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SEISMIC INTERFEROMETRY AND THE ESTIMATION OF THE GREEN’S

FUNCTION USING GAUSSIAN BEAMS

ROBERT L. NOWACK∗

Abstract. In this study, seismic interferometry is investigated in which the Green’s function is estimated
between two receivers by cross-correlation and integration over sources. For smoothly varying source strengths, the
dominant contributions for the correlation integral come from the stationary phase directions in the forward and
backward directions from the alignment of the two receivers. Gaussian beams can be used to evaluate the correlation
integral and concentrates the amplitudes in a vicinity of the stationary phase regions instead of relying on phase
interference. Several numerical examples are shown to illustrate how this process works. The use of Gaussian beams
for the evaluation of the correlation integral results in stable estimates, and also provides physical insight into the
estimation of the Green’s function using seismic interferometry.
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1. Introduction. Seismic interferometry can be used to determine the Green’s function be-
tween two receivers as if a source were located at one receiver and recorded at the other receiver
using distant seismic energy. The development and many applications of seismic interferometry
are described in the recent books by Wapenaar, Draganov and Robertsson (2008) and Schuster
(2009) (see also Lobkis and Weaver, 2001; Derode et al., 2003; Wapanaar, 2004; and Wappenaar et
al., 2005). Pioneering work dates back to Aki (1957) who extracted the properties of the shallow
sub-surface from microseismic noise and also to Claerbout (1968) who showed that the autocorre-
lation of the transmission response is equal to the reflection response and its time-reversed version
in a layered medium. More recent applications of seismic interferometry in the areas of exploration
seismology include Bakulin and Calvert (2004) and Schuster et al. (2004), in ultrasound by Weaver
and Lobkis (2001), in crustal seismology by Campillo and Paul (2003), Sabra et al. (2005a,b), Roux
et al. (2005) and Shapiro et al. (2005), and in helioseismology by Rickett and Claerbout (1999).

Here we investigate the extraction of the Green’s function based on the cross-correlation of
signals at two receivers using seismic energy from a distribution of surrounding sources with a
uniform angular spectrum of incident seismic energy. For simplicity here we only investigate the
acoustic case. Gaussian beams are then used to evaluate the resulting interference integral in order
to concentrate the amplitudes of the contributions to near the stationary phase directions. This
results in a stable estimate, and also provides physical insight into where the dominant contributions
of the seismic energy come from in the evaluation of the Green’s function.

2. Reciprocity of the Convolution and Correlation Types. A derivation of the acoustic
reciprocity relations for the convolution and correlation types is now given (see also, Schuster, 2009).
In the frequency domain, one can write

(2.1) G(B,A)−G0(A,B) =

∫

dS(x)

[

G0(x,B)
∂G(x,A)

∂n
−G(x,A)

∂G0(x,B)

∂n

]

where G(B,A) is the Green function with a source at A and a receiver at B, and G0 is a second
Green’s function for a possibly different medium in the same volume. The integral is along the
boundary dS(x) of the volume. If the boundary conditions are homogeneous, the boundary integral
vanishes. This could result, for example, if the integration surface is at infinity with Sommerfeld
outgoing radiation conditions. If the boundary integral vanishes, and for the same medium for G
and G0, then formal reciprocity of the Green’s function results with G(B,A) = G(A,B).

In Eqn. (2.1), if G0(A,B) = G∗(A,B), the adjoint Green’s function, then

(2.2) G(B,A)−G∗(A,B) =

∫

dS(x)

[

G∗(x,B)
∂G(x,A)

∂n
−G(x,A)

∂G∗(x,B)

∂n

]
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For this case the boundary integral generally does not vanish at infinity. Applying reciprocity of
the Green’s function then

(2.3) G(B,A)−G∗(B,A) =

∫

dS(x)

[

G∗(B, x)
∂G(A, x)

∂n
−G(A, x)

∂G∗(B, x)

∂n

]

This is the acoustic reciprocity relation of the correlation type. If the sources at x along the boundary

are in the far-field from the receivers, then ∂G(B,x)
∂n ∼ ikG(B, x), where k = ω/v is the wavenumber,

and this can be written

(2.4) 2i Im G(B,A) = G(B,A)−G∗(B,A) = 2ik

∫

dS(x)G∗(B, x)G(A, x)

For this case, we can obtain the imaginary part of the Green’s function from B to A from the
cross-correlation at the receivers and then integrating over all sources along the boundary. The
complete Green’s function can then be obtained from this based on the causality properties of the
Green’s function.

If the sources along the boundary are variable in source strength, a bias in the results could
occur, for example from noise sources from distant storms at sea that are dominantly located only
at a small number of directions from the receivers. However, this can be corrected for if the source
strengths along the boundary are known. More generally, the sources along the boundary can have
source spectra that are not flat with frequency. In this case, the correlation integral can be written

(2.5) 2i Im G(B,A) = G(B,A)−G∗(B,A) = 2ik

∫

dS(x)
1

s20(x,ω)
P ∗(B, x,ω)P (A, x,ω)

where P ∗(B, x,ω) and P (A, x,ω) are the general signals from sources on the surrounding boundary
each with source spectra s0(x,ω) where the ω dependence is explicitly shown. Thus, the source
spectra, including variable source amplitudes, can be corrected for by dividing out the power spectra
of the sources for each frequency and position along the boundary. However, only the power spectra
are required, or the autocorrelation of the source wavelets, and not the complete source spectra
which is a much weaker constraint. For any zeroes in the source spectra, appropriate damping
would need to be used.

3. The correlation integral in 2D homogeneous media. In 2D homogeneous media, the
Green’s function can be written

(3.1) G(x, x0) =
i

4
H

(1)
0 (kr)

where r = |x− x0| and k is the wavenumber. In the far-field, this can be approximately evaluated
as

(3.2) G(x, x0) ∼

√

1

8πkr
ei(kr+π/4)

Inserting Eqn. (3.2) into Eqn. (2.4) results in (Fan and Snieder, 2000)

(3.3) 2i Im G(B,A) = G(B,A)−G∗(B,A) =
i

4π

∫

dS(x)

√

1

rAxrBx
eik(rAx−rBx)

where rAx and rBx are the distances from x to the receivers A and B, respectively.
If the distance R in Figure 1 is much larger than the distance L between the receivers A and

B, then as a first approximation, rAx − rBx ∼ L cosϕ in the exponential and rAx = rBx ∼ R in the
amplitude term. Letting the arc-length on the circular boundary be dS = Rdϕ, then

(3.4) 2i Im G(B,A) = G(B,A)−G∗(B,A) =
i

4π

∫

dϕeikL cosϕ
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Fig. 1. This shows the geometry for the passive estimation of the Green’s function between two receivers at A
and B with sources on the surrounding boundary shown by triangles. The distance between the two sensors is L. The
angle ϕ measures the location along the surrounding circular boundary at a radius R from the receiver at B.

This results in a plane-wave decomposition of the correlation field from the distant sources at the
two receiver positions, and can be represented as a Bessel function where

(3.5)
i

2π

∫

dϕeikL cosϕ = J0(kL) =
1

2

[

H
(1)
0 (kL)−H

(1)
0 (−kL)

]

This shows that the correlation Green’s function can be written as a sum of plane waves incident
on the receivers from distant sources at all angles (Fan and Snieder, 2009).

4. The correlation integral evaluated with Gaussian beams. A paraxial approximation
for the phase term in the correlation integral Eqn. (3.3) can be written

(4.1) rAx − rBx ∼ L cosϕ+
1

2
Mn2

where L cosϕ is shown in Figure 1, n = L sinϕ, and M is the second derivative of the travel-times
at the A receiver position. M is proportional to the wavefront curvature and can be evaluated using
dynamic ray tracing, but in a homogeneous medium is known in closed form.

M can now be extrapolated to a complex value where now M = p
q = v−1

L cosϕ+ε
. ε is called the

beam parameter and can be written as ε = −iL2
0. The parameter L0 can be related to the beam-

width as L(s0) =
√

2v
ω
L0, where ω is the frequency and v is the medium velocity (see Cerveny,

et al.,1982; Popov, 1982; Nowack and Aki, 1984) For more recent overviews of Gaussian beam
summations, see Cerveny (2001), Popov (2002), Nowack(2003) and Cerveny and Psencik (2007).
The correlation integral with complex beam parameters can then be written

(4.2) G(B,A)−G∗(B,A) =
i

4π

∫

dϕ

√

R

(R+ L cosϕ+ ε)
eiω(L cosϕ

v
+ 1

2
Real(M)n2)e−

ω

2
Imag(M)n2

This results in an amplitude decay instead of just phase interference of the plane wave components
in Eqn. (3.4).
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Fig. 2. This shows the reconstruction of the Green function on the top trace from the summation of the integrand
components in the correlation integral in Eqn. (2.4) at the receivers A and B from the sources as a function of angle
on the surrounding circle in Figure 1. A Gabor wavelet is assumed for the source wavelet.

5. Examples. Figure 2 shows results of the correlation integral in Eqn. (3.4) for the case of
the sources on a distant circular boundary where R = 400km with the distance between the two
receivers of L = 10km with the geometry shown in Figure 1. The waves are assumed to be planar at
the receiver locations resulting in the plane-wave decomposition of the correlation integral in Eqn.
(3.4). In order to investigate a time-domain beam solution for the correlation integral, a Gabor
wavelet is used for the sources on the surrounding boundary, and this can be written as

(5.1) f(t) = e−(2πfM (t−ti)/γ)
2

cos(2πfM (t− ti) + ν)

where fM is the center frequency and γ determines the number of wave cycles under the Gaussian
envelope (Cerveny, 2001). For the examples shown, fM = 3Hz, γ = 3.5 and ν = 0. Thus, the
results would be as in Eqn. (3.4) but convolved with a Gabor wavelet.

For the example shown in Figure 2, the source strengths and source waveforms are the same
for all positions on the boundary. The individual components of the integrand are seen to form an
inverted S shape as a function of angle. The summation of all the integrand components results
in an estimate of the correlation Green’s function filtered by the Gabor wavelet and is shown in
the top trace. For this case, each of the angular components of the integrand are roughly the
same in amplitude and pulse shape, but are located at different times. Nonetheless, the dominant
components of the integrand are from angles 0 degrees and 180 degrees aligned with the orientation
of the two receivers. For these angles, the nearby integrand components are in-phase and provide the
dominant stationary phase contributions to the integrand. Components at other angles destructively
interfere resulting in no contributions to the correlation integral, with the exception of small end
effects at angles of -90 degrees and 270 degrees where the integration terminates.

The regions of stationary phase in the correlation integral are illustrated in Figure 3. The
dashed lines show the zones of dominant contributions to the integral based on the stationary phase
of the components oriented in the forward and backward directions of the aligned receiver pair. The
positive contribution to the correlation Green’s function comes from the 0 degree direction, and the
negative component from the 180 degree direction. Nonetheless, all components are needed to avoid
truncation effects and allow these components to sum to zero by destructive interference. For this
case in Figure 2, the source strength is the same for all angular directions on the boundary and
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Fig. 3. The regions of stationary phase of the oscillatory correlation integral in Eqn. (2.4) are shown by the
dashed lines. A and B are the receiver positions and the sources are located on the circular boundary (modified from
Fan and Snieder, 2009).

Fig. 4. This shows the reconstruction of the Green function on the top trace from the summation of the integrand
Gaussian beam components in the approximate Gaussian beam correlation integral in Eqn. (4.2). The value L0 in
the complex beam parameter was chosen as 9. A Gabor wavelet is assumed for the source wavelet.

results in equal amplitudes of the negative and positive times for the correlation Green’s function.
However, in the general case, the source strengths will be different, and if not corrected for will
result in different positive and negative time amplitudes for the correlation Green’s function.

We would now like to incorporate amplitude weighting of the integrand components using
Gaussian beams as described above to assist in concentrating the integrand contributions to near
the stationary directions. This also has the advantage of not requiring integration contributions
for all angular directions which otherwise would require phase interference, but rather only include
those contributions only near the stationary phase directions.

In Figure 4, the estimate of the correlation Green’s function is shown at the top for the case
of summation of Gaussian beam correlation components. The geometry of the sources and the two
receivers A and B is again shown in Figure 1. Similar to the plane-wave case, a Gabor wavelet with
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Fig. 5. This shows the reconstruction of the Green function on the top trace from the summation of the integrand
Gaussian beam components in the approximate Gaussian beam correlation integral in Eqn. (4.2). The value L0 in
the complex beam parameter was chosen as 6. A Gabor wavelet is assumed for the source wavelet.

a reference frequency of 3 Hz is used with equal source amplitudes for all directions on the boundary.
For this case, the beam parameter is chosen with L0 = 9 which corresponds to a beam-width at the
reference frequency of 6.6 km at the receiver B location. The use of Gaussian beams can be seen
in Figure 4 to restrict the contributions to the vicinity of the stationary phase directions. Also,
endpoint errors are removed by the amplitude decay of the beams away from the stationary phase
directions. This provides a more stable evaluation of the correlation integral than purely phase
interference while also restricting the contributions to just those in the forward and back azimuth
directions from the direction of the receiver pair.

The energy in the integrand of the correlation integral can be further concentrated near the
stationary phase directions by choosing a smaller beam parameter with L0 = 6 which corresponds
to a beam-width at the receiver B location of 4.3 km at the reference frequency of the Gabor
wavelet. This is shown in Figure 5 where now the concentration of the integrand components of the
correlation integral is made smaller still. However, this process can’t be taken too far since after a
certain point, the beams start to diverge again. An optimally narrow beam-width at the receiver
point for planar beams at the initial point was given by Cerveny et al. (1982). Nonetheless, the
beam contributions to the correlation integral can be restricted to the first Fresnel zone of the in-
phase contributions near the stationary phase directions by a suitable choice of the beam parameter.
The sources from other directions are then not required to evaluate the correlation integral using
Gaussian beams.

If the source strengths are different but smoothly varying as a function of azimuth, then the
stationary phase directions will still be the dominant contributions. However, now there may be
differences in the amplitudes for the positive and negative time components of the correlation Green’s
function. As an example, Figure 6 shows a case where the source strengths vary as (1 + ρ cosϕ)
where ρ = .3. In this case, the source strengths in the forward and backward directions vary from
1.3 to .7, respectively. This results in an amplitude difference for the positive and negative time
components of the correlation Green’s function a shown in Figure 6. However, using Gaussian beams
for the evaluation of the Green’s function clearly identifies where the differences in source strength
are coming from.

6. Conclusion. In this study, seismic interferometry is investigated for two receivers with
sources along the surrounding boundary. The Green’s function can then be estimated between the
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Fig. 6. This shows the reconstruction of the Green function on the top trace from the summation of the integrand
Gaussian beam components in the approximate Gaussian beam correlation integral in Eqn. (4.2). The value L0 in
the complex beam parameter was chosen as 6. A Gabor wavelet is assumed for the source wavelet. For this case,
the source strengths were variable as a function of azimuthal angle from the sources and then results in a different
amplitude of the summation for the positive times and the negative times.

two receivers by the cross-correlation of the signals recorded at both receivers and integrated for all
sources. For smoothly varying source strengths with direction, then the dominant contribution for
the correlation integral is from the stationary phase directions in the forward and back directions
from the alignment of the two receivers. The use of Gaussian beams can be used to concentrate
the amplitudes of the source contributions to a vicinity of the stationary phase regions, resulting
in stable estimates of the Green’s function. Several numerical examples are shown to illustrate this
process. The application of Gaussian beams to the evaluation of the correlation Green’s function
provides further insight into how seismic interferometry works.
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