1 w.r.t. the original discretization ! ! ,k

l . To account for this, we construct the
above discretization for zero-padded data, i.e. discretization is performed for datauzp (x i ) obtained
from the original data u(x i ) by augmenting in each direction with 1(4 % 1)N 2 zeros. We denote
the resulting box data components (3.13) byuzp

! ,k . Note that the frequency support of ÷. $ (E(x))
and hence of (F u! ,k )(E(x)) remains in 1! ,k (! ), as is clear from (3.11) and the fact that ö# ! ,k (! ) and
ö# ! ,k (! ) are supported on1! ,k (! ).
The amount of spreading of ÷. $ (E(x)) in the ! "" directions can be related to the parametersc0, c1 of
the wave packet transform and to %2 S

%""" 2 , by geometrically imposing connectivity of wave packets at

neighboring orientations under the action ofF . For instance, let l ""
k and ÷l ""

k be measures of the width
of ) $ (x) and ÷. $ (E(x)), respectively, for d = 2. Then, ÷l ""

k , max(l ""
k , 2 %2 S

%""" 2 tan(C* / %max,k )), where C
is a constant depending on the overlap of two neighboring boxes.

In general, only a fraction of the wave-packets) $ " , +" : k" = k, %" = %will yield numerically
signiÞcant contributions to u! ,k and (Fu! ,k ), resulting in e! ective compression in the wave packet
domain [12, 51]. Together with the decay properties (1.6), we obtain an e! ective reduction of the
calculation domain on which (F u! ,k ) actually needs to be evaluated. Indeed, a wave packet) $ (x)
has, to precision2, support in a box bj, ! ,k :
(3.15)

supp( ) $ = inf
x ' X

{| ) $ (x)| ) 2} 0 bj, ! ,k , ||bj, ! ,k || = l "
k & (l ""

k )d! 1, l "
k ' 2! k , l ""

k ' 2! k/ 2,
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and the support of e! ectively non-zerou! ,k is therefore:

(3.16) V! ,k =
H

j

bj, ! ,k , V! ,k 0 U! ,k .

Consequently, for ÷. j, ! ,k (x) and (F u! ,k )(x), we have:

supp( ÷. j, ! ,k 0 ÷bj, ! ,k , ||÷bj, ! ,k || = ÷l "
k & (÷l ""

k )d! 1, ÷l "
k ' 2! k , ÷l ""

k ' 2! k/ 2,

÷V! ,k =
H

j

÷bj, ! ,k , ÷V! ,k 0 ÷U! ,k , ÷V! ,k 0 V! ,k .

Note that the volume of e! ective supports of ) $ (x) and ÷. j, ! ,k (E(x)) decay with increasing fre-

quency scalek as: O
0

2! k 2! k d ! 1
2

1
. Oversampling and compression in the evaluation of (3.11) are

schematically depicted in Fig. 5.

Deformation and spatial grid resolution. Application of the coordinate transform y %!
x = T! ,k (y), V! ,k %! W! ,k = T ! 1

! ,k (V! ,k ) maps the co-moving reference frameE(x) onto y and results

in a translation and deformation in space of ÷. j, ! ,k (y) and ÷V. This yields irregularly spaced samples
yi in ÷W! ,k from regularly spaced samplesx i in ÷V! ,k (and vice versa, irregularly spaced samplesxn

in ÷V! ,k from regularly spaced samplesyn in ÷W! ,k ) and may induce a local change in frequency in
the output domain y, since the mapx %! T ! 1

! ,k (x) can locally contract or expand. Indeed, for two
points ÷x and ÷y connected by ÷y = T ! 1

! ,k (÷x), it follows from (2.8) that:

(3.17)
$x
$y

5
5
5
5
÷x

=
$2S(÷y, %)

$!$ y
.

The e" cient evaluation of the sum over boxes
)

! ,k requires (Fu! ,k )(y) to be evaluated on (for
convenience of visualization, regularly spaced) pointsyn on a grid that is common for each box.
The simplest choice is given by deÞnition of an (arbitrary) common reference pointyn, 0 and global
sampling density ( y, chosen to be at least as dense as the densest local samplingT ! 1

! ,k (x j ): ( y =
( min y = inf j, ! ,k |T ! 1

! ,k (x j + ( x) %T ! 1
! ,k (x j )|. Alternatively, we can locally adapt the grid resolution

through a hierarchical set of resolution levels{ ( l y} , reßecting (3.17) and constructed, for instance,
in a multiresolution manner as { ( l y = 2 l ( min y} , l = 0 , 1, á á á, in order to keep the visualization of
(Fu)(yn ) e" cient.

Once the grid is Þxed, the coordinate transform is evaluated by USFFT from discrete frequen-
cies ! ! ,k

l $ 1! ,k (! ) to irregularly spaced discrete samplesxn = T! ,k (yn ) in ÷V! ,k .
We note that the rate of compression is data-dependent, and so is the resulting reduction in cal-
culation domain ÷V! ,k , i.e. the e! ective number of points xn = T! ,k (yn ) that actually need to be
evaluated per box (%, k). Also, the output sampling density ( y is controlled by the derivatives of
S and hence problem-dependent. In our analyses of computational complexity given below, the
resulting alterations of number of operations will be absorbed in the oversampling factor 4.

3.3. ÓBoxÓ algorithm. Here we analyze the sequence of operations that need to be per-
formed per box in the evaluation of (3.11). We start from the Óinner adjointÓ discrete transform
(3.9), öuzp (! ! ,k

l ) ö&! ,k (! ! ,k
l ), obtained for zero-padded datauzp (x i ), and perform the following ßow of

operations:
1. evaluate tensor product functions, ( r )

! ,k (yn ) and ö- ( r )
! ,k (! ! ,k

l ), r = 1 , á á á, R! ,k , ! ! ,k
l $ 1! ,k

2. for each tensor product term:
(a) window %! ö- ( r )

! ,k (! ! ,k
l )öu(! ! ,k

l ) ö&! ,k (! ! ,k
l )ö# ! ,k (! ! ,k

l )

(b) adjoint USFFT from ! ! ,k
l $ 1! ,k (! ) to xn = T! ,k (yn ) %!

)
j

0
- ( r )

! ,k - ) j, ! ,k

1
(xn )

(c) multiply with amplitudes , ( r )
! ,k (yn )
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T ! , k

U ! , k

T ! 1
! , k ( U ! , k)

u!, k( x )

u!, k( T ! , k( y ) )

V ! , k

W ! , k

T ! , k

÷U ! , k

T ! 1
! , k ( ÷U ! , k)

÷V ! , k

÷W! , k

(F u!, k)(T ! 1
! , k (x))

(F u!, k)(y)

T ! , k! " !" ÷" " &

!
!

÷W ! , k

"
! u!, k(x)

(F
"

! u!, k) (y)

Fig. 5 . Illustration of oversampling and ÓcompressionÓ of calculation domain for one single wave packet (top;
left: zero order approximation, right: approximations to O(2# k/ 2 )) and for three wave packets with common central
position and frequency scale and di ! erent orientations (bottom; approximation to O(2# k/ 2 ).

3. stack contributions of tensor-product terms
%! (F u! ,k )(yn ) ,

)
j

)
r , ( r )

! ,k (yn )
0

- ( r )
! ,k - ) j, ! ,k

1
(xn )

The operations count per box (%, k), including explicitly the constants involved, yields:
- evaluation of R! ,k PSWFs3 at (4N )d spatial points: O(cR! ,k (4N )d)

- evaluation of R! ,k PSWFs at N " frequency points: O
0

cR! ,k cN
d +1

2

1

- 4R! ,k N " point multiplications: O
0

R! ,k (4N )
d +1

2

1

- R! ,k (4N )d point addition: O
B
R! ,k (4N )d

C

- R! ,k USFFTs from ! ! ,k
l $ 1! ,k to (4N )d spatial points: O(dR! ,k cu (3u 4N )d log(N )), where

3u is the oversampling factor of the USFFT.
Overall, the number of operations to be performed per box is hence:

(3.18) ' O
B
dN d log(N )

C
.

3Evaluation of a PSWF at one point is O(c) [62]
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log
10

(t)

log
2
(N)

6 7 8 9 10

1

2

3

4

Fig. 6 . Computation time as a function of sample size N (red dots and broken line) and complexity estimate
(3.19) (black solid) for parametrix of half-wave equation (cf. Section 5.1) in d = 2 dimensions in homogeneous
medium ( v = 2 km/s ). Evolution time is T = 5 s).

We continue with describing a modiÞcation of the above algorithm in which we seek toreduce
the number of USFFTs by substituting them with standard FFTs. Standard FFT has same com-
putational complexity as USFFT but signiÞcantly smaller constants, hence requires less compu-
tation time. Here, we start from the Óinner adjointÓ discrete transform (3.9), öu(! ! ,k

l ) ö&! ,k (! ! ,k
l ),

for original data u(x i ). We Þrst obtain the box contribution u! ,k on the regularly spaced points
x i by USFFT and then zero-pad, use standard FFTs to obtain the tensor-product contributions
, ( r )

! ,k (yi )
0

- ( r )
! ,k - ) j, ! ,k

1
(x i ), and evaluate the change of coordinates toxn = T! ,k (yn ) by one Þnal

USFFT:
1. compute adjoint USFFT of öu(! ! ,k

l ) ö&! ,k (! ! ,k
l )ö# ! ,k (! ! ,k

l ) from ! ! ,k
l $ 1! ,k (! ) to x i %! u! ,k (x i )

2. zero-pad%! uzp
! ,k (x i )

3. compute FFT of uzp
! ,k (x i ), inducing regularly spaced frequencies÷! %! öu( ÷! ) ö&! ,k ( ÷! )ö# ! ,k ( ÷! )

4. compute tensor product functions, ( r )
! ,k (yi ) and ö- ( r )

! ,k ( ÷! ), r = 1 , á á á, R! ,k , ÷! $ 1! ,k (! )
5. for each tensor product term:

(a) window %! ö- ( r )
! ,k ( ÷! )öu( ÷! ) ö&! ,k ( ÷! )ö# ! ,k ( ÷! )

(b) inverse FFT from ÷! $ 1! ,k to x j %!
0

- ( r )
! ,k - ) j, ! ,k

1
(x i )

(c) multiply with amplitudes , ( r )
! ,k (yi )

6. stack contributions of tensor-product terms
%! (F u! ,k )(yi ) ,

)
j

)
r , ( r )

! ,k (yi )
0

- ( r )
! ,k - ) j, ! ,k

1
(x i )

7. coordinate transform: FFT x i ! ÷! and adjoint USFFT ÷! $ 1! ,k (! ) ! xn = T! ,k (yn )

This requires only one USFFT from irregularly spaced! ! ,k
l $ 1! ,k to N d regularly spaced pointsx j ,

and one USFFT from regularly spaced÷! $ 1! ,k to (4N )d irregularly spaced pointsxn . In addition,
R! ,k + 2 FFTs between ÷! $ 1! ,k and (4N )d spatial points x i have to be evaluated. The last item in
the operations count for the previous algorithm is now replaced by:

- one USFFT without and one with additional oversampling 4: O(d(1+ 4d)cu (3u N )d log(N ))
- R! ,k + 2 FFTs: O(d(R! ,k + 2) cf (4N )d log(N ))

The computational complexity remains the same as for the previous algorithm and is given by (3.18).

Finally, the accumulative complexity for the evaluation of all N ( ! ,k ) boxes (cf. (3.14)) is:

(3.19) ' O
0

dN
3d ! 1

2 log(N )
1

.

Actual computation time as a function of problem sizeN for d = 2 ( D = 1) is plotted in Fig. 6 and
compared to the complexity estimate (3.19).
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3.4. Further approximations: ÓPacketÓ algorithms. We proceed with analyzing the dis-
cretization of approximations (2.7) and (2.8). In approximation (2.7), the functions - $ (! ) are in
general di! erent for each data wave packet) $ (x). Therefore, the computation of ÷. j, ! ,k (E(x i )) =
(- $ - ) j, ! ,k ) (E(x i )) must be performed for each packet individually. The change of coordinatesT! ,k

can still be evaluated for all packets of a box (%, k) at once, sinceT! ,k is independent of indexj . We
start from the set of data wave packet coe" cients (3.4) for zero-padded datauzp (x i ) and obtain the
following Óhybrid packet-boxÓ algorithm:

for each box (%, k):
Ð for each+" : k" = k, %" = %:

1. FFT from u$ " to ! ! ,k
l $ 1! ,k (! ) %! öu$ " (! ! ,k

l ) ö&! ,k (! ! ,k
l )

2. window %! ö- $ " (! ! ,k
l )öu$ " (! ! ,k

l ) ö&! ,k (! ! ,k
l )ö# ! ,k (! ! ,k

l )

3. multiply with amplitude %! ö÷. $ " (! ! ,k
l ) = ö- $ " (! ! ,k

l )öu$ " (! ! ,k
l ) ö&! ,k (! ! ,k

l )ö# ! ,k (! ! ,k
l )

Ð sum
)

$ "
ö÷) $ " (! ! ,k

l )

Ð adjoint USFFT from ! ! ,k
l $ 1! ,k (! ) to xn = T! ,k (yn )

%! (F u! ,k )(yn ) ,
)

j a(y! ,k
j , %) ( - $ - ) $ ) (xn )

stack contributions of boxes (%, k), yielding the Þnal approximation (2.7) for (Fu)(yn ).

In contrast, for approximation (2.8), the approximate change of coordinates also has to beevaluated
packet per packet. We obtain a pure ÓpacketÓ algorithm, with operations per individual packet:

1. FFT from u$ to ! ! ,k
l $ 1! ,k (! ) %! öu$ (! ! ,k

l ) ö&! ,k (! ! ,k
l )

2. window %! ö- $ (! ! ,k
l )öu$ (! ! ,k

l ) ö&! ,k (! ! ,k
l )ö# ! ,k (! ! ,k

l )

3. multiply with amplitude %! ö÷. $ (! ! ,k
l ) =) ö- $ (! ! ,k

l )öu$ (! ! ,k
l ) ö&! ,k (! ! ,k

l )ö# ! ,k (! ! ,k
l )

4. adjoint USFFT from ! ! ,k
l $ 1! ,k (! ) to

0
DT$ (yn %y! ,k

j ) + M $ á(yn %y! ,k
j )2

1
%! (F ) $ )(yn )

Summing the contributions from all data wave packets yields the action (Fu) under approximation
(2.8). The operations count for evaluating approximations (2.7) and (2.8) for one single wave packet
is:

- one N " point FFT: O
0

d(4N )
d +1

2 log(N )
1

- four N " point multiplications and one multiplication with a constant: O
0

(4N )
d +1

2

1

- one adjoint USFFT from N " frequency points to (4N )d irregularly spaced points in space:
O

B
dcu (3u 4N )d log(N )

C

yielding:

(3.20) ' O
B
dN d log(N )

C
.

The total number of wave packet coe" cients is roughly O(N d), yet the number of data wave
packets with practically non-zero coe" cients strongly depends on the data and typically amounts
to only a small fraction of this number. Let us nonetheless write out the complexity under the
assumption that F needs to be evaluated for all frame elements, bearing in mind that this situation
corresponds to limit cases such as a Dirac impulse or the absence of coherent structures (viz., random
noise). For approximation (2.8), this gives:

(3.21) ' O
B
dN 2d log(N )

C
,

and for the hybrid packet-box approximation (2.7):

(3.22) ' O
0

dN
3d +1

2 log(N )
1

,

which is above approximation (2.5), but below approximation (2.7) since the coordinate transform
USFFT can be performed per box (%, k).
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öu áö! ! ,k áö" ! ,k (#! ,k
l )

usf f t

!!
uzp (x i )

f f t
!!

u(x i ) ! uzp (x i )

f f t
!!

öu áö! ! ,k (#! ,k
l )

!!

öu áö! ! ,k áö" ! ,k ( ÷#)

!!
"

window
""

ö$( r )
! ,k (#! ,k

l )## "
window

""

ö$( r )
! ,k ( ÷#)##

öu áö! ! ,k áö! ! ,k áö$( r )
! ,k (#! ,k

l )

usf f t " ! ,k
l ! x n

""

öu áö! ! ,k áö! ! ,k áö$( r )
! ,k ( ÷#)

f f t

""
"

""

%( r )
! ,k (yn )## "

""

%( r )
! ,k (yi )##

!
r

a(y, ! )

!!

!
r

a(y, ! )

!!

a(yn , &)
!

r

!
j %( r )

! ,k (yn )
"

$( r )
! ,k " ' j, ! ,k

#
(xn ) a(yi , &)

!
r

!
j %( r )

! ,k (yi )
"

$( r )
! ,k " ' j, ! ,k

#
(x i )

f f t y i ! ÷" ; usf f t ÷" ! x n

!!

a(yn , &)
!

r

!
j %( r )

! ,k (yn )
"

$( r )
! ,k " ' j, ! ,k

#
(xn )

Table 3.1
ÓBoxÓ algorithm (left), with FFTs replacing USFFTs (right), for one box (#, k). Double arrows indicate opera-

tions performed for each individual tensor-product term, r = 1 , á á á, R ! ,k .

3.5. Example: Trotter product. Here, we analyze approximations (2.5), (2.7) and (2.8) for
evolution equations for the speciÞc case of discretization of evolution time into a sequence ofsmall
time steps. Consider the evolution equation

(3.23) [$t + i P(t, x, D x )]u = 0 , u|t = t 0 = u0,

on the interval t $ [t0, T ], where P is a pseudodi! erential operator with symbol in S1
1,0, in Rd (in

the case of the half wave equation,P = P(x, ! ) =
2

c(x)2||! ||2). The solution operator, F (t, t 0)
say, can be written in the form of a Trotter product, resulting in a computational scheme driven
by marching-on-in-t. If t ) tN > t N ! 1 > á á á> t 0, we let the operator WN (t, t 0) be deÞned as
WN (t, t 0) = øF (t, t N ) ) 1

i = N
øF (t i , t i ! 1), assuming that T ) tN +1 ) t ) tN . We have ! i = t i %t i ! 1,

! i * ! = O(N ! 1) as N ! ( . We consider a single component operatorøF (t i ! 1 + ! i , t i ! 1), and
set t " = t i ! 1 and ! = ! i . It can be approximated by the Òshort-timeÓ propagator, given by

(3.24) øF (t " + ! , t ")u(t ", .)(y) = (2 * )! n
!

exp[i (P(t ", y, ! )! % "! , y#)] öu(t ", ! ) d! ,

where P(t ", y, ! ) denotes the symbol of the operatorP in (3.23). This is a Fourier integral operator
of order 0 in the class considered in this paper, with the simple substitution

(3.25) a(y, ! ) = 1 , S(y, ! ) = P(t ", y, ! )! % "! , y#.

The associated canonical transformation is given by

# : (%$" P(t ", y, ! )! + y, ! ) ! (y, %$y P(t ", y, ! )! + ! );
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u! !

f f t
!!

u! !

f f t
!!

öu! ! áö! " ,k (" " ,k
l )

window, amp
!!

öu! ! áö! " ,k (" " ,k
l )

window, amp
!!

a(y" ,k
j , #)öu! ! áö! " ,k áö$" ,k áö%! ! (" " ,k

l )

!!

a(y" ,k
j , #)öu! ! áö! " ,k áö$" ,k áö%! ! (" " ,k

l )

!!
!

! ! :k ! = k, " ! = "

usf f t #! ,k
l ! x n

""

usf f t " " ,k
l !

"
DT ! á(yn " y" ,k

j ) + M ! á(yn " y" ,k
j )2

#

P
" ! : k ! = k, ! ! = !

""
!

j a(y" ,k
j , #) (%! # &! ) (xn )

!
j a(y" ,k

j , #) (%! # &! )
"

DT ! á(yn " y" ,k
j ) + M ! á(yn " y" ,k

j )2
#

Table 3.2
ÓHybrid box-packetÓ algorithm (left) and ÓpacketÓ algorithm (right) for o ne box (#, k). Double arrows indicate

operations performed for each individual wave packet.

with the Hamilton system,

(3.26)
dx
dt

=
$P
$!

(t, x, ! ) ,
d!
dt

= %
$P
$x

(t, x, ! ) ,

it follows that

# :
"

y %
dx
dt

(t ", y, ! )! , !
#

!
"

y, ! +
d!
dt

(t ", y, ! )!
#

which describes straight rays in the interval [t ", t " + ! ]. The canonical transformation # reßects a
numerical integration scheme for the Hamilton system, viz., the Euler method.

The Þrst-order term in the expansion of the phase yieldsT! ,k = $" P(t ", y, %). Under the map
T! ,k , y follows from solving x + $" P(t ", y, %)! = y which involves backtracking a straight ray that
connects (t " + ! , y) with ( t ", x). The second-order term in the expansion, ($" "" 2 P)( t ", y, %), is directly
related to solving the Hamilton-Jacobi system for paraxial rays (in ray centered coordinates) using
EulerÕs method and discretization step! ; this is discussed in more detail in Section 4.

In the case of depth extrapolation,t is replaced by the depthz and x is replaced by the transverse
coordinates and time, (x, t ) $ Rn . The principal symbol of P becomes

(3.27) P(z, (x, t ), (! , 5)) = %5
2

c(z, x)! 2 %5! 2|! |2,

and

(3.28) S((y, t), (! , 5)) = P(z", (y, t), (! , 5)) ! % "! , y# %5 t.

We introduce (! ! , 5! ) using projective coordinates (5! 1
! ! ! , 1)/

I
5! 2

! |! ! |2 + 1 = %, 5! 3= 0; %deter-

mines5! 1
! ! ! , and the propagation direction at depth z", c(z", y)(5! 1

! ! ! ,
I

c(z", y)! 2 %5! 2
! |! ! |2). The

expansion ofS yields the (principal) symbol of the paraxial wave equation, directionally developed
relative to %:

(3.29)
$P
$!

(z", (y, t), %) =
5! 1

! ! !I
c(z", y)! 2 %5! 2

! |! ! |2
,

$P
$5

(z", (y, t), %) = %
c(z", y)! 2

I
c(z", y)! 2 %5! 2

! |! ! |2
,
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(in the classical paraxial expansion,! ! = 0), and

(3.30) 5!
$2P
$! 2 (z", (y, t), %) =

[c(z", y)! 2 %5! 2
! |! ! |2] I %5! 2

! ! ! 4 ! !
F
c(z", y)! 2 %5! 2

! |! ! |2
G3/ 2

,

5!
$2P
$52 (z", (y, t), %) = %

c(z", y)! 25! 2
! |! ! |2

F
c(z", y)! 2 %5! 2

! |! ! |2
G3/ 2

,

5!
$2P

$!$5
(z", (y, t), %) = %

c(z", y)! 25! 1
! ! !

F
c(z", y)! 2 %5! 2

! |! ! |2
G3/ 2

.

Hence, with (! ", ! "") = R! 1
! (! , 5) and ! "" = ÷R! 1

! (! , 5) 4, and with:

$( " " ," "" ) P(., (., .), R! (! ", ! "")) = R! 1
! ($( " ,) ) P)( ., (., .), R! (! ", ! "")) ,

$" "" 2 P(., (., .), R! (! ", ! "")) = ÷R! 1
!

.
÷R! 1

! ($( " ,) )2 P)( ., (., .), R! (! ", ! ""))
/ T

,

the expression for the phase expansion of the operator is:

(3.31)
*

! ,
$P
$!

(z", (y, t), %)
+

+ 5
$P
$5

(z", (y, t), %) +
1

2! "

*
! "",

$2P
$! ""2 (z", (y, t), %) ! ""

+

=
"! , 5! 1

! ! ! # %5 c(z", y)! 2
I

c(z", y)! 2 %5! 2
! |! ! |2

+

1
2! "

J

! "",

=

K
K
>

÷R! 1
!

6

L
75! 1

!
÷R! 1

!

=

K
>

[c(z " ,y ) ! 2 ! ) ! 2
! |" ! |2 ] I ! ) ! 2

! " ! * " !

[c(z " ,y ) ! 2 ! ) ! 2
! |" ! |2 ]3/ 2 % c(z " ,y ) ! 2 ) ! 1

! " !

[c(z " ,y ) ! 2 ! ) ! 2
! |" ! |2 ]3/ 2

T

% c(z " ,y ) ! 2 ) ! 1
! " !

[c(z " ,y ) ! 2 ! ) ! 2
! |" ! |2 ]3/ 2 % c(z " ,y ) ! 2 ) ! 2

! |" ! |2

[c(z " ,y ) ! 2 ! ) ! 2
! |" ! |2 ]3/ 2

?

M
@

8

N
9

T
?

M
M
@! ""

O

.

Indeed, for ! ! = 0 (that is, ! " = 5 and ! "" = ! ), this expression reduces to the standard paraxial

(15+) approximation %5c(z", y)! 1 + 1
2

|" |2

) c(z", y); then T! ,k deÞnes the so-called comoving frame of
reference. We refer to the corresponding Òshort-timeÓ propagator as the Òthin-slabÓ propagator.

The operator WN (z, z0) is reminiscent of the Trotter product representation of a Fourier integral
operator 5; it converges in Sobolev operator norm toF (t, t 0) as ! s/ 2, with s depending on the H¬older
regularity , of P w.r.t. z: For 1

2 * , , s = 1, and balance of accuraciesO(! 1/ 2) and O(2! k/ 2)
requires ! ' 2! k [16, 43]. Multi-composition of Fourier integral operators to approximate Cauchy
IVPs were initially proposed by Kumano-go and Taniguchi; their approximation tends to the exact
solution up to a regularizing operator. The underlying method is based on the computationand
estimation of phase functions and amplitudes of the Fourier integral operators appearing in these
multi-products, and is formalized in the Kumano-go-Taniguchi theorem.

We can now construct a process similar to beam migration. We decompose the data into its
wave packet components. Each wave packet initializes a solution to the (half-)wave equation, which,
through the Trotter product representation, reveals a phase-space localizedparaxial approximation.
The standard paraxial approximation is commonly exploited in beam migration, for example, ex-
pressed in terms of geodesic coordinates. In Fig. 7 (left), we show curvilinear coordinates particular
to wave packets, which enable to deÞne tubes to which the propagation is conÞned6 (see e.g. [11],
Fig. 1 and 2).

4That is, ÷R# 1
! is R# 1

! without the Þrst row.
5 Geometrically. WN (z, z0 ) has some similarities with the wavefront construction method for computing the

propagation of singularities.
6Here, we use elliptic coordinates x = a cosh(µ) cos(( ), z = a sinh( µ) sin( ( ). In d = 3 dimensions, the

corresponding curvilinear coordinates are the oblate spheroidal coordinates, x = a cosh(µ) cos(( ) cos() ), y =
a cosh(µ) cos(( ) sin( ) ), z = a sinh( µ) sin( ( ), with tubes in the z direction.
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Fig. 7 . A ÓbeamÓ of wave packets in homogeneous background under approximation (2.5) for the half-wave
equation, in Cartesian coordinates (x, z ) (left; z horizontal) and elliptic coordinates x = a cosh(µ) cos(( ), z =
a sinh( µ) sin( ( ) (right; µ horizontal); elliptic coordinate system (black grids). The h orizontal elliptic coordinate axis
on the right has been transformed according to ÷µ = sinh( µ) in order to achieve regular horizontal spacing. Propagation
is conÞned to a tube in curvilinear coordinates.

4. Parametrix. In order to perform actual computations, the values of %S
%" (y, %) and %2 S

%""" 2 (y, %)
need to be known. The generating functionS(y, ! ) is the solution to the Hamilton-Jacobi equation,
which is in general not accessible in global closed form expression. Yet, the proposed algorithms
do not require knowledge ofS(y, ! ) itself, but only of its Þrst and second order derivatives at a
Þnite number of discrete points (y, %). Here, we detail how these derivatives can be obtained nu-
merically for parametrices of evolution equations, which represent examples of the FIOs considered
in the present work. Evolution equations play an important role in imaging and inverse scattering
applications and generate extended imaging [22, 23]. As a special case, this includes Óthin-slabÓ
propagation as described in Section 3.5, in which straight rays and closed form expressions approx-
imate the Þrst and second order terms of the phase expansion, respectively, for small time steps.
Here, we establish the connection with paraxial ray theory for (arbitrarily) large time steps and show
that the derivatives of S can be obtained numerically from paraxial solutions to the Hamilton-Jacobi
system in Fermi coordinates as speciÞc combinations of blocks of propagator matrices. We note that
e! ectively, this turns the numerical procedures described in the previous section into approximate
one-step solvers for Cauchy initial value problems for evolution equations for (potentially very) large
time steps.

4.1. First-order derivatives of generating function S. Coordinate transform. Let
H(y, " ) be the Hamiltonian governing the Hamiltonian ßow associated with an evolution equation,
and let evolution time be from t = t0 to t = T , where potentially T 5 t0. For convenience, we
parametrize the initial conditions in this section by (y0, " 0) = ( y(t = t0), " (t = t0)); consistency with
the notation in previous sections is obtained by setting (x, ! ) = ( y0, " 0). Our choice of notation is
summarized in the diagram Fig. 8. We will freely switch between these notations to link with
expressions in previous sections. Let us denote the solution for Þxed initial conditionsby " (t)) =
(y(y0, " 0, t), " (y0, " 0, t)). We have (cf. (1.2) and (2.2)):

(4.1)
x = y0 =

$S
$!

(y(T ), %) = T! ,k (y(T ))

" = " (T ) =
$S
$y

(y(T ), %).

The bi-characteristic (y(t), " (t)), commonly referred to as a ray, is the solution to the characteristic
system:

(4.2)
d
dt

"
y
"

#
=

P
%H (y, * )

%*

%%H (y, * )
%y

Q

.
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! = " 0 = " ( t0)

x = y0 = y( t0)

( y( t ) , " ( t ))

" ( T )

y( T )

Fig. 8 . Illustration of evolution under the system (4.2) .

x1

x2

y1

y2

y1

y2

x1

x2

Fig. 9 . Schematic illustration of discrete evaluation of the coordinate trans form T! ,k : ym (T ) = T # 1
! ,k (xm ) from

regularly spaced xm (left); interpolation of xm = T! ,k (ym (T )) at regularly spaced yn gives xn = T! ,k (yn (T )) (right).

Integration of the system (4.2) yields the map:

(4.3) y(T ) = T ! 1
! ,k (x).

and givesy! ,k
j = y(T ) = T ! 1

! ,k (x ! ,k
j ) for approximation (2.8). For numerical evaluation of approxi-

mations (2.5) and (2.7), the inverse relationxn = T! ,k (yn (T )) needs to be evaluated for regularly
spaced pointsyn . It can be obtained by Þrst solving (4.2) from t0 to T with initial conditions
(xm , " 0), where xm is a discrete set of points on÷V! ,k , yielding the irregularly spaced set of points
ym (T ) = T ! 1

! ,k (xm ) on the bi-characteristic. Then, xn = T! ,k (yn (T )) is evaluated by back-tracking
rays from (yn , " n ) subject to ! n = ! and evolution from time t0 to T . Alternatively, xn can be
obtained by interpolation of the map (xm , ! ) ! (ym , " m ) on (projections of) the Lagrangian of the
operator (e.g. [34]). In the absence of caustics, this is equivalent to (standard) interpolation of
ym ! xm at regularly spaced pointsyn (cf. Fig. 9).

4.2. Second-order derivatives of generating function S. The second-order derivatives of
the generating function S(y(T ), %) can be obtained from the derivatives:

(4.4)
$(y, " )

$(y0, " 0)
(y0, " 0, T )

evaluated in Fermi coordinates (cf. e.g. [33]) for standard plane wave and point source initial con-
ditions. Fermi coordinates have similar properties as ray-centered coordinates, commonly employed
in the geophysical literature (see e.g. in [56]), and are deÞned as follows. Letf 2, á á á, f d be a set
of orthonormal vectors in the plane tangent to the wave front at t = t0, and let f 1 = %y

%t (y0, " 0, t0).
The subset f I , I = 2 , á á á, d can be chosen with arbitrary orientation in the tangent plane. Denote
by f i (t) the coordinate systemf i transported parallel along the ray. The Fermi coordinatesyf are
coordinates in this system, wherey1

f = t is time along ray, and y2
f , á á á, yd

f essentially describe the
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Fig. 10 . Parametrix of half-wave equation: A wave packet in d = 3 dimensions. Iso-amplitude plot of initial
wave packet (top left) and resulting packet after propagation for " 5 wave lengths in homogeneous background (top
right); corresponding cross-sections (bottom line; normal to / in plan e with axis of symmetry, respectively).

distance from the ray (y(t), " (t)). The transformation matrices with global Cartesian coordinates
read:

(4.5) H ij (t) =
$yi

$yj
f

(t, 0) = f i
j (t), øH jl (t) =

$yj
f

$yl (t, 0), H øH = I d$ d,

where f i
j is the i -th component of f j with corresponding cotangent vectors" i

f . The componentsf I

in the tangent plane satisfy:

(4.6)
df I (t)

dt
= %1/ "" , " #

*
f I , %

$H(x, " )
$x

+
" ,

and f 1 is known from the solution of (4.2). We Þxf I , I = 2 , á á á, d to coincide with the unit vectors
lying on the ! "" axes (cf. Fig. 1, right).

In Cartesian coordinates, the derivatives (4.4) are the solution to the linear system:

(4.7)
d
dt

"
$(y, " )

$((y0, " 0)
(y0, " 0, t)

#
=

P
%2 H (y, * )

%*%y
%2 H (y, * )

%*2

%%2 H (y, * )
%y2 %%2 H (y, * )

%y%*

Q

á
$(y, " )

$((y0, " 0)
(y0, " 0, t).

Transformation to Fermi coordinates and reduction to the subsystemf I , I = 2 , á á á, d, in the tangent
plane yields (cf. e.g. [56]):

(4.8)
d
dt

"
$(yf I , " f I )

$(yf I ,0, " f I ,0)
(0, 0, t)

#
=

"
A f I B f I

Cf I D f I

#
á

$(yf I , " f I )
$(yf I ,0, " f I ,0)

(0, 0, t).

where

A f I ,MN = øHMn HmN

"
$2H(y, " )
$"n $ym

%
1

"" , " #
" n

$H(y, " )
$ym

#
(4.9)

B f I ,MN = øHMn øHNm
$2H(y, " )
$"n $"m

(4.10)

Cf I ,MN = HnM HmN
$2H(y, " )
$yn $ym

(4.11)

D f I ,MN = HnM øHNm

"
$2H(y, " )
$yn $"m

%
$H(y, " )

$yn

$H(y, " )
$ym

#
.(4.12)
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Let ) T denote the fundamental matrix of (4.8):

(4.13) ) T =
"

W1 W2

W3 W4

#
,

$(yf I , " f I )
$((yf I ,0, " f I ,0)

(T ) = ) T
$(yf I , " f I )

$((yf I ,0, " f I ,0)
(t0),

that is, ) T is the solution to (4.8) with standard (plane wave + point source) initial condition s:

$(yf I , " f I )
$((yf I ,0, " f I ,0)

(t0) =
"

I d! 1$ d! 1 0d! 1$ d! 1

0d! 1$ d! 1 I d! 1$ d! 1

#
.

Then, we have:

(4.14)
$2S
$! ""2 (y(T ), %) = %W ! 1

1 W2.

Packet algorithm. We Þnally give the explicit expressions for the matricesDT$ and M $ in
the approximate coordinate transform:

DT$ (yn %y! ,k
j ) + M $ á(yn %y! ,k

j )2

in approximation (2.8). For convenience of notation, denote:

H t = H (t), øH t = ( H (t)) ! 1,

and let Gt , øGt be the respective transformation matrices between global Cartesian coordinates and
the local Cartesian coordinate systemgi (t) = { g1(t), f 2(t), . . . , f d(t)} , where g1(t) is the unit vector
normal to the wavefront at its intersection with ray ( y(t), " (t)). The matrix DT$ consists of dilation
terms in directions gi (T ), shear terms in directions gI (T ), and rotation from gi (T ) to gi (t0), or
equivalently, dilations in f i (T ) and transformation from f i (T ) to f i (t0). Let be:

(4.15) T$,T =
%

1 01$ d! 1

0d! 1$ 1 W1

&! 1

.

Then, DT$ is given by:

(4.16) DT$ = øH 0(H T T$,T ).

The matrix M $ consists of quadratic terms in thef i (T ) directions, and rotation from gi (T ) to gi (t0).
With:

(4.17) P$,T =
%

0 01$ d! 1

0d! 1$ 1 W3W ! 1
1

&
,

we obtain:

(4.18) M $ á(yn %y! ,k
j )2 = øG0

0
(yn %y! ,k

j )T (GT P$,T )(yn %y! ,k
j )g1(T )

1
.

5. Applications and numerical examples. In this section, we illustrate and compare the
proposed approximations in numerical examples. The Þrst example consists in wave evolution in
isotropic homogeneous medium and in isotropic heterogeneous medium ind = 2 dimensions. It
will serve us as a basis for analyzing and comparing the di! erent approximations proposed in the
present work. The second example demonstrates evolution equation based imaging and involves an
anisotropic, homogeneous Hamiltonian. In general, the formulation of imaging operators in terms of
solution operators of evolution equations is obtained through extension to an extended image domain
[22, 23], with at least d = 3 dimensions. For the purpose of illustration, we restrict ourselves here
to d = 2 dimensions.
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Fig. 11 . Lens (5.4) : low velocity lens (left) and high velocity lens (right) used in numerical exam ples in Section
5.1.

5.1. Wave propagation Ð isotropic, heterogeneous case. Consider the initial value prob-
lem:

(5.1) ($t %iP )u = 0 , u(x, t 0) = f (x),

for the half-wave equation, i.e.:

(5.2) P(x, ! ) =
2

c(x)2||! ||2,

where c(x) is the medium velocity. We compare the accuracy of the ÓboxÓ algorithm approxi-
mation (2.5), the Óhybrid packet-boxÓ algorithm approximation (2.7), and the Ópacket algorithmÓ
approximation (2.8) to zero order approximation for (5.1) with band-limited Dirac ini tial conditions
u(x, t = 0) and large evolution time T . We deÞne the band-limited Dirac source in the! domain
as:

(5.3) öu(! , 6) =
'

k "

'

|! ! ! c |%"

ö# ! ,k " (! ),

i.e., öu deÞnes a wedge with half-opening angle( and smooth cut-o! . We set %c = (0 , 1) (vertical
downwards), ( = 21 degrees, and let the initial data domain extend overx $ [%5km, 5km] &
[%5km, 5km]. The initial data consist of N & N = 256 & 256 samples, resulting in maximum scale
kmax = 4. The band-limited Dirac is inserted in the center of the initial data domain.
We consider two background velocities: homogeneous withc(x) = c0, and heterogeneous with a low
velocity lens

(5.4) c(x) = c0 + µ exp(%|x %x0|2/ 32),

where c0 = 2km/s , µ = %0.3km/s , 3 = 5km and x0 = (0 , 35)km. The low velocity lens is depicted
in Fig. 11 (left). The output spatial sampling density ( y is set equal to the initial sampling
density ( x. We consider evolution time T = 30s for the homogeneous case, andT = 20s for
the heterogeneous case. With this parameter setup, the boundaries of the calculation domains span
roughly N1& N2 = 1900& 300 and 1100& 300 samples for the homogeneous and for the heterogeneous
case, respectively.

Fig. 12 (homogeneous case) and Fig. 13Ð14 (heterogeneous case) compare the di! erent approx-
imations of (F u)(yn ): zero-order approximation (top row); approximations (2.5), (2.7) and (2.8)
(second row for homogeneous case, second to fourth row for heterogeneous case). The bottom row
compares the amplitudes along the wavefront. The left columns correspond to initial (5.3) with
k" = 3 only, the columns on the right with all frequency scalesk" = 1 % 4. In Fig. 14 we include
physical amplitudes a(y, %), while in Fig. 13, we set a(y, %) = 1 for better visual comparison of the
di! erent approximations. Note that in the homogeneous case, approximations (2.5), (2.7) and (2.8)
are equivalent since %2 S

%""" 2 (y, %) = c0T is independent of y, T! ,k describes, for Þxed (%, k), parallel
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Fig. 12 . Wave propagation in isotropic, homogeneous medium for initial conditions (5.3) with k " = 2 (left
column) and k " = 1 ! 4 (right column): zero order approximation (top row), approximations (2.5) , (2.7) and (2.8)
(center row), and corresponding amplitudes along wave front (bottom ro w, solid black line corresponds to zero order
approximation). The white dot-dashed lines indicate rays of seven wave-pa ckets at scale k = 3 . Note that the aspect
ration is not equal to one.

straight rays of path length c0T , DT$ = I d$ d and M $ = 0 d$ d. Consequently, in this case, the zero
order approximation is equal to rigid motion.

We start with investigating the homogeneous (Óstraight raysÓ) case (cf. Fig. 12). As observed
in [20], under the zero order approximation, the wave front breaks apart, with constituting wave
packets at given scale ending up disconnected (top row): The wave packets do not receive any
deformation and are merely de-placed data wave packets, resulting in large gaps in the wave front
due to the geometry of propagation whenc0T is large w.r.t. initial data domain x. As a further
consequence, only the center points of the wave packets sit exactly on the wave front.We note
that the error of the zero order approximation does not decrease with increasing scale. Indeed,
including all scales k" = 2 % 4 does not Þll up the gaps. In contrast, under the approximations
to order O(2! k/ 2), the wave packets spread out and bend to perfectly align and overlap along
the wave front, without any visible artifacts. These di! erences between zero order approximation
and the proposed algorithms are also reßected by amplitudes along the wave front (bottomrow):
Whereas amplitudes under approximations (2.5), (2.7) and (2.8) are essentially constant, zero-order
approximation results in strong ßuctuations, regardless of scalek.

Let us now turn our attention to the heterogeneous case, cf. Fig. 13 and 14. As above, the wave
front breaks apart under the zero order approximation (top rows), with error not decreasingwith
increasing scalek. Yet, unlike rigid motion, the coordinate transformation T! ,k accounts for the full
deformation resulting from the underlying canonical transformation. Still, as in the homogeneous
case, only center pointsy! ,k

l sit precisely on the singularity. In contrast, under approximation (2.5)
(second rows), the data wave packets bend, spread out and connect along the singularity and form
a visually perfect wave front. We note the dilations in the vicinity of the v ertical symmetry axis
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Fig. 13 . Wave propagation in isotropic, heterogeneous medium for initial conditio ns (5.3) with k " = 2 (left
column) and k " = 1 ! 4 (right column), and physical amplitudes set to a(y, #) = 1 : zero order approximation (top
row), approximation (2.5) (second row), (2.7) (third row) and (2.8) (fourth row); corresponding amplitudes along
wave front (bottom row): zero order approximation (solid black), approximation (2.5) (red dot), approximation (2.7)
(black circle), approximation (2.8) (triangle). The white dot-dashed lines indicate rays of seven wave-packets at scale
k = 3 . Note that the aspect ration is not equal to one.

at x = 0 caused by the low velocity lens, resulting in packets being ÓsqueezedÓ in their direction
of propagation. Results obtained under approximation (2.7) (third rows) are very similar, despite
the further approximation of %2 S

%""" 2 (y, %) by the center location values %2 S
%""" 2 (y! ,k

j , %). The reason for

this lies in the fact that in this example, the dependence of %2 S
%""" 2 (y, %) on y is very weak within
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Fig. 14 . Wave propagation in isotropic, heterogeneous medium for initial conditio ns (5.3) with k " = 2 (left
column) and k" = 1 ! 4 (right column) including physical amplitudes a(y, #): zero order approximation (top row),
approximation (2.5) (second row), (2.7) (third row) and (2.8) (fourth row); corresponding amplitudes along wave
front (bottom row): zero order approximation (solid black), approximation (2.5) (red dot), approximation (2.7) (black
circle), approximation (2.8) (triangle). The white dot-dashed lines indicate rays of seven wave-packets at scale k = 3 .
Note that the aspect ration is not equal to one.

÷bj, ! ,k , the domain of support of the individual wave packets. In contrast, under approximation (2.8)
(fourth rows), signiÞcant artifacts result from the additional approximate (second order) expansion
of the coordinate transform. Since the spatial extent of the modiÞed wave packets is large w.r.t
the spatial extent of the perturbation of the background, the error of the approximate coordinate
transform is small only close to the center locationsy! ,k

j . In particular, we observe artifacts from
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Fig. 15 . Retrofocus experiment. Top row: initial single wave packet * # (x) at scale k = k0 = 3 (left), and
retrofocussed wave packet ÷$ # (x) = ( F F ! * # )( x) (right). Bottom row: downwards propagated wave packet ÷) # (y) =
(F ! * # )( y) (left) and di ! erence (( F F ! ! I )* # )( x) (right, magniÞed by a factor 8).

wave packets that Óstick outÓ of the wave front into regions towards the vertical symmetry axis,
close to which the coordinate transform gradually contracts more and more violently due to the
low velocity lens at position (0, 35)km. Nevertheless, approximation (2.8) appears to produce a
more accurate approximation of wave front than zero-order approximation. The above statements
are further conÞrmed by investigation of the amplitudes along the wave fronts (bottom rows): zero
order approximation produces large gaps, while amplitudes under approximation (2.5) and (2.7) are
nearly ßuctuation free. We note that, unlike zero-order approximation, amplitude ßuctuation under
approximation (2.8) decrease for Þner scales.

In Fig. 14, we include the physical amplitudesa(y, %). As expected, we observe an amplitude
peak close to the focus point of the lens (contraction of ßow), followed by a dip (expansion of ßow),
and again increase when reaching (close to) homogeneous medium far o! the location of the low
velocity lens, and amplitudes dying out eventually due to the directional band-limiting of the input
u(x).

Limited aperture array retrofocussing via phase space localization. We apply the
proposed Óbox algorithmÓ approximation (2.5) in a retrofocus experiment for one single wave packet
) $ :

(5.5) F (0, T ) (F (0, T ), ) $ ) (x),

where F is the solution operator to (5.1)Ð(5.2). As the backgroundc we use the high velocity
lens depicted in Fig. 11 (right), given by (5.4) with c0 = 2km/s , µ = +0 .3km/s , 3 = 6km and
x0 = (5 , 16)km. The initial conditions u(x, t 0) consist of one single wave packet) $ (x) at scale
k = k0 = 3, with %= %0 = (0 , 1) in vertical direction, and is depicted in Fig. 15 (top left). The
initial data are discretized at N & N = 512 & 512 sample points, resulting in maximum frequency
scalekmax = 5. Spatial sampling density ( y is set to equal the initial sampling density ( x, and
the evolution time is T = 8s.
We begin with evaluating ÷. $ (y) = ( F (0, T ), ) $ )(y), plotted in Fig. 15 (second row, left). Then, we
compress÷. $ (y) by simple hard thresholding of wave packet coe" cients below 10% of the magnitude
of the largest coe" cient. We note that this also e! ectively results in a band-limiting operation,
signiÞcant boxes being concentrated in a narrow cone about the central wave vector of÷. $ (y). Finally,
we evaluate ÷' $ (x) = ( F (0, T ) ÷. $ )(x) on the limited aperture array detected by ÷. $ )(x), and obtain
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Fig. 16 . Decay properties of ÷c# " ,# = #* # " , F F ! * # $ versus c# " ,# = #* # " , * # $. Top row: logarithmic magnitude of
c# " ,# (left) and ÷c# " ,# (right) for the box B ! = ! 0 ,k = k 0 . Bottom row: decay of coe " cients max j |c# " ,# | and max j |÷c# " ,# |
for #" = #0 Þxed as a function of k" = k0 ± [0, 1, 2] (left), and for k " = k0 Þxed as a function of ang(#", #) (right);
blue dots correspond to c# " ,# , red circles to ÷c# " ,# .

the retrofocussed wave packet (Fig. 15, top right). Fig. 15 (second row, right) depicts the di! erence
÷' $ (x) %) $ (x) between retrofocused and the original wave packet, i.e., (FF , %I )) $ (x) (magniÞed
by a factor 8). In Fig. 16, we visualize in more detail the decay of ÷c$ " ,$ = ") $ " , ÷' $ #= ") $ " , FF , ) $ #
away from the diagonal and compare it to the decay of the original wave packet,c$ " ,$ = ") $ " , ) $ #:
magnitude of c$ " ,$ (top left) and ÷c$ " ,$ (top right) for the box ( k" = k0, %" = %0); maxima of c$ " ,$

and ÷c$ " ,$ as a function of scalek" (%" = %0, bottom left) and of orientation %" (k" = k0, bottom
right). Note that this corresponds to the analysis of the decay properties of the kernel of the
pseudo-di! erential operator F F , .

We observe that the propagated wave packet÷. $ (y) = ( F , ) $ )(y) remains well-localized in space.
The original and retrofocussed wave packets) $ (x) and ÷' $ (x) are visually very close, and ÷' $ (x)
essentially preserves the decay properties of) $ (x) while detecting ÷. $ (y) on a limited aperture array
only. These properties can be exploited in illumination analysis [59], interferometry [44] and partial
reconstruction [18].

5.2. Common-o ! set imaging Ð anisotropic, homogeneous case. Many processes in seis-
mic data analysis and imaging can be identiÞed with solution operators of evolution equations. In
[22], isochrons deÞned by imaging operators are identiÞed with wave fronts of solutions of evolution
equations. The bicharacteristics of the Hamiltonian associated with such evolution equationsprovide
a natural way for implementing prestack map migration by evolution in the pre-stack imaging vol-
ume. We illustrate the principle of imaging with common o! set isochrons for homogeneous medium
in d = 2 dimensions. The Hamiltonian governing the evolution of the common o! set isochron fronts



MULTI-SCALE DISCRETE APPROXIMATION OF FIOS 123

x

z

x

z

Fig. 17 . Illustration of the geometrical properties of Hamiltonian (5.6) . Left: isochron front (black thick solid),
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rays in blue solid): Hamiltonian (5.6) can create caustics for initial conditions di ! ering from an isochron.

! 0.2 0.20x

0.4

0.2

0

z

s r

! 4 ! 2 0 2 4 x
0

2

4

z

Fig. 18 . Source-receiver geometry and initial band-limited isochron front (left). Geom etry of evolution of initial
isochron front under the ßow of Hamiltonian (5.6) (right): Initial isochron and front after evolution for T = 5 s (small
and large black solid curves, respectively) and isochron rays (red solid). The small dashed rectangle corresponds to the
region of the initial data depicted in the left Þgure, the larger dashed r ectangle to the calculation domain considered
in our example.

is in this case given by:

(5.6) H(y, z,6, ky , kz ) = 6 %
c

ky z
.

2

P 2
Q! Q+2

Q! +
2

Q+

Q

,

Q± = z2(k2
y + k2

z )2 + (2 hky kz ± z(k2
y %k2

z ))q± ,

q± = 2hky kz ±
I

4h2k2
y k2

z + z2(k2
y + k2

z )2.

Restriction from the pre-stack imaging volume formulation to d = 2 is chosen here for illustration
purposes and implies that the Hamiltonian (5.6) has a singularity at z = 0. Hence, evolution must
be initialized at z > 0, i.e. the initial conditions have to be isochrons at early two-way travel times
T0 [28]. Hamiltonian (5.6) is anisotropic and can create caustics for initial conditions that di! er
from isochron fronts. This is illustrated in Fig. 17.
We use backgroundc = c0 = 2km/s and half-o! set h = 100m. As initial condition, we use an
isochron front for T0 = 0 .39s (resulting in maximum initial depth z < 400m). The initial isochron
is band-limited and compressed by hard-thresholding of its wave packet coe" cients, and is plotted
in Fig. 18 (left). We evaluate evolution of the isochron front under approximation (2.8) for T = 5s
and compare it to evolution under the zero order approximation. The geometry of the problem is
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(second row) and corresponding amplitudes along the fronts (third and bot tom row, respectively). The red dotted line
indicates the theoretical position of the isochron.

depicted in Fig. 18 (right). Note that the area including the calculation domain is signiÞcantly larger
than the area including the initial conditions. Results are plotted in Fig. 19 for frequency scales
k = 2 and k = 3, and in Fig. 20 including all frequency scalesk. The zero-order approximation fails
to correctly image the isochron front at the di! erent frequency scales and produces an image with
large gaps and amplitude ßuctuations along the isochron. Resorting to Þner scales or including all
scales does not improve the image. In contrast, approximation (2.8) produces a very satisfactory
image isochron that is sharply aligned along the theoretical position of the front, without gaps or
major amplitude variations. We note that the smooth amplitude variation results f rom the initial
conditions we have used: The hard-thresholding preprocessing step does not guarantee that the
energy from di! erent orientations %is kept balanced. Indeed, it is clear from inspection of the
amplitudes of the zero order approximation in Fig. 19 (bottom left) that di ! erent box orientations
do not contribute equal energy, and that amplitude ßuctuations under approximation (2.8) depicted
in Fig. 19 (bottom right) merely reßect these variations.
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Fig. 20 . Evolution of initial isochron front Fig. 18 (left) under Hamiltonian (5.6) for zero order approximation
(left column) and approximation (2.8) : isochron fronts obtained using all frequencies scales k (Þrst row) and corre-
sponding amplitudes along the fronts (second row). Third row: magniÞcation o f the image regions indicated in the
Þrst row by red dashed rectangles. The red dotted line indicates the the oretical position of the isochron.

6. Discussion. In the present work, we have devised numerical procedures enabling the dis-
crete evaluation of the action of Fourier integral operators on general input functions through ap-
proximations, yielding accuracyO(2! k/ 2) at frequency scalek. While numerical examples have been
given in d = 2 dimensions, the procedures are valid for arbitrary Þnite dimension. Discretization be-
ing initiated from dyadic parabolic decomposition of phase space, the algorithms reßect the geometry
of the operators and are tightly interwoven with discrete almost symmetric wave packet transforms.
This accounts for the inherent practical ßexibility common to all of the three approximations (2.5),
(2.7) and (2.8): Indeed, they naturally enable, for instance, the embedding of data regularization,
emphasis or muting of coherent data structures, and modeling or imaging with subsets of wave
packets at selected orientations, frequency scales and spatial positions, viz. phase-space Þltering.
The elementary building blocks being directly connected to geometric phase-space attributes, such
operations are particularly useful in modeling and in illumination analysis, partial reconstruction
or target-oriented imaging applications. Another consequence is that in the case of parametrices of
evolution equations, which also generate extended imaging, we obtain e! ective one-step procedures
for (arbitrarily) large time step that are insensitive to numerical dispersion and error accumulation.
We mention that it would be possible to construct alternative discretizations, potentially resulting
in faster algorithms, yet at the price of losing the explicit connection with discrete almost symmetric
wave packets and the geometry of the operators. Here, we promote the idea of geometry. We note
that approximation (2.5) can in principle be used to Þnd arbitrarily accurate solutions to evolution
equations through iterations of Volterra equations.
Any of the described algorithms can be e" ciently parallelized, since computations per individual
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box, tensor product term or packet can be performed independently. Also, the procedures o! er the
possibility for incorporating Óreal-timeÓ image visualization: Computations can be hierarchically
organized such that useful intermediary results Ð for instance, successively Þner and Þner scales,
and updated output points for successively reÞned grid resolution Ð can be visualized on the ßy as
they become available during computations.
When all boxes contribute to the output, the computational complexity of the ÓboxÓalgorithm (2.5)
is O(RN (d! 1) / 2 log(N )) above diagonal approximation. The additional factor R is fundamental in
this approximation, stemming from the necessity for separating a complex exponential and reßect-
ing its numerical rank, while the factor O(N (d! 1) / 2) results from the total number of frequency
boxes that have to be evaluated separately. This factor demands further comments: The action
of (Fu! ,k )(y) on portions u! ,k (x) of data corresponding to di! erent boxes does in general result in
contributions to di ! erent regions in the output domain. Consequently, (Fu)(y) potentially provides
information on an output image that can be (signiÞcantly) larger than the original N d data cube
u(x). Obviously, the output is practically restricted to the domain on which a model is given (i.e.,
on which a(y, %) and derivatives of S(y, %) are accessible).
In the context of imaging, comparison with the Generalized Radon Transform (GRT) is very fa-
vorable: in d = 2 ( d = 3) dimensions, the ÓboxÓ algorithm yields complexityO(N 2.5 log(N ))
(O(N 4 log(N ))), as compared to the GRT with O(N 3) (O(N 5)), respectively.
The Óhybrid packet-boxÓ and ÓpacketÓ algorithms for approximations (2.7) and (2.8) appear very
attractive at Þrst, since no tensor product representation as in approximation (2.5) needs to be ob-
tained. Indeed, when applied to one single wave packet, they yield low complexityO(dN d log(N )).
Yet, when used as approximations to the global operator action for complicated input data with
diverse coherent structures, they become less advantageous since the organization of computations
by boxes (%, k) is partially lost, and certain computations need to be performed packet-per-packet,
worsening overall complexity. In particular, while being the simplest of the proposed procedures
when applied to individual packets, approximation (2.8) loses any organization of computations by
boxes.
We note that these procedures have similarities with beam migration (e.g. [1, 27, 41, 58]), where co-
herent data components are extracted and migrated individually. Here, we obtain ÓbeamsÓ as data
wave packets which are one-step propagated using a phase-space localized paraxial approximation.
For approximations (2.5) and (2.7), we can also form Óboxed beamsÓ as data wave packets that
share the same frequency scale and dip. We Þnally mention the e! ective reduction in calculation
domain resulting from the spatial decay properties of individual wave packets.

Future work will include the extension of the proposed procedures to the presence ofcaustics.
This is currently being investigated. The idea of further separation of variables Ð within y and
within ! Ð to uni-directional separated representations has been put forward for computations in
high dimensions by Beylkin et al. [5, 9]. Incorporation of such strategies promises computational
advantages, in particular for dimensionsd > 3, while typically resulting in purely numerical al-
gorithms. We also mention the development of quadratures for special functions [8, 62]. Finally,
we envision the adaptation of the present work to Gaussian wave packets, which o! er signiÞcantly
better decay properties than almost symmetric wave packets, and potentially very high compression
rates through sparsity promoting optimization. Also, since the Fourier transform and many elemen-
tary manipulations of a Gaussians yield Gaussians, we expect to be able to speed-up the proposed
approximations by replacing certain computations by analytic calculus.
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Appendix A. Prolate spheroidal wave functions.
For c > 0 real, deÞne the operatorF c : L 2(R) ! L 2(R) on the unit (hyper)ball R in D

dimensions:

(A.1) ( F c. )(x) =
!

R
exp [ic"x, z#] . (z)dz.

Denote by / &1 , / &2 , . . . its eigenvalues in decreasing order|/ &j ! 1 | ) |/ &j |, and by ' &j the corre-
sponding eigenfunctions:

(A.2) / &j ' &j (x) =
!

R
exp [ic"x, z#] ' j (z)dz, x $ R.

We adhere here to the normalization convention||' j ||L 2 (R ) = 1. The eigenvalues are non-zero
and either real or imaginary. The eigenfunctions' j are real, orthonormal and complete inL 2(R),
either even or odd. For D = 1, they turn out to be the the PSWFs from classical mathematical
physics [36, 50]; forD ) 2, they are referred to as generalized PSWFs [48]. In mathematics, PSWFs
are known as a set of functions obtained by a time-limiting, low-passing, and second time-limiting
operation.
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A.1. PSWFs on an interval ( D = 1 ). The functions ' j are also the eigenfunctions of the
self-adjoint operator [36, 50]:

(A.3) ( Qc. )(x) =
1
*

!

[! 1,1]

sin(c(x %z))
x %z

. (z)dz, x $ [%1, 1]

with eigenvaluesµj = c
2' |/ j |2, and of the di! erential operator:

D c = (1 %x2)
d2

dx2 %2x
d

dx
%c2x2,

i.e., they are the bounded and continuous solutions of:

(A.4) (1 %x2)
d2 ' (x)

dx2 %2x
d' (x)

dx
+ ( # j %c2x2)' (x) = 0 ,

on [%1, 1], where# j is a sequence of strictly increasing positive real numbers [36, 50]. Each function
' j (x) can be expanded in a Legendre series on the interval [%1, 1]:

(A.5) ' j (x) =
&'

k=0

dj
k

÷Pk (x),

where ÷Pk (x) are normalized Legendre polynomials (cf. B.1). It can be shown that the coe" cients
dj

k have superalgebraic decay (cf. e.g. [62], Lemma 3.3 and Theorem 3.4).

Construction. Substitution of (A.5) into (A.4) gives a three-term recursion for the coe" cients
dj

k . This recursion can be restated in matrix form as [62]:

(B N %# j áI )dj = 0 ,

where B N
k,k = k(k + 1) + 2k (k+1) ! 1

(2k+3)(2 k ! 1) c2 and B N
k,k +2 = B N

k+2 ,k = (k+2)( k+1)

(2k+3)
.

(2k+1)(2 k+5)
c2. The matrix

B N is inÞnite, but the eigenvectorsdj of interest (corresponding to the expansion coe" cients of the
Þrst m PSWFs) lie almost entirely in the leading rows and columns ofB N ([62], Theorem 3.4). The
eigenvalues/ j can be obtained by numerical evaluation of, for instance, (A.2) or (A.3) for Þxedx,
or of the relation ([62], Corollary 3.2):

/ 2
m

/ 2
n

=

$
[! 1,1] ' "

n (x)' m (x)dx
$

[! 1,1] ' "
m (x)' n (x)dx

.

A.2. Generalized PSWFs on a disc ( D = 2 ). In polar coordinates (( , 7), the eigenfunctions
and eigenvalues of (A.1) are given by [48]:

' 0,n (( , 7) =
1

.
2*

%0,n (( ); / 0,n = 2*&0,n

' N,n,l (( , 7) =
1

.
*

%N,n (( )Sl
N (7); / N,n = 2* iN &N,n

with:

&N,n %N,n (( ) =
! 1

0
JN (c(( ")%N,n (( ")d( ",

where JN (x) is the Bessel function of the Þrst kind, and:

S0
N (7) = cos(N 7)

S1
N (7) = sin( N 7)
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Substituting , N,n =
.

c&N,n and ) N,n (( ) =
.

( %N,n (( ) gives the equivalent equation:

(A.6) , N,n ) N,n (( ) =
! 1

0
JN (c(( ")

2
c(( ") N,n (( ")d( ".

Similar to the caseD = 1, the solutions of (A.6) are solutions to a di! erential equation:

L c) (x) = %0) (x)

with self-adjoint di ! erential operator L c:

(A.7) L c) (x) = (1 %x2)
d2) (x)

dx2 %2x
d) (x)

dx
+

" 1
4 %N 2

x2 %c2x2
#

) (x).

Construction. The strategy consists in expanding) (x) in series [46, 48]:

(A.8) ) N,n (x) =
&'

k=0

dN,n
k VN,k (x),

with polynomials VN,k (x) deÞned by:

VN,k (r ) =
2

2(2k + N + 1) r N +1 / 2P (N, 0)
k (1 %2r 2); r $ [0, 1],

where P# ,+
k (x) are Jacobi polynomials (see B.3). The polynomialsVN,k are orthonormal on [0, 1]

w.r.t. k,
! 1

0
VN,k (( )VN,l (( )d( = 1kl .

They are the eigenfunctions of the di! erential operator (A.7) with c = 0, i.e. L 0, with eigenvalues:

6N,k = ( N + 2k +
1
2

)(N + 2k +
3
2

).

Expansion coe" cients. To construct the matrix of L c w.r.t. the basis VN,k , we note that L cVN,k =
%6N,k BN,k % x2c2VN,k . To obtain x2VN,k (x) as a linear combination of VN,k (x), we substitute
x ! 1%2x2 in the recursion for Jacobi polynomials. This gives a three term recursion forx2VN,k (x)
[46, 48]. The matrix B N of L c has coe" cients [46, 62]:

B N
k,l = "VN,k , L cVN,l #

which are zero except for the diagonal elements and the elements above and below the diagonal,
given by:

B N
k,k = %6N,k %c2 2k(k + 1) + N (2k + N + 1)

(2k + N )(2k + N + 2)

B N
k+1 ,k = B N

k,k +1 = c2 (k + 1)( k + N + 1)
(2k + N + 1)(2 k + N + 2)

R
2k + N + 1
2k + N + 3

.

Now

"L c) N,n , VN,l #= %#N,n dN,n
l

and sinceL c is self adjoint [46, 48]:

"L c) N,n , VN,l #=
&'

k=0

"VN,k , L cVN,l #.
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Hence:

(B N + #N,n I )dN,n = 0 ,

which is an eigenproblem similar to the one dimensional case. The elements of the eigenvectorsdN,n

are the expansion coe" cients dN,n
k for ) N,n (x) in (A.8).

Eigenvalues.The eigenvalues/ N,n are given by:

/ N,n = i N 2*
.

c
, N,n

where , N,n can be obtained by numerical evaluation of (A.6) for Þxed( .

A.3. Generalized PSWFs on a (hyper-)ball ( D ) 3). Write x = ( $ and z = r * , where
$ and * are unit vectors in D dimensions, and let be:

D = 2 + p, p = 1 , 2, á á á.

It can be shown [48] that the eigenfunctions and eigenvalues of (A.1) are given by:

' N,n,l (( , $ ) = %N,n (( )Sl
N ($ )

/ N,n,l = i N (2* )1+ p/ 2&N,n ,

where

Sl
N ($ ), l = 1 , . . . , (2N + p)

(N + p %1)!
p!N !

are a complete set of orthonormal surface harmonics of degreeN , and:

&N,n = +N,n c! p +1
2

%N,n (( ) = ) N,n (( )( ! p +1
2 ,

and ) N,n (( ), +N,n are the solutions of:

(A.9) +N,n ) N,n (( ) =
! 1

0
JN + p

2
(c(( ")

2
c(( ") N,n (( ")d( ".

This is, however, (A.6) for the two dimensional case withN replaced byN + p/ 2. The expressions in
A.2 for the construction of ) N,n (( ) can hence be taken over exactly withN replaced by ÷N = N + p/ 2
[48].

In Fig. 21, we depict radial functions %N,n (( ) for several choices ofc, N and n (left), and
eigenvalue spectra forc = 1 and c = 10 in logarithmic scale (center and right; on the right we depict
cross-section of the eigenvalue spectra).

A.4. SUMMARY: Numerical recipe for the construction of PSWFs.

Dimension D = 1 .
1. Construct the normalized Legendre polynomials÷Pk (x).
2. Construct K rows and columns of the matrix B N with non-zero entries B N

k,k = k(k + 1) +
2k (k+1) ! 1

(2k+3)(2 k ! 1) ác2 and B N
k,k +2 = B N

k+2 ,k = (k+2)( k+1)

(2k+3)
.

(2k+1)(2 k+5)
ác2

3. Solve the eigenvalue problemB N dj = # j dj , yielding the expansion coe" cients dj
k .

4. Compute the PSWFs: ' j (x) =
)

k dj
k

÷Pk (x).
5. Compute the eigenvalues by evaluation of/ j ' j (x) =

$1
! 1 exp (icxz ) ' j (z)dz for Þxed x.
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Fig. 21 . Radial functions $ N,n (%) (left), logarithmic plots of eigenvalue spectra (center), and cross-sect ions of
the eigenvalue spectra (right) for di ! erent bandwidths and D = 3 .

Dimension D ) 2. Let p = D %2 and ÷N = N + p/ 2.

1. Construct the Jacobi polynomials P ( ÷N, 0)
k (x).

2. Construct the polynomials V ÷N,k (( ) =
I

2(2k + ÷N + 1) r ÷N +1 / 2P ( ÷N, 0)
k (1 %2( 2); ( $ [0, 1],.

3. Construct K rows and columns of the matrixB ÷N with non-zero entriesB ÷N
k,k = %( ÷N + 2k +

1
2 )( ÷N +2k+ 3

2 )%c2 2k (k+1)+ ÷N (2k+ ÷N +1)
(2k+ ÷N )(2 k+ ÷N +2)

and B ÷N
k+1 ,k = B ÷N

k,k +1 = c2 (k+1)( k+ ÷N +1)
(2k+ ÷N +1)(2 k+ ÷N +2)

I
2k+ ÷N +1
2k+ ÷N +3

.

4. Solve the eigenproblemB ÷N d ÷N,n = # j d ÷N,n , wielding the expansion coe" cients d
÷N,n

k .

5. Compute the functions: ) ÷N,n (( ) =
)

k d
÷N,n

k T ÷N,k (( ).
6. Compute the set of orthonormal surface harmonicsSl

N ($ ).
7. Compute the PSWFs: ' N,n,l (( , $ ) = ( ! (p+1) / 2) ÷N,n (( )Sl

N ($ ).
8. Compute the eigenvalues/ N,n = i N (2* )1+ p/ 2c! (p+1) / 2, ÷N,n by evaluation of , ÷N,n ) ÷N,n (( ) =

$1
0 J ÷N (cr( )

.
cr() ÷N,n (r )dr for Þxed ( .

For D = 2, the hyperparameter is $ = 7 (polar angle), and the functions Sl
N ($ ) are given by:

S{ 0,1}
0 =

1

2
.

2*
, Sl

N =
1

.
*

cos(N 7 %l
*
2

), N = 1 , 2, . . . , l = 0 , 1.

For D = 3, the hyperparameter is $ = ( 7, . ) (polar and azimuthal angle), and the functions
Sl

N ($ ), l = 1 , . . . , 2N + 1 are given by the spherical harmonics of degreeN (cf. B.4).

Evaluation of PSWFs. The eigenvalues/ &j and expansion coe" cientsdj
k can be precomputed

and stored for any given value ofc. Subsequent evaluation of a PSWF then takesO(c) operations.

Appendix B. Special functions.

B.1. Legendre polynomials. The Legendre polynomialsPk (x) are given by the recursion:

Pk+1 (x) =
2k + 1
k + 1

xPk (x) %
k

k + 1
Pk ! 1(x),

with P0(x) = 1 and P1(x) = x. They are orthogonal over the interval [%1, 1]:
! 1

! 1
Pk (x)Pl (x)dx = 1kl

1
2k + 1

.
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The normalized Legendre polynomials are given by:

÷Pk (x) = Pk (x)

R

k +
1
2

, || ÷Pk ||L 2 [! 1,1] = 1 .

B.2. Associated Legendre polynomials. For positive m, the associated Legendre polyno-
mials are deÞned in terms of Legendre polynomials as:

Pm
N (x) = ( %1)m (1 %x2)

m
2

dm

dxm PN (x).

For negative m, they are deÞned as:

P ! m
N (x) = ( %1)m (N %m)!

(N + m)!
Pm

N (x).

They also obey the recurrence relation:

Pm
N (x) =

2N %1
N %m

xP m
N ! 1(x) %

N + m %1
N %m

Pm
N ! 2(x).

They are part of the spherical harmonics (cf. B.4) and orthogonal over [%1, 1] with the weighting
function 1 w.r.t. N ,

$1
! 1 Pm

N (x)Pm
N " (x)dx = 2( N + m)!/ ((2N + 1)( N % m)!)1N,N " , and orthogonal

over [%1, 1] w.r.t. m with the weighting function (1 % x2)! 1,
$1

! 1 Pm
N (x)Pm "

N (x)(1 % x2)! 1dx =
(N + m)!/ (m(N %m)!)1m,m " .

B.3. Jacobi polynomials. Jacobi polynomialsP (# ,+)
k (x) are deÞned by the three term recur-

sion:

P (# ,+)
k+1 (x) =

a3k x %a2k

a1k
P (# ,+)

k (x) %
a4k

a1k
P (# ,+)

k ! 1 (x)

with 7 P (# ,+)
0 (x) = 1 and P (# ,+)

1 (x) = 1
2 (, % & + ( , + & + 2) x) [P (# ,0)

0 (x) = 1 and P (# ,0)
1 (x) =

1
2 (, + ( , + 2) x)] and

a1k = 2( k + 1)( k + , + & + 1)(2 k + , + &) [= 2( k + 1)( k + , + 1)(2 k + , )]

a2k = %(2k + , + & + 1)( , 2 + &2) [= %(2k + , + 1) , 2]

a3k =(2 k + , + &)(2k + , + & + 1)(2 k + , + & + 2) [= (2 k + , )(2k + , + 1)(2 k + , + 2)]

a4k = 2( k + , )(k + &)(2k + , + & + 2) [= 2 k(k + , )(2k + , + 2)] .

They are orthogonal on [%1, 1] w.r.t. the weight function w(x) = (1 %x)# (1 + x)+ :

! 1

! 1
P (# ,+)

k (x)P (# ,+)
l (x)w(x)dx = 1kl

2# + ++1

2k + , + & + 1
&(k + , + 1) &(k + & + 1)

k!&(k + , + & + 1)

%
= 1kl

2# +1

2k + , + 1

&

and satisfy the di! erential equation:

(1 %x2)
d2P (# ,+)

k (x)
dx2 + ( & %, %(, + & + 2) x)

dP (# ,+)
k (x)

dx
+ k(k + , + & + 1) = 0

3

(1 %x2)
d2P (# ,0)

k (x)
dx2 %(, + ( , + & + 2) x)

dP (# )
k (x)
dx

+ k(k + , + 1) = 0

4

.

Their derivatives are obtained as dP ( " , # )
k (x )

dx = 1
2 (k + , + &)P (# +1 ,++1)

k ! 1 (x).

7We state in square brackets [ á] the special case + = 0 used in A.2 and A.3.
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B.4. Spherical harmonics. Spherical harmonics of orderN are given by:

Sm
N (7, . ) =

S
2L + 1

4*
(N %m)!
(N + m)!

Pm
N (cos(7))eim , , m = %N, . . . , N %1, N

where 7 $ [0, * ] is the polar (colatitudinal) . $ [0, 2* ) is the azimuthal (longitudinal) coordinate,
and Pm

N (x) are the associated Legendre polynomials. They are the angular portion of the solution
to LaplaceÕs equation in spherical coordinates. The normalization is usually chosen such that:

! 2'

0

! '

0
Sm

N (7, . ) øSm "

N " (7, . ) sin(7)d7d. = 1NN " 1mm " .

They are a L 2 basis on the sphere and obey:

S! m
N (7, . ) = ( %1)m øSm

N (7, . ).


