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3D SEISMIC IMAGING VIA A MASSIVELY PARALLEL STRUCTURED

APPROXIMATE DIRECT HELMHOLTZ SOLVER∗

SHEN WANG† , JIANLIN XIA‡ , AND MAARTEN V. DE HOOP§

Abstract. We consider the discretization and solution of the inhomogeneous Helmholtz equation in 3D. In
particular, we are concerned with solving this equation on a large domain, for a large number of different forcing terms
in the context of seismic inverse problems in general, and imaging in particular. We resort to a parsimonious mixed
grid finite differences scheme for discretizing the Helmholtz operator and Perfect Matched Layer boundaries, resulting
in a non-Hermitian matrix. We make use of a 3D nested dissection based domain decomposition, and introduce
an approximate direct solver by developing a new parallel Hierarchically SemiSeparable (HSS) matrix compression,
factorization, and solution approach. We cast our massive parallelization in the framework of the multifrontal method.
The assembly tree is partitioned into local trees and a global tree. The local trees are eliminated independently in
each processor, while the global tree is eliminated through processor-to-processor communications. The solver for the
inhomogeneous equation is a parallel hybrid between multifrontal and HSS structure. The computational complexity
associated with the factorization is almost linear in the size, N say, of the matrix, viz. O(rN logN), while the storage
is linear as well, O(N log(rlogN)), if r is the maxium numerical rank of all off-diagonal blocks in the multifrontal
procedure.
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1. Introduction. We consider the discretization and solution of the inhomogeneous Helmholtz
equation in 3D. In particular, we are concerned with solving this equation on a large domain, for
a large number of different forcing terms in the context of seismic inverse problems in general, and
imaging in particular. We include solution and least-squares optimization strategies reminiscent of
the limiting absorption principle. We develop a massively parallel structured approximate direct
solver based on 3D nested dissection domain decomposition, rank revealingQR factorization, parallel
Hierarchically SemiSeparable (HSS) matrices compression, factorization and solution.

Solvers of the inhomogeneous Helmholtz equation play a key role in the frequency-domain
implementation of reverse-time migration (RTM) and imaging, also as part of so-called (local op-
timization based) full waveform inversion (FWI). The multi-frequency formulation of the seismic
inverse problem furthermore aids in developing multi-scale regularization methods to mitigate its
nonlinear nature. The Helmholtz-equation approach to RTM and FWI is computationally efficient
for the low- to mid-frequency range, and can be viewed as complimentary to wave-packets based
approaches which are efficient for the finer scales. RTM and FWI have the advantage to, recursively,
accommodate and enhance illumination without user interference; they also provide, in principle, a
common framework for wave-equation tomography and inverse scattering.

We resort to a parsimonious mixed grid finite differences scheme for discretizing the Helmholtz
operator, which yields a compact stencil, and Perfect Matched Layer (PML) boundaries. We note
that the resulting matrix is not Hermitian. We require that the coefficients are sufficiently regular,
viz., continuously differentiable a sufficient number of times. The regularity of coefficients appears
naturally in the processes of imaging and velocity inversion. However, the solver we develop here
is more generally applicable, for example, to a discretization based on certain interior penalty
discontinuous Galerkin methods [1].

In view of the sheer size of the matrix in the equation generated by discretizing the Helmholtz
operator in 3D, most developments to date have been restricted to iterative solvers [2, 3, 4, 5].
In general, iterative solvers lack the efficiency to deal with many forcing terms, and suffer from
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decreasing convergence rate with increasing frequency, though sophisticated preconditioners have
been developed to address this issue in principle. Direct factorization methods have the natural
advantage that the matrix factorization needs be carried out only once (per frequency), the factors
being used in solving fastly the equation for multiple right-hand-sides [6] [7]. Here, we design an
approximate direct solver by developing a new parallel HSS matrix compression and factorization,
which is the main result. Not only do we obtain estimates for the associated computational com-
plexity almost linear in the size, N say, of the matrix, viz. O(rN logN), but also for the storage,
O(N log(rlogN)) if r is the maximum numerical rank of all off-diagonal block compressions.

It has been recognized that direct methods have a fill-in issue, in particular, in the case of 3D
problems, which means that LU factors would overflow the memory limit of a typical computational
platform. The latest work [6] used a multifrontal massively parallel solver called MUMPS to mini-
mize the fill-in problem by resorting to the multifrontal method [8, 9] in combination with a matrix
reordering strategy. However, [10] demonstrated that for truly large problems, even with MUMPS
one cannot realistically store all the factors in memory and has to resort to parallel out-of-core
storage.

In many problems following the discretization of linear partial differential equations from (geo)physics,
the off-diagonal blocks of both the frontal and update matrices, resulting from the multifrontal
method, have the low-rank property [11, 12, 13]. We note that our 3D Helmholtz equation yields a
typical example of this low-rank phenomenon, which implies that our frontal and update matrices
can be compressed subject to a given tolerance. We represent the discrete Helmholtz operator in
terms of Hierarchically SemiSeparable (HSS) matrices. Fast algorithms for compression, factoriza-
tion and solution have been developed for HSS matrices [14, 15, 16, 17, 18, 19]. In this paper, we
investigate HSS structure and parallelize its compression, factorization and solution stages in the
framework of a massively parallel multifrontal method.

In Section 2, we discuss the Helmholtz equation and the limiting absorption principle. We
summarize the processes of RTM and FWI. In Section 3, we follow the work of [6] to develop a
27-point parsimonious mixed-grid stencil to discretize the Helmholtz equation supplemented with a
PML boundary condition. In Section 4, we discuss 3D nested dissection based domain decomposition
and the general parallel multifrontal method. In Section 5 we introduce and discuss our massively
parallel HSS compression, factorization, and solution approaches. In Section 6 we numerically test
the performance of our solver using a 3D lens model. We end the paper with some conclusions.

2. 3D seismic imaging with the Helmholtz equation. The Helmholtz equation is given
by

(2.1) −[∆+ n(x,ω)]u(x,ω) = f(x,ω), x ∈ R
3,

where n(x) = ω2c(x)−2 if c = c(x) denotes the wavespeed and ω the angular frequency. Without
any restriction we assume that ω > 0; ω is fixed. For the solutions equivalent to causality in the
time domain, we impose the Sommerfeld radiation condition.

It is a standard procedure to perturb (2.1) according to

(2.2) (iε+∆+ n)uε = −f, ε > 0.

Because ε ∈ R, then, for any f ∈ L2, a solution uε ∈ L2 of (2.2) satisfies the estimate

(2.3) ‖uε‖L2 ≤ 1

ε
‖(iε+∆+ n)uε‖L2 , or ‖uε‖L2 ≤ 1

ε
‖f‖L2 ,

whence the problem is well posed. Clearly, the right-hand side of (2.3) blows up if ε → 0+, which
necessitates the introduction of norms different from the L2 norm to analyze the problem of solving
the Helmholtz equation. We mention the Morrey-Campanato norm,

(2.4) ||| u |||2 = sup
y∈R3,R>0

1

R

∫

|x−y|<R

|u(x)|2 dx,



A MASSIVELY PARALLEL STRUCTURED DIRECT HELMHOLTZ SOLVER 71

and its dual norm

(2.5) N(f) =
∑

j∈Z

2(j+1)/2‖f‖L2(Aj).

Under certain assumptions,

(2.6) ||| ∇uε |||2 + ||| n1/2uε |||2 ! (ε+ ‖n‖L∞)N(n−1/2f)2

[20] [21]; applying the limiting absorption principle, that is, letting ε → 0+, one obtains the existence
of solutions to (2.1).

We will consider the problem of “full waveform inversion” of seismic data. Data, d(xs, .,ω),
are modelled as solutions to the Helmholtz equation, generated by a family of sources f(x,ω;xs)
parametrized by xs ∈ Σs, and restricted to Σr ⊂ Σ, where Σ is the boundary of a (bounded) domain
in which the function c is unknown. We assume, also, that Σs ⊂ Σ. Typically, one formulates this
problem in terms of a minimum norm optimization. The computation of the gradient in such a
formulation corresponds with imaging; see, for example, [22]. The image is obtained as

(2.7) I(x) =
∑

ω

∑

xs∈Σs

ws(x,ω;xs)u
∗(x,ω;xs)

with

(2.8) [∆+ n(x,ω)]ws(x,ω;xs) = −f(x,ω;xs)

and

(2.9) [∆+ n(x,ω)]u∗(x,ω;xs) = ω2

∫

Σr

d(xs,xr,ω)δ(x− xr) dxr,

in accordance with the adjoint state method; here, we substitute for c a presumed background
model. In the gradient, d is replaced by the data residual and c by the current model.

One has developed various strategies, including preconditioning, to yield computational results.
We mention “exponential damping” [23] [24] [25] [26]. Here, the angular frequencies are complex:

∫
d(t) exp(τ t0) exp[i(ω + iτ)t] dt =

∫
d(t) exp[−τ (t− t0)] exp(iωt) dt

signifying the complex Laplace transform of the data (residuals), if t0 is an estimate of the first arrival
time and τ is a chosen damping term. Thus n is replaced by (ω + iτ)2c(x)−2 with 0 < τ < τ0 ≪ ω.
We write nτ (x,ω) = (ω2 − τ2) c(x)−2. In the above, we can replace ε by τ upon identifying ε with
2ωτc(x)−2. Our solution procedure is designed to admit ε > 0 at the cost of loosing self-adjointness
of the partial differential operator.

Equations (2.7)-(2.9) describe the process of what exploration seismologists call reverse-time
migration (RTM). It requires solving the Helmholtz equation for many right-hand sides. In 2D,
it has been, hence, natural to exploit the LU factorization of the discrete Helmholtz operator [3].
In view of the size of realistic seismic imaging problems (of the order of 109 grid points (x) and
103 source points (xs)), standard LU factorization is not feasible in 3D. Most developments in 3D
indeed are based on iterative Helmholtz-equation solvers [3, 4, 5]. Here, we develop a structured,
approximate direct solver based on a rank revealing QR factorization in combination with domain
decomposition.

3. Discretization: 27-point parsimonious mixed grid finite differences with PML

boundary condition. In this section, we follow the work of [6] and discuss a 27-point compact
parsimonious mixed grid finite difference (FD) stencil. The corresponding scheme has been proven
to be 4th order [27]; in practice, this implies that a sampling rate of 4 grid points per wavelength
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yields sufficiently accurate results. This spatially compact stencil also has the advantage that the
factorization of the discrete Helmholtz operator below is optimized, because it reduces the bandwidth
of the matrix and hence reduces the storage of the factorization significantly compared with the 4th
order centered finite difference stencil. The mixed grid stencil incorporates coordinate rotations,
and hence numerical anisotropy is, to the given order, minimized. The Helmholtz operator can be
generalized to include medium anisotropy according to polarized (elastic-)wave equations [7].

We introduce coordinates, x = (x, y, z). We write (2.1) in the form

(3.1) H(ω)U(x, y, z,ω) = s(x, y, z,ω),

in which H(ω) is the Helmholtz operator,

(3.2) H(ω) = Γ(ω) +
ω2

ρ(x, y, z) c(x, y, z)2
,

Γ(ω) =
1

Sx

∂

∂x

(
1

ρ(x, y, z)Sx

∂

∂x

)
+

1

Sy

∂

∂y

(
1

ρ(x, y, z)Sy

∂

∂y

)
+

1

Sz

∂

∂z

(
1

ρ(x, y, z)Sz

∂

∂z

)
.

Here, Γ is sometimes referred to as the stiffness term, and ω2c−2 as the mass term; ρ(x, y, z) is the
density. Sx, Sy and Sz are damping functions defined at the Perfect Matched Layer (PML) [28]
surrounding the computational domain: [0, Lx]× [0, Ly]× [0, Lz]. Let 0 < Lx1 < Lx, then

(3.3) Sx =

{
1 if 0 ≤ x ≤ Lx1,

1− iσ0

ω

(
x−Lx1

Lx−Lx1

)p

if Lx1 < x ≤ Lx,

and similarly for Sy and Sz. Here, σ0 is an appropriately chosen constant and p is commonly set to
2.

To form the discretization of Γ(ω), we utilize eight coordinate systems with orientions of their
axes connecting all pairs of (outer) nodes of the standard cubic cell; with each coordinate system we
associate a 4th order finite difference stencil by incorporating the midpoint between two grid points.
The coordinate systems are displayed in figure (1): The top diagram shows the standard Cartesian
coordinate system, denoted by Bc(x, y, z), as well as the indices of positions of the nodes relative to
the center (corresponding with (x, y, z) below) of the cell. We denote the mesh step size by h. The
seven nodes used in the component stencil, ΓBc

, are [0 0 0], [1 0 0], [-1 0 0], [0 1 0], [0 -1 0], [0 0 1] and
[0 0 -1]. The middle diagram shows the three coordinate systems obtained by rotating Bc over 45◦

around the x−, y−, and z−axis, respectively. They are denoted by Bx(x, y
′
x, z

′
x), By(y, x

′
y, z

′
y) and

Bz(z, x
′
z, y

′
z). The largest distance between the center point ([0 0 0]) and the grid points involved

in these three stencils is
√
2h. For example,

ΓBy
(ω)U(x, y, z,ω) =

1

h2(Sy) 0 0 0

[
U 0 1 0 − U 0 0 0

(ρSy) 0 1/2 0
− U 0 0 0 − U 0 −1 0

(ρSy) 0 −1/2 0

]

+
1

4h2(Sz) 0 0 0

[
U 1 0 1 − U 0 0 0

(ρSz) 1/2 0 1/2
− U 0 0 0 − U −1 0 −1

(ρSz) −1/2 0 −1/2

]

− 1

4h2(Sz) 0 0 0

[
U 1 0 0 − U 0 0 1

(ρSz) 1/2 0 1/2
− U 0 0 −1 − U −1 0 0

(ρSz) −1/2 0 −1/2

]

− 1

4h2(Sz) 0 0 0

[
U 1 0 0 − U 0 0 −1

(ρSz) 1/2 0 −1/2
− U 0 0 1 − U −1 0 0

(ρSz) −1/2 0 1/2

]
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+
1

4h2(Sz) 0 0 0

[
U 1 0 −1 − U 0 0 0

(ρSz) 1/2 0 −1/2
− U 0 0 0 − U −1 0 1

(ρSz) −1/2 0 1/2

]

+
1

4h2(Sx) 0 0 0

[
U 1 0 1 − U 0 0 0

(ρSx) 1/2 0 1/2
− U 0 0 0 − U −1 0 −1

(ρSx) −1/2 0 −1/2

]

+
1

4h2(Sx) 0 0 0

[
U 1 0 0 − U 0 0 1

(ρSx) 1/2 0 1/2
− U 0 0 −1 − U −1 0 0

(ρSx) −1/2 0 −1/2

]

+
1

4h2(Sx) 0 0 0

[
U 1 0 0 − U 0 0 −1

(ρSx) 1/2 0 −1/2
− U 0 0 1 − U −1 0 0

(ρSx) −1/2 0 1/2

]

+
1

4h2(Sx) 0 0 0

[
U 1 0 −1 − U 0 0 0

(ρSx) 1/2 0 −1/2
− U 0 0 0 − U −1 0 1

(ρSx) −1/2 0 1/2

]

The bottom diagram shows the four coordinate systems, each one of which is obtained by
rotation of Bc to three of the four main diagonals. They are denoted by B1(d1, d2, d3), B2(d1, d2, d4),
B3(d1, d3, d4) and B4(d2, d3, d4). The largest distance between the center point ([0 0 0]) and the
grid points involved in these four stencils is

√
3h. For example,

ΓB2
(ω)U(x, y, z,ω) =

1

4h2(Sx) 0 0 0

[
U 1 1 1 − U 0 0 0

(ρSx) 1/2 1/2 1/2
− U 0 0 0 − U −1 −1 −1

(ρSx) −1/2 −1/2 −1/2

]

− 1

4h2(Sx) 0 0 0

[
U 0 1 1 − U 1 0 0

(ρSx) 1/2 1/2 1/2
− U −1 0 0 − U 0 −1 −1

(ρSx) −1/2 −1/2 −1/2

]

− 1

4h2(Sx) 0 0 0

[
U 0 1 1 − U −1 0 0

(ρSx) −1/2 1/2 1/2
− U 1 0 0 − U 0 −1 −1

(ρSx) 1/2 −1/2 −1/2

]

+
1

4h2(Sx) 0 0 0

[
U −1 1 1 − U 0 0 0

(ρSx) −1/2 1/2 1/2
− U 0 0 0 − U 1 −1 −1

(ρSx) 1/2 −1/2 −1/2

]

+
1

4h2(Sy) 0 0 0

[
U 1 1 1 − U 0 0 0

(ρSy) 1/2 1/2 1/2
− U 0 0 0 − U −1 −1 −1

(ρSy) −1/2 −1/2 −1/2

]

+
1

4h2(Sy) 0 0 0

[
U 0 1 0 − U 1 0 1

(ρSy) 1/2 1/2 1/2
− U −1 0 −1 − U 0 −1 0

(ρSy) −1/2 −1/2 −1/2

]

+
1

4h2(Sy) 0 0 0

[
U 0 1 0 − U −1 0 −1

(ρSy) −1/2 1/2 −1/2
− U 1 0 1 − U 0 −1 0

(ρSy) 1/2 −1/2 1/2

]

+
1

4h2(Sy) 0 0 0

[
U −1 1 −1 − U 0 0 0

(ρSy) −1/2 1/2 −1/2
− U 0 0 0 − U 1 −1 1

(ρSy) 1/2 −1/2 1/2

]

+
1

4h2(Sz) 0 0 0

[
U −1 1 1 − U 0 0 0

(ρSz) −1/2 1/2 1/2
− U 0 0 0 − U −1 −1 −1

(ρSz) 1/2 −1/2 −1/2

]

− 1

4h2(Sz) 0 0 0

[
U −1 1 0 − U 0 0 1

(ρSz) −1/2 1/2 1/2
− U 0 0 −1 − U 1 −1 0

(ρSz) 1/2 −1/2 −1/2

]

− 1

4h2(Sz) 0 0 0

[
U −1 1 0 − U 0 0 −1

(ρSz) −1/2 1/2 −1/2
− U 0 0 1 − U 1 −1 0

(ρSz) 1/2 −1/2 1/2

]

+
1

4h2(Sz) 0 0 0

[
U −1 1 −1 − U 0 0 0

(ρSz) −1/2 1/2 −1/2
− U 0 0 0 − U 1 −1 1

(ρSz) 1/2 −1/2 1/2

]

The 27 nodes used in these four coordinate systems incorporate all nodes.
The stencils associated with the different coordinate systems are weighted according to

(3.4) Γ(ω) = W1 ΓBc
(ω) +

W2

3
(ΓBx

(ω) + ΓBy
(ω) + ΓBz

(ω))

+
W3

4
(ΓB1

(ω) + ΓB2
(ω) + ΓB3

(ω) + ΓB4
(ω)),
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Fig. 1. Mixed grid finite difference coordinates: top: classical Cartesian coordinate Bc(x, y, z); middle: three co-
ordinate systems obtained by rotating around x, y, and z respectively. They are denoted as Bx(x, y′x, z

′

x), By(y, x′

y , z
′

y)
and Bz(z, x′

z , y
′

z); bottom: four coordinate systems obtained by coordinate transform from Cartesian system to three
main diagonals out of four. They are denoted as B1(d1, d2, d3), B2(d1, d2, d4), B3(d1, d3, d4) and B4(d2, d3, d4).
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with W1 +W2 +W3 = 1. Similarly,

(3.5)
ω2

c2
U(x, y, z,ω) = ω2

(
Wm1

[
U

c2

]

0

+
Wm2

6

[
U

c2

]

1

+
Wm3

12

[
U

c2

]
√
2

+
Wm4

8

[
U

c2

]
√
3

)
,

with Wm1
+Wm2

+Wm3
+Wm4

= 1, and

[
U

c2

]

0

=
U 0 0 0

c20 0 0

,

[
U

c2

]

1

=
U 1 0 0

c21 0 0

+
U−1 0 0

c2−1 0 0

+
U 0 1 0

c20 1 0

+
U 0−1 0

c20−1 0

+
U 0 0 1

c20 0 1

+
U 0 0−1

c20 0−1

,

[
U

c2

]
√
2

=
U 1 0−1

c21 0−1

+
U 1 0 1

c21 0 1

+
U−1 0 1

c2−1 0 1

+
U−1 0−1

c2−1 0−1

+
U 0−1−1

c20−1−1

+
U 0−1 1

c20−1 1

+
U 0 1−1

c20 1−1

+
U 0 1 1

c20 1 1

+
U−1−1 0

c2−1−1 0

+
U 1−1 0

c21−1 0

+
U−1 1 0

c2−1 1 0

+
U 1 1 0

c21 1 0

,

[
U

c2

]
√
3

=
U−1−1−1

c2−1−1−1

+
U 1−1−1

c21−1−1

+
U−1 1−1

c2−1 1−1

+
U 1 1−1

c21 1−1

+
U−1−1 1

c2−1−1 1

+
U 1−1 1

c21−1 1

+
U−1 1 1

c2−1 1 1

+
U 1 1 1

c21 1 1

.

The weights are determined by dispersion analysis, viz. by minimizing the phase velocity dispersion.
In [6] the authors obtain W1 = 1.8395 × 10−5, W2 = 0.8901, W3 = 0.1099, Wm1

= 0.4965, Wm2
=

0.4510, Wm3
= 0.0525 and Wm4

= 0.4552× 10−5. Essentially, W1 and Wm4
can be set to zero.

Organizing the discrete points in a vector standardly according to reshaping 3D u(ω) and s(ω)
column-wise, (3.4)-(3.5) generate a matrix system, A(ω)u(ω) = s(ω). The matrix A(ω) has a
symmetric pattern, but it is not Hermitian in view of the PML damping functions.

In figure (2) we show a comparison of the patterns of different matrices. The left figure shows
the matrix generated by a 4th order centered finite difference scheme while the right figure shows the
matrix associated with the optimal parsimonious mixed finite difference scheme used here (illustrated
by figure (1)), which is also proved to be of 4th order accuracy [27]. The apparent bandwidth
reduction plays an important role in the local matrix factorization developed below, in particular
with a view to communication among processors in massive parallelization.

4. 3D massively parallel domain decomposition and multifrontal method. In this
section, we briefly summarize the general multifrontal method, and introduce the domain decom-
position in connection with a massively parallel structured approximate factorization (section 5),
tailored to the 3D Helmholtz operator. The goal is to develop a strategy alternative to the full LU
factorization.

4.1. 3D nested dissection based domain decomposition. It is well known that the tradi-
tional LU factorization of the matrix A(ω) will cause a catastrophic fill-in problem during Gaussian
elimination. In the 2D case, the corresponding matrix is much smaller, and the fill-in issue is af-
fordable with a large number of processors equipped with a relatively large memory. It has been
recognized that the fill-in problem can be alleviated by nested dissection reordering [29, 9] of the
original mesh. If N is the size of the matrix, the complexity of the factorization and the storage
can thus be reduced to O(N2) and O(N logN) respectively [30].

Our algorithm for 3D nested dissection is illustrated in figure (3). It recursively divides the 3D
mesh into subdomains and separators. At the first level (figure (3) (top)), a z direction separator
divides the original mesh into three disjoint parts: two subdomains and the separator itself. The
separator here plays a key role not only in data locality, but also in data communication. The
grid points associated with the separators are ordered after those associated with subdomains. At
the second level (figure (3) (middle)) and the third level (figure (3) (bottom)), y direction and
x direction separators further divide the subdomains into lower level subdomains and separators,
respectively. Based on this rule, much lower level separations can be pursued.
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Fig. 2. patterns of the global matrix A(ω) on a mesh Nx = 14, Ny = 14, Nz = 14, the size of A(ω) is
Nx×Ny×Nz = 2744. left: A(ω) generated by 4th order centered FD; right: A(ω) generated by optimal parsimonious
mixed FD illustrated in figure (1). Note that the bandwidth of the matrix on the right has been reduced significantly
compared with the one on the left.

We let lower level separators and subdomains be reordered prior to higher level ones. After
reordering, we end up with a reordered linear system of equations illustrated in figure (4) (left) and
an assembly tree [31] [32] [33] illustrated in figure (4) (right). Each node on the tree has a parent
(except the root node separator) and two children (except the bottom level subdomains, which are
called leaves). In the 3D physical domain, if two regions represented by two nodes in the tree have
connections with each other, which means that the 27-point stencil spans across two regions, these
two nodes are called neighbors of one another. figure (5) (left) shows an example of a lower level
reordering of the global matrix A(ω) displayed in figure (2) for Nx = Ny = Nz = 14, while figure
(5) (middle) shows a higher level reordering.

In the process of 3D nested dissection, we note that each “early” separator in the 3D domain
has its own 2D nested dissection substructure. While reordering a 3D separator, we have to consider
this substructure. Figure (5) (right) shows the global matrix pattern after incorporating the 2D
substructures of each separator. This consideration plays a crucial role in the introduction of the
3D multifrontal method in that it minimizes the connections between each node and its neighbors
and thus improves the efficiency significantly.

We note that the nested dissection algorithm itself automatically provides us a platform upon
which 3D massively parallel domain decomposition can be performed. During the process of generat-
ing the assembly tree from the highest level to the bottom level, the original domain is decomposed.
It appears natural that parallelization comes into play at a certain level, Lpar say, and each pro-
cessor deals with one local tree from such a level downwards. We refer to Lpar as the parallel level.
As a consequence, data communication will happen at levels Lpar and upward.

Figure (6) illustrates an example of the assembly tree, which is also displayed in figure (4)
(right), and how we partition it into a global tree stored on all processors and local trees stored on
each individual processor. The parallel level is indicated by the red dashed line. The black dashed
boxes representing local trees are eliminated in parallel first. Then the global tree indicated by the
blue dashed box above the parallel level is eliminated via massive data communications. Figure
(7) illustrates the basic idea how we distribute the reordered global matrix, which has already been
shown in figure (4) (left), into a given number of processors on the working platform. Suppose we
have four processors which are denoted as 0, 1, 2, and 3. The submatrix stored on processor 0
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Fig. 3. 3D nested dissection based domain decomposition: top: level one; middle: level two; bottom: level three.

is indicated by the shaded area in figure (7) (right). The submatrices stored on other processors
can also be derived in the same way. We point out that the storage of the global matrix is not
disjoint, which makes the communication happen at the overlapping interfaces that are represented
as separators in the process of nested dissection.

4.2. Massively parallel multifrontal method. The basic idea of the multifrontal method is
to reorganize the overall factorization of the nested dissection reordered matrix, shown in figure (4)
(left), into partial updates and factorizations of smaller dense matrices according to the assembly
tree ([32], [34], [33], [9]). It converts and accumulates large sparse factorizations into small dense
ones. Thus it generally has good data locality and is more efficient than, for example, sparse
direct LU factorization algorithms. Besides that, since the global matrix is reordered based on the
assembly tree which is typically an example of fractal data structure, the multifrontal method is
very well tailored for parallelization.
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Fig. 4. left: the pattern of the global matrix A(ω) displayed on a single processor after nested dissection
reordering illustrated in figure (3); right: the global assembly tree structure of nested dissection reordering.
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Fig. 5. the nested dissection reordering of the global matrix A(ω), which is displayed in figure (2) (right), on a
single processor. The mesh is Nx = 14, Ny = 14, Nz = 14, the size of A(ω) is Nx × Ny × Nz = 2744. left: lower
order reordering, level two; middle: higher order reordering, level six; right: higher order reordering incorporating
the 2D elaborate substructure, level six.

Fig. 6. illustration of the 3D massively parallel multifrontal method. The red dashed line indicates the level
(Lpar) that parallelization kicks in. The entire assembly tree, shown in figure (4) (right), is partitioned into two
parts. The first part is the local tree stored in each individual processor, indicated by those separate dashed boxes
below the red dashed line. These local trees are eliminated first locally, resulting in a dense update matrix eventually.
The second part is the global tree stored in all processors, indicated by a big dashed box above the red dashed line.
Communications only happen at this stage.
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Fig. 7. 3D domain decomposition configuration for four processors which are denoted as 0, 1, 2, and 3. left:
the original physical domain, shown in figure (3); right: the submatrix (shaded areas) stored locally on processor 0
imbedded in the global nested dissection reordered matrix, which is illustrated by figure (4) (left).

There are two types of matrices occurring in the multifrontal method: frontal matrices and
update matrices. We denote the current frontal matrix by F , which basically glues and accumulates
the submatrix associated with the current node and all submatrices pieces associated with the
current neighbors in the global matrix, together into a dense matrix. Suppose we achieve a certain
type of factorization, say A = LAUA, then we obtain the following deduction:

F =

(
A E
F B

)
=

(
LAUA E
F B

)

=

(
LA 0

FU−1
A I

)(
UA L−1

A E
0 B − (FU−1

A )(L−1
A E)

)
(4.1)

Here, the matrix U = B− (FU−1
A )(L−1

A E) is the Schur complement of the original frontal matrix F ,
and is called the update matrix. Figure (8) displays the process how frontal matrices and update
matrices are formed in the multifrontal method, starting from the global reordered matrix illustrated
by figure (4) (left). The submatrix associated with the current node is indicated by the upper left
red box. Other red boxes indicate the submatrices associated with all neighbors of the current
node. Shaded areas indicate the optimal connections between the current node and its neighbors.
Therefore, the frontal matrix is obtained by gluing all shaded areas together, which is illustrated by
the lower right figure, and the update matrix is indicated by a dashed box imbedded in the frontal
matrix.

Update matrices from children are assembled into the upper level frontal matrices with an
operation called extend-add [9] [17] via both local stacking within a single processor and parallel
stacking across all the processors. Figure (9) shows the process of such a parallel extend-add. S
denotes the Schur complement or the update matrix (displayed in figure (8) (right)) of the current
frontal matrix; S = U in this case.

Figure (6) indicates how we implement the multifrontal method in the context of massive
parallelization. Below the parallel level, each processor eliminates its own local tree independently,
ending up with a local dense update matrix waiting for communications with other processors.
Up to this stage, no communications occur. We use the SIMD (Single Instruction Multiple Data)
model. Above the parallel level, the frontal dense matrix will be stored and factorized over multiple
processors. For example, in figure (6) the frontal matrix and update matrix of node 15 will be stored
in two processors whose root nodes of local trees are 7 and 14, respectively. Communications only
happen between 7 and 14. However, the frontal matrix of node 31 will be stored in four processors
whose root nodes of local trees are 7, 14, 22 and 29, respectively. In this case, four processors labeled
by 0, 1, 2 and 3 in figure (7) exactly have the root nodes 7, 14, 22 and 29, respectively. We note
that the root node of the entire global tree will involve all the processors in the final stage of the
factorization. (Thus, in our code development, we call the MPI subroutine MPI Comm create to
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Fig. 8. the illustration of frontal matrix and update matrix in the multifrontal method. left: the current node
(upper left red box which is to be factorized), all of its corresponding neighbors (the rest red boxes) and their minimum
connection areas (shaded boxes) in the original reordered global matrix A(ω) illustrated by figure (4) (left); right:
frontal matrix formed by gluing all shaded areas in the original reordered global matrix together into a dense matrix,
update matrix (blue dashed box) computed by the Schur complement of the frontal matrix.

Fig. 9. illustration of the extend-add procedure via local and parallel stacking: red dashed boxes indicate the
local stacking within each processor, while blue boxes indicate parallel stacking over all the processors. S denotes the
Schur complement or the update matrix of the current frontal matrix, illustrated by figure (8) (right).

create a new communicator instead of using MPI COMM WORLD for each node operation, for the
sake of minimizing communications.)

Furthermore, the solution to the global multifrontal matrix is achieved in parallel ([9] [17])
according the assembly tree displayed in figure (6), via forward and backward substitution indicated
by the top-down and bottom-up going arrows, respectively, in figure (10).

5. Parallel HSS compression, factorization and solution of the dense frontal matrix

F . In section 4, we have already noted that the crucial ingredient in the parallel multifrontal method
is how to factorize the frontal matrix F , which is distributed over multiple processors at higher levels,
with less storage and complexity. In this section, we present a certain compression strategy tailored
to our frontal matrix, for the sake of storage economy and complexity reduction.

In many problems following the discretization of partial differential equations from (geo)physics,
the off-diagonal blocks of both the frontal and update matrices have the low-rank property [11, 12,



A MASSIVELY PARALLEL STRUCTURED DIRECT HELMHOLTZ SOLVER 81

Fig. 10. illustration of the global massively parallel multifrontal solver via forward and backward substitution
indicated by the top-down and bottom-up arrows, respectively.

13]. We note that our 3D Helmholtz problem is a typical example of this low-rank phenomenon,
which implies that our frontal and update matrices in the multifrontal method can be compressed.
Typical examples of rank-structured matrices include H matrices, H2 matrices, and quasiseparable
matrices. Recently, more structured matrices called Hierarchically SemiSeparable (HSS) matrices
[14, 15, 16, 17, 18] were introduced and analyzed, and corresponding fast algorithms have been
proposed. However, most of the existing HSS algorithms are tailored for sequential implementation
[19, 18]. Here, we propose a set of fast, massively parallel HSS compression, factorization and
solution algorithms in the context of a parallel realization of the multifrontal method.

5.1. Parallel HSS compression of the dense frontal matrix F . We start this subsection
with an introduction of our compression strategy, called the rank revealing QR factorization [18],
of a given matrix, say A, which possesses the low rank property. Full SV D is another candidate for
compression. However, the complexity of a full SV D is much larger than that of a rank revealing
QR factorization. We utilize the modified Gram-Schmidt with column pivoting (mgsclpv) method
to realize the QR factorization with rank revealing; mgsclpv basically selects the column with
the largest L2 norm in the process of Gram-Schmidt and then permutes it, eventually yielding a
permutation or column pivoting matrix P , such that AP = QR and |R11| > |R22| > ... > |Rkk| > ...,
in which Rkk are the diagonal entries of R. Then Q and R are truncated subject to a predefined
tolerance τ (for instance 10−6), such that |Rrr| ≥ τ × |R11| and |Rr+1,r+1| < τ × |R11|, in which
r is the numerical rank of A. We obtain AP = QR ≈ Q1R1 and the eventual compressional form
A = Q1 (R1P

T ). Figure (11) illustrates the process of our compression strategy based on rank
revealing QR.

We utilize the rank revealing QR compression strategy to compress dense frontal matrix off-
diagonal blocks with the low-rank property. Here we follow another binary tree structure called
HSS tree to realize such compression of different levels, and also later on factorization and solution
stages. The fully compressed form of the dense frontal matrix is called the HSS matrix.

Definition 5.1. HSS tree and HSS matrix [15]
For a dense matrix F , the HSS tree is defined to be a postordering binary tree on which each node
is associated with a block in F such that it can be compressed via rank revealing QR illustrated in
figure (11). Then F can be compressed into its corresponding HSS matrix form, with the following
recursion:

(5.1)

(
Di UiBiV

T
j

UjBjV
T
i Dj

)
, with Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,
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Fig. 11. illustration of the QR factorization with the rank revealing strategy, which is realized by the modified
Gram-Schmidt with column pivoting method. Given an example of a matrix A with low rank property, suppose
we have a certain column pivoting matrix P , such that AP = QR and |R11| > |R22| > ... > |Rkk| > ..., then
we can truncate Q and R subject to a predefined tolerance level, which means AP = QR ≈ Q1R1. The eventual
compressional form of A will be A = Q1 (R1PT ). if the size of A is m × n, top figure displays the case of m ≥ n
and bottom figure displays the case of m < n.

Fig. 12. the HSS compression of the dense frontal matrix for different levels, resulted from rank revealing QR
compression illustrated in figure (11). left: one level, right: two levels.

where D,B,U, V,R,W are called HSS factors or HSS generators, c1 and c2 indicate two children
nodes of the node i if i is not a leaf of the HSS tree.

Figure (12) shows two examples of HSS matrices resulting from recursive rank revealing QR
compression illustrated in figure (11) and defined by eq.(5.1). Figure (12) (left) displays the pattern
of an HSS matrix with one partition level.

(
D1 U1B1V

T
2

U2B2V
T
1 D2

)
,

while figure (12) (right) displays the pattern of an HSS matrix with two partition levels.




D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
4 D5


 .

The level we refer to here is the level of the corresponding HSS tree, not of the assembly tree
mentioned in the multifrontal method (section 4). Thus, our algorithm is a hybrid of the outer
multifrontal method (assembly tree) and the inner HSS strategy (HSS tree). We discuss our parallel
HSS compression algorithm illustrated by an example of a 4 × 4 dense block matrix denoted by
F , presuming here that F is a frontal matrix generated in the process of the multifrontal method
(section 4):
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(5.2) F =




D1 T12 T14 T15

T21 D2 T24 T25

T41 T42 D4 T45

T51 T52 T54 D5


 ,

where Di are the diagonal blocks, Tij are the off-diagonal blocks, and F is the initial dense frontal
matrix before any compression.

• parallel row compression 1
At this stage, we have the following compressions, which are carried out by the rank reveal-
ing QR strategy mentioned earlier:

(
T12 T14 T15

)
≈ U1

(
T̃12 T̃14 T̃15

)
,

(
T21 T24 T25

)
≈ U2

(
T̃21 T̃24 T̃25

)

(
T41 T42 T45

)
≈ U4

(
T̃41 T̃42 T̃45

)
,

(
T51 T52 T54

)
≈ U5

(
T̃51 T̃52 T̃54

)

Here, the Ui are row factors which have been compressed out and will be stored in memory.
T̃ij will wait for further compressions at later stages. The partial compression form of F is:

(5.3) F ≈




D1 U1T̃12 U1T̃14 U1T̃15

U2T̃21 D2 U2T̃24 U2T̃25

U4T̃41 U4T̃42 D4 U4T̃45

U5T̃51 U5T̃52 U5T̃54 D5




• parallel row compression 2
At this stage, we have the following compressions, which are carried out by the rank reveal-
ing QR strategy mentioned earlier:

(
T̃14 T̃15

T̃24 T̃25

)
≈

(
R1

R2

)(
T̃34 T̃35

)
,

(
T̃41 T̃42

T̃51 T̃52

)
≈

(
R4

R5

)(
T̃61 T̃62

)

Here, the Ri are row factors which have been compressed out and will be stored in memory.
T̃ij will wait for further compressions at later stages. The partial compression form of F is:

(5.4) F ≈




D1 U1T̃12 U1R1T̃34 U1R1T̃35

U2T̃21 D2 U2R2T̃34 U2R2T̃35

U4R4T̃61 U4R4T̃62 D4 U4T̃45

U5R5T̃61 U5R5T̃62 U5T̃54 D5




• parallel column compression 1
At this stage, we have the following compressions, which are carried out by the rank reveal-
ing QR strategy mentioned earlier:

(
T̃21

T̃61

)
≈

(
B2

T̂61

)
V T
1 ,

(
T̃12

T̃62

)
≈

(
B1

T̂62

)
V T
2 ,

(
T̃34

T̃54

)
≈

(
T̂34

B5

)
V T
4 ,

(
T̃35

T̃45

)
≈

(
T̂35

B4

)
V T
5
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Here, the Vi are column factors which have been compressed out at this stage and will be
stored in memory. The Bi are pivoting factors which are outputs of column compression.
T̂ij will wait for further compressions at later stages. The partial compression form of F is:

(5.5) F ≈




D1 U1B1V
T
2 U1R1T̂34V

T
4 U1R1T̂35V

T
5

U2B2V
T
1 D2 U2R2T̂34V

T
4 U2R2T̂35V

T
5

U4R4T̂61V
T
1 U4R4T̂62V

T
2 D4 U4B4V

T
5

U5R5T̂61V
T
1 U5R5T̂62V

T
2 U5B5V

T
4 D5




• parallel column compression 2
At this stage, we have the following compressions, which are carried out by the rank reveal-
ing QR strategy mentioned earlier:

(
T̂34 T̂35

)
≈ B3

(
WT

4 WT
5

)
,

(
T̂61 T̂62

)
≈ B6

(
WT

1 WT
2

)

Here, the Wi are column factors which have been compressed out and will be stored in
memory. The Bi are pivoting factors which are the outputs of parallel column compression.
The final compression form of F is:

(5.6) F ≈




D1 U1B1V
T
2 U1R1B3W

T
4 V T

4 U1R1B3W
T
5 V T

5

U2B2V
T
1 D2 U2R2B3W

T
4 V T

4 U2R2B3W
T
5 V T

5

U4R4B6W
T
1 V T

1 U4R4B6W
T
2 V T

2 D4 U4B4V
T
5

U5R5B6W
T
1 V T

1 U5R5B6W
T
2 V T

2 U5B5V
T
4 D5




which can also be rewritten in a recursive form as:

(5.7)

F ≈




(
D1 U1B1V

T
2

U2B2V
T
1 D2

) (
U1R1

U2R2

)
B3

(
WT

4 V T
4 WT

5 V T
5

)
(

U4R4

U5R5

)
B6

(
WT

1 V T
1 WT

2 V T
2

) (
D4 U4B4V

T
5

U5B5V
T
4 D5

)




The compression is finalized at this stage. There are altogether six types of factors which
are compressed out: D,B,U, V,R and W , with the D factors unchanged compared with
the initial diagonal blocks.

Up to now, we have obtained the final HSS compressed form, given in eq.(5.6), of the original
dense frontal matrix eq.(5.2). The leading structure of the HSS matrices satisfies the recursive
relationship defined in eq.(5.1), which can be seen in eq.(5.7). In our implementation, during the
HSS compression stage, we call the MPI subroutines MPI Send and MPI Recv. Conceptually, most
communications occur upon merging two T̃ij or T̂ij blocks stored on different processors while

compressing. However, in practice, the entire block of T̃ij or T̂ij should not be sent from one
processor to another in that it will slow down the efficiency dramatically. Instead, the object that is
transferred from one processor to another by MPI Send and MPI Recv is the L2 column norms of
two T̃ij or T̂ij blocks stored on separate processors. The value of the norm controls which column
is to be permuted and when to stop subject to a predefined tolerance during the process of rank
revealing QR. Thus transferring the norm vector instead of the whole block matrix improves the
efficiency significantly.

5.2. Parallel HSS factorization of the HSS compressed form of the dense frontal

matrix F . After we obtain an approximate HSS compressed form (eq.(5.6)) of the original dense
frontal matrix (eq.(5.2)), the next step is to factorize the HSS matrix (eq.(5.6)) in parallel, motivated
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by [14]. Here, we would like to use an explicit parallel ULV factorization instead of LU factorization.
Figure (13) illustrates the basic idea of parallel HSS factorization, using a block 2×2 matrix denoted
by H as an example. We start from figure (13) (upper left), which is the HSS matrix shown in figure
(12) (left).

We have

(5.8) H =

(
D1 U1B1V

T
2

U2B2V
T
1 D2

)
.

Suppose that the size of Ui (i = 1, 2) is mi × ki, and mi ≥ ki, After QL factorization of Ui =

Qi

(
0

Ũi

)
, we obtain the following equivalent form:

(5.9) H =




D1 Q1

(
0

Ũ1

)
B1V

T
2

Q2

(
0

Ũ2

)
B2V

T
1 D2


 .

We multiply by QT
1 and QT

2 on the left in parallel, yielding that the first mi − ki rows of the
off-diagonal blocks are zeroed out,

(5.10)

(
QT

1 0
0 QT

2

)(
D1 U1B1V

T
2

U2B2V
T
1 D2

)
=




QT
1 D1

(
0

Ũ1B1V
T
2

)

(
0

Ũ2B2V
T
1

)
QT

2 D2


 ,

leaving the size of Ũi to be ki × ki. Figure (13) (upper right) displays the consequence of this
row multiplication: D1 and D2 are updated to QT

1 D1 and QT
2 D2 respectively, while U1 and U2 are

reduced to Ũ1 and Ũ2 respectively. We then carry out LQ factorization (transposed QR) in parallel
for the upper part of QT

1 D1 and QT
2 D2, respectively. The output orthogonal matrices at this step

are denoted by q1 and q2. We multiply eq.(5.10) on the right by q1 and q2, and obtain
(5.11)

(
QT

1 0
0 QT

2

)(
D1 U1B1V

T
2

U2B2V
T
1 D2

)(
q1 0
0 q2

)
=




QT
1 D1q1

(
0

Ũ1B1(q
T
2 V2)

T

)

(
0

Ũ2B2(q
T
1 V1)

T

)
QT

2 D2q2


 .

Figure (13) (lower left) shows that after this column multiplication, V1 and V2 are updated to qT1 V1

and qT2 V2, respectively. Additionally, QT
i Diqi (i = 1, 2) consists of three factors: a lower triangular

matrix, a flat block matrix, and a residual diagonal block matrix. Eventually, the residual diagonal
block matrices, merged with the residual off-diagonal block matrices, are transferred to the higher
level for further recursive factorization, which is depicted in figure (13) (lower right). Upon reaching
the highest level of the HSS tree, the LU factorization is carried out for the final residual diagonal
matrix.

In summary, Such a ULV factorization scheme is both stable and parallelizable. The use of
orthonormal factorizations leads to the stability. The intermediate factorizations are done locally
along the nodes of HSS tree.

5.3. Parallel HSS solution imbedded in the parallel global multifrontal solution. We
still use a block 2× 2 matrix as an example. Our target is solve the HSS compressed frontal matrix
system (eq.(5.8)) with HSS factorization (eq.(5.11))

(5.12)

(
D1 U1B1V

T
2

U2B2V
T
1 D2

)(
x1

x2

)
=

(
b1
b2

)
.
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Fig. 13. an example of parallel factorization of the HSS matrix with only one level, which is also shown in
figure (12) (left). upper left: the original HSS compressed form. upper right: parallel multiplication by orthogonal
matrices QT

1
and QT

2
row-wise, respectively. lower left: parallel multiplication by orthogonal matrices q1 and q2

column-wise, respectively. lower right: the residual blocks are transferred to higher level factorization. If the highest
level is reached, LU factorization is carried out.

With parallel row multiplications by QT
1 and QT

2 , and parallel column multiplications by q1 and q2,
we obtain the following equivalent formulation of eq.(5.12):

(5.13)

(
QT

1 0
0 QT

2

)(
D1 U1B1V

T
2

U2B2V
T
1 D2

)(
q1 0
0 q2

)

︸ ︷︷ ︸

(
qT1 x1

qT2 x2

)
=

(
QT

1 b1
QT

2 b2

)

From eq.(5.11) we note that the part indicated by an underbrace in eq.(5.13) can be replaced by
the right hand side of eq.(5.11), which results in:

(5.14)




QT
1 D1q1

(
0

Ũ1B1(q
T
2 V2)

T

)

(
0

Ũ2B2(q
T
1 V1)

T

)
QT

2 D2q2







qT1 x11

qT1 x12

qT2 x21

qT2 x22


 =




QT
1 b11

QT
1 b12

QT
2 b21

QT
2 b22


 ,

in which x1 =

(
x11

x12

)
, x2 =

(
x21

x22

)
. We write x̃11 = qT1 x11, x̃12 = qT1 x12, x̃21 = qT2 x21 and

x̃22 = qT2 x22, and b̃11 = QT
1 b11, b̃12 = QT

1 b12, b̃21 = QT
2 b21 and b̃22 = QT

2 b22, and illustrate the
matrix system of eq.(5.14) in figure (14) (right).

From figure (14) (right), we observe that x̃11 and x̃21 can be obtained in parallel by solving
two lower triangular systems, while x̃12 and x̃22 are obtained after updating their corresponding
right-hand-sides via x̃11 and x̃21, followed by higher level triangular system solvers. Eventually,
after obtaining x̃11, x̃12, x̃21 and x̃22, and upon setting x1 = q1x̃1 and x2 = q2x̃2 in which x̃1 =(

x̃11

x̃12

)
, x̃2 =

(
x̃21

x̃22

)
, we thus obtain an entire parallel solution strategy.
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Fig. 14. illustration of the massively parallel HSS solver, which is resulted from the HSS factorization stage
shown in figure (13), and is imbedded in the global multifrontal solver illustrated by figure (10).

The parallel HSS solution strategy introduced here is recursively imbedded in the global parallel
multifrontal solution via forward and backward substitution; this is illustrated in figure (10).

6. Performance tests and numerical examples. In this section, we show the numerical
performances of our parallel structured approximate solver, and various numerical examples. Let
r be the maximum off-diagonal numerical rank of the dense frontal matrices in the multifrontal
procedure, then it is shown in [31] that the total complexity of the structured multifrontal method
is O(rN logN), and the total storage is O(rN log(r logN)). The cost for solving the linear system
with one right-hand-side is O(rN log(r logN)).

Preliminary numerical tests have been done, and the numerical results are shown in Tables (6.1)
and (6.2). Table (6.3) shows how the computational costs and storage scale when the order of the
matrix N increases. The scaling factors of the exact factorization are consistent with the complexity
and storage counts. The scaling factors of the our structured approximate solver decrease quickly,
compared with the classical multifrontal solver (MUMPS). In our future tests with large matrix
sizes, we expect the factors to get close to 8.

matrix order (N) 123 243 483 963

factorization cost (flops) 7.49E7 4.58E9 1.72E11 4.74E12
solution cost (flops) 1.15E6 2.91E7 4.63E8 5.41E9

storage (nnz) 3.45E5 4.90E6 6.39E7 7.64E8
Table 6.1

numerical results (in flops: floating operations per second) and storage (in nnz: number of non-zeros) for the
HSS structured direct solver with relative tolerance 10−4.

matrix order (N) 123 243 483 963

factorization cost (flops) 3.36E7 2.32E9 1.58E11 1.05E13
solution cost (flops) 5.91E5 1.15E7 2.13E8 4.09E9

storage (nnz) 2.95E5 5.75E6 1.06E8 2.04E9
Table 6.2

numerical results (in flops: floating operations per second) and storage (in nnz: number of non-zeros) for the
classical LU multifrontal direct solver.

Figure (15) displays the storage comparison between the LU multifrontal solver and the HSS
structured multifrontal solver. We notice that the storage for the structured solver becomes much
smaller than the LU solver with increasing the order of the matrix N .
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factorization system solution storage
N 123 243 483 123 243 483 123 243 483

classical LU 69.0 68.1 66.5 19.6 18.5 19.2 19.5 18.4 19.2
structured HSS 61.1 37.6 27.6 25.3 15.9 11.7 14.2 13.0 11.9

Table 6.3

scaling factors (scale(8N)/scale(N)) with doubling mesh size, which means the order of the matrix becomes
eight times larger.
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structured approximate solver

classical direct solver

Fig. 15. storage comparison between the structured approximate solver and the classical multifrontal direct
solver (MUMPS). We note that the storage for structured solver becomes much smaller than the one for the classical
LU direct solver with increasing the order of the matrix.

Fig. 16. time-harmonic (f = 25Hz) wavefield computed on a 96× 96× 96 mesh with the homogeneous velocity
c = 2500m/s, and the source location xs = 0km, ys = 0km, zs = 0km.
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Finally, we show some time-harmonic wavefield modeling examples generated by our massively
parallel structured approximate solver. Figure (16) displays the time-harmonic (f = 25Hz) wave-
field computed on a 96 × 96 × 96 mesh with homogeneous velocity c = 2500m/s, and the source
location xs = 0km, ys = 0km, zs = 0km.

Figure (17) (top left) displays a velocity model with a 3D low velocity lens zone in the middle.
In this model, the highest velocity is 2500m/s and the lowest velocity is 1500m/s. The source
location is xs = −1.2km, ys = −1.2km, zs = 0km.

Fig. 17. top left: 3D lens model with mesh 96× 96× 96; the highest velocity is 2500m/s and the lowest velocity
is 1500m/s; a source location is xs = −1.2km, ys = −1.2km, zs = 0km. top right: time-harmonic (f = 7Hz)
wavefield. bottom left: time-harmonic (f = 16Hz) wavefield. bottom right: time-harmonic (f = 25Hz) wavefield.
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Fig. 18. time-harmonic (f = 25Hz) wavefield computed on a 96 × 96 × 96 mesh with a 3D high lens velocity
model whose highest velocity is 4000m/s and lowest velocity is 2500m/s, and a source location xs = −1.2km, ys =
−1.2km, zs = 0km.

Figure (17) (top right) displays the time-harmonic (f = 7Hz) wavefield. Figure (17) (bottom
left) displays the time-harmonic (f = 16Hz) wavefield. Figure (17) (bottom right) displays the
time-harmonic (f = 25Hz) wavefield. The caustic can be seen from these three wavefields.

In contrast with the low velocity lens model, we also compute a time-harmonic (f = 25Hz)
wavefield, which is displayed in figure (18), on a 96 × 96 × 96 mesh with a 3D high lens velocity
model whose highest velocity is 4000m/s and the lowest velocity is 2500m/s, with a source location
xs = −1.2km, ys = −1.2km, zs = 0km.

7. Conclusions. We presented the discretization and the solution of the inhomogeneous Helm-
holtz equation in 3D. We resorted to a parsimonious mixed grid finite differences scheme, which
is of fourth order accuracy, for discretizing the Helmholtz operator and Perfect Matched Layer
boundaries, resulting in a non-Hermitian matrix. We made use of a 3D nested dissection based
domain decomposition, and introduced an approximate direct solver by developing a new parallel
Hierarchically SemiSeparable (HSS) matrix compression, factorization and solution approaches. We
casted our massive parallelization in the framework of the multifrontal method. The solver for
the inhomogeneous equation is a parallel hybrid between multifrontal and HSS structure. The
computational complexity associated with the factorization is almost linear in the size, N say, of
the matrix, viz. O(rN logN), while the storage is linear as well, O(N log(rlogN)), if r is the maxium
numerical rank of all off-diagonal blocks in the multifrontal procedure.
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