
Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN),
Vol. 1 (2010) pp. 25-50.

ON THE REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE

PACKETS

FREDRIK ANDERSSON∗, MARCUS CARLSSON† , AND LUIS TENORIO‡

1. Introduction. The main purpose of this paper is to develop algorithms to obtain sparse
representations of functions of several variables using Gaussian wave packets. Numerically, we will
primarily focus on the two-dimensional case; our main interest is the representation of waves related
to the wave equation. Sparse representations are useful, in some cases essential, for large-scale
problems that arise in, for example, seismic imaging [8, 23, 22, 33].

To analyze functions whose features vary at different resolution, one may use wavelet transforms,
which employ pairs of translation and dilation operators [12, 24]. One can also consider a time–
frequency analysis [19] using a combination of translation and modulation in the short–time Fourier
transform. On the other hand, the use of Gaussian wave packets allows us to incorporate all three
of the operations translation, dilation and modulation in the one-dimensional case. A classic one-
dimensional example is music; it is often used as a motivation for the usage of both wavelets and
time-frequency analysis. It also serves to motivate the three-parameter transform that we propose
as musical notes contain (at least) three characteristic features: the tone, the time it is played
and its duration. In higher dimensions Gaussian wave packets can also be used to include rotation
invariance and anisotropic dilation parameters.

A simple way to represent functions in two dimensions, either by the wavelet or time-frequency
methods, is to employ tensor products of the chosen one-dimensional functions. This has the
disadvantage of representing horizontal and vertical features/waves well but not those that are
not aligned with the coordinate axes. Therefore, a lot of work has been targeted into obtaining
more rotation-invariant representations. Proposed methods include two-dimensional wavelets [3],
steerable pyramids [27], brushlets [2], curvelets [9], shearlets [21] and beamlets [33]. The anisotropic
dilation parameter has been shown to play a crucial theoretical role for solutions of wave equations,
cf. [28]. From a practical perspective, it is useful when working with waves that have (locally)
largely varying curvature. For waves with small curvature, a locally plane wave approximation
works well, and it is preferable to work with representations where the extent in the non-oscillatory
direction is much larger than in the oscillatory direction, whereas for waves with large curvature the
extent in the two directions should be similar.

The one-dimensional continuous wavelet — or — continuous short–time Fourier transform are
redundant in the sense that they map a function of one variables to a function of two variables
coming from the use of two invariance properties (translation/scale or translation/modulation). In
the continuous Gaussian wave packet representations we propose, the one-dimensional representation
requires three variables while the two-dimensional uses up to six variables. Redundancy is often
considered problematic as there is no unique way to represent a function. Although it is possible
to construct an orthogonal basis through the discrete wavelet transform [12], the redundancy of the
continuous representations often shines through in discrete representations in the sense that many
approaches yields representations with more elements than necessary. On common such approach is
to construct an inversion formula for the redundant representation, for instance by means of a frame,
which provides one unique representation. Given that the function is reasonable well described
by the frame elements, a sparse representation is sought for by using the unique representation
provided by the frame, and simply threshold small elements. If the frame is redundant, then the
redundancy will limit the effectiveness the approach, and the obtained representation will in fact

∗Centre for Mathematical Sciences, Lund University, Box 118, SE-22100, Lund, Sweden and Department of Math-
ematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, USA

†Centre for Mathematical Sciences, Lund University, Box 118, SE-22100, Lund, Sweden and Department of Math-
ematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907, USA

‡Mathematical and Computer Sciences, Colorado School of Mines, Chauvenet 232, Golden, CO 80401, USA

25

26 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

not be particularly sparse. Obtaining representations with as low redundancy as possible has been
desirable, e.g., for critical sampling for Gabor analysis [17].

In recent years, variable selection methods to obtain sparse representations have proved suc-
cessful, see for example [31, 16, 11, 26]. A large degree of redundancy should then be regarded as
having a large dictionary of functions to select from in order to find an optimal approximation with
few terms. In contrast to the thresholded frame approach mentioned above, the main difficultly
with such an approach is to find a good representation in reasonable time.

In this paper, we will start in a continuous setting and review invariance properties of Gaussian
wave packets. We will construct inversion formulas by means of isometry arguments. Moreover, we
will study some group properties and provide analytic formulas that prove useful in the analysis.

We will then focus on two-dimensional Gaussian wave packets. At the numerical implementation
stage, the representation of a function f as a linear combination of Gaussian wave packets reduces
to the computation of a vector of coefficients c such that Vc ≈ f , where V the synthesis operator
defined by the wave packet representation. We will show how to construct a fast numerical algorithm
for the analysis operator V∗ corresponding to a particular sampling. This algorithm relies on the
usage of FFT and USFFT [6, 15].

To determine the coefficients c we use an ℓ1 regularization approach; c is chosen to minimize
‖Vc− f‖22 + µ‖c‖1 for a fixed value of the regularization parameter µ. From the statistical point of
view, this ℓ1 approach leads to shrinkage estimators that can reduce the mean square error of the
estimates. The ℓ1 penalty leads to exact zero values for small coefficients and thus performs a type
of variable selection process that helps control overfitting and yields parsimonious models that are
easier to compute and interpret [7, 29].

Most large-scale algorithms for solving the ℓ1-regularized approach discussed above, rely on fast
numerical methods for applying the analysis V∗ and synthesis V operators. However, for the case
with large redundancy, the full application of V and V∗ is unnecessarily expensive. For instance,
working with redundant representations with a redundancy factor of 100 and seeking a sparse
representation with a compression ration of 1:100, implies that only 1 out of 10000 entries of the
coefficient vector c would actually be used.

We will explore the special structure of Gaussian wave packets to construct a new algorithm
for obtaining ℓ1-regularized solutions by taking advantage of the high sparsity of the solutions c to
reduce the number of full application of the operators V and V∗.

2. Continuous Gaussian wave packet transforms.

Definitions. To motivate the notation that will be used, we start by considering the product
of a Gaussian function of one variable and an oscillatory exponential. We will refer to such functions
as one-dimensional Gaussian wave packets. Assuming that the Gaussian is centered at the origin,
two parameters will be used to parametrize it; a frequency parameter and a parameter describing
the width of the Gaussian. It will be convenient to measure this width relative to the frequency
parameter. We therefore use the following parametrization

ϕα,η(x) = e2πiη x e−(η/α)2 ln(16) x2

.

The factor ln(16) comes from the fact that we want the half-width of the Gaussian to be equal to

α oscillations with frequency η. When choosing η = α = 1, this means that e− ln(16)(1/2)2 = 1/2 as
we would like it to be. The parameter α describes the number of oscillations within the half-width
of the Gaussian and controls the shape of the wave packet, while the parameter η determines the
frequency of the oscillations and also plays the role of scale parameter.

In two dimensions, we include a Gaussian wave packet in each direction:

(2.1) ϕα,β,η(x) = ρα,β,η e
2πiηtx e−xt

Λ(α,β,η)x,

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 27

alpha=1,eta=1 alpha=2,eta=1

alpha=1,eta=2 alpha=2,eta=2

Fig. 1. One-dimensional Gaussian wave packets. The parameter α that describes the width of the Gaussian is
in terms of the number of oscillations within a half-width. The two top panels use η = 1, while the two bottom ones
have η = 2. The two left panels have α = 1, while the two right ones have α = 2.

where t denotes the transpose, x = (x1, x2)
t, η = (η1, η2)

t and the matrix

Λ(α,β, η) = ln(16)

(
|η|2/α2 0

0 |η|2/α2β2

)

describes the decay coefficients.
The normalization factor

ρα,β,η =

√
2 ln(16)

π

|η|

α
√
β

is chosen so that ϕα,η has unit L2-norm. Note that Λ(α,β, η) and ρα,β,η are invariant under rotations
of η. The parameter β describes the ratio between the half-widths of the Gaussians in the x1 and
x2 directions.

Finally, we define Gaussian wave packets not centered at the origin and with axes not parallel
to the x1 and x2 axes; the sinusoids and the Gaussian functions are centered at a chosen y ∈ R

2

and the axes of the Gaussian function are subject to a rotation Θ, where

Θ =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ [0, 2π).

Let Ty(x) = x− y be the translation by y. The general Gaussian wave packet is defined as

ϕγ(x) = ϕα,β,Θη(ΘTy(x)); γ = (y, η,α,β, θ).

It is often desirable to lock η to θ as follows; η = |η|(cos θ, sin θ). Then the oscillation aligns with the
semi-axes, and Λ(α,β, θ) describes the decay in the direction along and orthogonal to the oscillation,
respectively, as indicated in Figure 2.

28 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

α = 1

β = 4

Fig. 2. Example of a two-dimensional Gaussian wave packet with level sets at heights 0.25, 0.5 and 1. The
gray level sets shows the amplitude, while the colored ones illustrate the real part of the function. The anisotropy of
the packet is illustrated with α = 1 oscillations in the oscillatory direction and β = 4 times as many oscillations in
the perpendicular direction.

To summarize, the parameters that define the Gaussian wave packets are:

• y - Central location
• η - Frequency/scale
• θ - Orientation of axes
• α - Number of oscillations within a half-width, (assuming η = |η|(cos θ, sin θ))
• β - Ratio of the half-widths along and perpendicular to the direction of oscillation, (assuming

η = |η|(cos θ, sin θ)

It is natural to think about wave packets where the oscillation is aligned with the semi-axis of the
Gaussian. However, there are several examples where this alignment fails. One such is in modeling
of seismic data acquisition. Let us assume that we have decomposed a wave field in two dimensions
(horizontal position and depth) into gaussian wave packets, and (somewhat simplified) model the
action of the wave equation on these wave packet as rigid motion. By seismic data acquisition means
that this field is recorded at the surface (where the depth variable i equal to zero) over time. It then
turns out that the recorded data will have the form (2.1), with η/|η| &= θ. Another example where
the alignment fails is cross-correlation of wave packets. If we assume that we have decomposed two
fields into wave packets, then we can approximate the action of the wave equation on these by a
rigid motion corresponding to a Hamiltonian flow. The Hamiltonian flow can be quickly computed
by solving systems of ordinary differential equations. Under the assumption that two wave-packets
move locally along straight lines in the vicinity of each other, the cross correlation (with respect to
time) of the wave fields can be analytically computed as another linear combination of Gaussian
wave packets. The resulting wave packets will, however, not have the direction of oscillation aligned
with the semi-axis of the Gaussian, even if the decomposed wave fields had.

It is interesting to note that the set of Gaussian wave packets is invariant (up to multiplicative
factors) under:

• Multiplication
• Convolution
• Fourier transformation

We will exploit these invariance properties in Section 2.

Isometry and invariance properties. In this section we discuss how to build a continuous
frame of Gaussian wave-packets for functions defined on R

n. Our objective is two-fold: to answer
questions regarding the completeness in L2(Rn), and to show that it is possible to construct inversion

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 29

formulas. However, since inversion formulas of this type will not in general produce sparse solutions,
the efficient computation of sparse solutions from a discrete set of Gaussians will be addresed in
Sections 4.

We use the (unitary) n-dimensional Fourier transform defined by

Ff(ξ) = f̂(ξ) =

∫

Rn

f(x)e−2πixtξdx.

We will also make use of the following operators:

(Tyϕ)(x) =ϕ(x− y), y ∈ R
n Translation,

(Dαϕ)(x)=|α|−n/2ϕ
(x
a

)
, α ∈ R Dilation,

(Mωϕ)(x)=ϕ(x)e2πi〈x,ω〉, ω ∈ R
n Modulation,

(Kβϕ)(x)=|β|−(n−1)/2ϕ

(
x1,

x2

β
, . . . ,

xn

β

)
, β ∈ R Anisotropic dilation,

(Pγϕ)(x) =ϕ(x)e2πiγ , γ ∈ R Phase shift,

(Rθϕ)(x) =ϕ(Θx), θ ∈ Sn−1 Rotation,

where Θ is the n × n-matrix that rotates vectors in the plane spanned by e1 and θ in such a way
that Θ(e1) = θ, and which acts as the identity on the orthogonal complement. Note that if n = 2

and φ(x) = e−x2
1−x2

2 , then

Dα/|η|Kβφ(x) = |β|
n−1
2 |α|

n
2 ex

t
Λ(α,β,η)x.

It is easy to show that all of these operators are unitary on L2(Rn) with the following adjoints

D∗
α=D1/α T ∗

y =T−y M∗
ω=M−ω K∗

β =K1/β P ∗
γ=P−γ R∗

θ =R
θ̃
,

where θ̃ denotes the mirror image of θ in the line spanned by e1, i.e., if θ ↔ Θ, then θ̃ ↔ Θt. The
following rules for the Fourier transform will prove useful:

FTy =M−yF,(2.2)

FDα=D1/αF,

FMω=TωF,

FRθ =RθF,

FKβ =K1/βF,

as well as the following commutative rules for the operators:

TyDα =DαTy/α, DαTy =TyαDα,(2.3)

MωDα=DαMαω, DαMω=Mω/αDα,

RθDα =DαRθ, KβDα=DαKβ ,

TyMω =PyωMωTy, MωTy =P−yωTyMω.

TyRθ =RθTΘy, RθTy =TΘtyRθ

TyKβ =KβTyβ , KβTy =Ty/βKβ

MωRθ =RθMΘω, RθMω =MΘtωRθ

MωKβ=KβMβω, KβMω=Mω/βKβ .

As mentioned in the introduction the wavelet transform employs a pair of translation Ty and
dilation Dα operators while time–frequency analysis uses translation Ty and modulation Mω. A

30 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

group theoretic approach has proven to be useful for understanding these operations; for instance
it leads to inversion formulas. The chapter about the continuous wavelet transform in [24] and
Chapter in [19] are good references in this regards, as well as [20].

For our purposes it will be illustrative to quickly recapitulate some group theoretic results
for the continuous wavelet transform. Here, a function f ∈ L2(R) is mapped to a function in
L2(R+ × R) through the continuous wavelet transform Wf(α, y) = 〈TyDαψ, f〉 for some choice of
wavelet ψ ∈ L2. For this transform to be invertible, ψ has to satisfy some regularity conditions that
we derive below.

Since Ty2
Dα2

Ty1
Dα1

= T(y2+α2y1,α1α2), we can associate the wavelet transform with the affine
group with group operation

(α2, y2) ◦ (α1, y1) = (α1α2, y2 + a2y1).

It is readily verified that the left-invariant Haar measure associated with the affine group can be
written as a weighted Lebesgue measure, dµ

L
= α−2dαdy. One way to obtain an inversion formula

is by constructing an isometry. We consider the wavelet transform as the mapping W : L2(R) →
L2(R+×R, dαdy/α2) induced by the (left–invariant) Haar measure. Hence, by Plancharel’s theorem,

‖Wf‖2 =

∫

R+

∫

R

|〈TyDαψ, f〉|2
dydα

α2
=

∫

R+

∫

R

|
(
(Dαψ) ∗ f̄(−·)

)
(y)|2

dydα

α2

=

∫

R

|f̂(ξ)|2
∫

R+

|FDαψ(ξ)|
2 dα

α2
dξ.

Using now the rules for the Fourier transform (2.3) and the fact dα/α is the Haar measure of the
multiplicative group R

+, we obtain

‖Wf‖2 =

∫

R

|f(ξ)|2
∫

R+

|D1/αψ̂|
2 dα

α2
dξ =

∫

R

|f(ξ)|2
∫

R+

|ψ̂(αξ)|2
dα

α
dξ

=

∫

R

|f(ξ)|2
∫

R+

|ψ̂(α)|2
dα

α
dξ.

This is an important step as it eliminates the dependence on ξ in the integral, and allows us to
consider the two integrals separately. If follows that if ψ satisfies the condition

(2.4)

∫

R+

|ψ̂(ξ)|2
1

ξ
dξ = 1,

then we obtain an isometry: ‖Wf‖2 = ‖f‖2 and I = W ∗W . It is then easy to derive the following
formula for the inverse

(2.5) f(x) =

∫

R+

∫

R

Wf(α,β)TyDαψ(x)
dαdy

α2
.

The preceding argument is widely used in wavelet/time-frequency analysis and can be done in a
more a general manner, cf. [20, Theorem 3.1], with connections to representation theory. The

condition (2.4) is usually called the admissibility condition on ψ. It implies that ψ̂(0) = 0, i.e., that
ψ has zero mean. It is clear that Gaussians do not satisfy this condition.

In time-frequency analysis, (translations of) functions of the form ψ(x) = e−x2+2πiωx are often
used; they are often referred to as Gabor wavelets [19]. Since the admissibility condition is not
typically satisfied, Gabor wavelets do not define continuous wavelet transforms according to the
standard definition. However, since modulated Gaussians are natural objects for signal analysis,
they can be considered wavelets in the following slighly modified version:

(2.6) ψ
Morlet

(x) = ρω e−x2

(e2πiωx − κω),

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 31

where the constant κω is chosen so that ψ̂
Morlet

(0) = 0 and ρω such that
∫
ψ

Morlet
(x) dx = 0. The

wavelets in (2.6) are called Morlet wavelets. In practical applications, the constant κω is often
discarded as it is more natural to work with purely modulated Gaussians. It also happens that κω

is often rather small (at least for large values of ω).
We will now follow the general strategy outlined above using the Gaussian wave packets con-

sidered in in this paper. We write a Gaussian wave packet in the form:

(2.7) TyMηRθDα/|η|
Kβϕ with ϕ(x) =

(
2 ln(16)

π

)n/4

e− ln(16)
∑n

j x2
j .

In the one-dimensional case (2.7) reduces to

TyMηDα/|η|
ϕ(x) =

√
|η|

α

(
2 ln(16)

π

)1/4

e− ln(16)(
(x−y)
α/η

)2+2πiη(x−y).

This motivates us to study objects of the form

U
λ,η,y

φ(x) = TyMηDλφ(x) =
1√
|λ|

e−(
(x−y)

λ
)2+2πiη(x−y), φ(x) = e−x2

.

To construct the group structure associated with Uλ,η,y, we consider

Uλ2,η2,y2
Uλ1,η1,y1

φ = Ty2
Mη2

Dλ2
Ty1

Mη1
Dλ1

φ =

Ty2
Mη2

Tλ2y1
Dλ2

Mη1
Dλ1

φ =

P−η2λ2y1
Ty2+λ2y1

Mη2+η1/λ2
Dλ2λ1

φ = P−η2λ2y1
Uλ2λ1,η2+η1/λ2,y2+λ2y1

φ.

Due to the complex phase P−η2λ2y1
it will be necessary to extend the group to include additional

parameter. The group G associated with the operator e2πiτUλ,η,y is defined as the set of quartets
(λ, η, y, τ) ∈ R

3 × [0, 1] with the group operation

(λ2, η2, y2, τ2) ◦ (λ1, η1, y1, τ1) =
(
λ1λ2, η1/λ2 + η2,λ2y1 + y2, (τ1 + τ2 − η2λ2y1) mod 1

)
,

unit element (1, 0, 0, 0), and inverse

(λ, η, y, τ)−1 = (λ−1,−λη,−λ−1y,−ηy − τ).

We now proceed to construct a (left-invariant) Haar measure as a weighted Lebesgue measure with
some weight v(λ, η, y, τ). The Haar property says that for any H ⊂ G, we have that

µ
L
(H) =

∫

H

v(λ, η, y, τ) dλdηdydτ =

∫

(λ′,η′,y′,τ′)◦H

v(λ, η, y, τ) dλdηdydτ.

The integration over (λ′, η′, y′, τ ′) ◦ H can be carried out by a change of variables induced by the
group operation. The functional matrix of the transformation is given by




λ′ 0 0 0
0 1/λ′ 0 0
0 0 λ′ 0
0 0 −η′λ′ 1




with Jacobian J = λ′. Hence,

∫

H

v(λ, η, y, τ) dλdηdydτ =

∫

H

v(λλ′, η/λ′ + η′,λ′y + y′, τ + τ ′ − η′λ′y)λ′ dλdηdydτ,

32 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

which gives w(λ, η, y, τ) = λ−1 as a possible weight. Since the Haar measure is unique up to a
constant factor, we conclude that dµ

L
(λ, η, y, τ) = λ−1 dλdηdydτ. The general framework suggests

that we consider the following integral to determine the admissibility condition:

∫

R+×R×R

|〈U
λ,η,y

φ, f〉|2λ−1 dλdηdy =

∫

R+×R×R

|〈TyMηDλφ, f〉|2λ−1 dλdηdy

=

∫

R+×R×R

|(MηDλφ ∗ f(− ·))(y)|2λ−1 dλdηdy =

∫

R

|f(ξ)|2
∫

R×R+

|(FMηDλφ)(ξ)|
2λ−1 dλdηdξ

=

∫

R

|f(ξ)|2
∫

R+×R

|(TηD1/λφ̂)(ξ)|
2λ−1 dλdηdξ =

∫

R

|f(ξ)|2
∫

R×R+

|φ̂(λξ − η)|2dη dλdξ

=

∫

R

|f(ξ)|2
∫

R+

‖φ̂‖2 dλdξ = ‖φ‖2
∫

R

|f(ξ)|2
∫

R+

dλdξ = ∞,

which shows that there are no admissible functions in L2. As we show below, this result will not
prevent us from finding isometries and reconstruction formulas similar to (2.5). One just needs to
find weights that will make the above calculation finite. This will also allow us to work with purely
Gaussian functions, in contrast to, for example, Morlet wavelets. We derive the weights in the
following theorem, which is proved for functions in L2(Rn). Let S denote the normalized surface
measure on the unit sphere Sn−1 in R

n.
Theorem 2.1. Let φ be as in (2.7) and u : R+ × R

+ × Sn−1 → R
+ a function that satisfies

∫

R+×R+×Sn−1

u(λ,β, θ) dλdβdS = 1,

and let w(α,β, η, θ) = u(α/|η|,β, θ)/|η|. Let the operator W : L2(Rn) → L2
w(R

+ × R
+ × Sn−1 ×

R
n × R

n) be defined by

(2.8) W(f)(α,λ, θ, η, y) = 〈TyMηRθDα/|η|Kβφ, f〉.

Then W is an isometry and a reproducing formula for f ∈ L2(Rn) is given by

f(x) =

∫

R+×Rn×Sn−1×R+×Rn

Wf(α,β, θ, η, y)T
y
M

η
R

θ
D

α/|η|
K

β
φ(x)w(α,β, η, θ) dαdηdSdβdy.

Proof. We need to show that

‖Wf‖2
L2
w

=

∫

R+×Rn×Sn−1×R+×Rn

|〈T
y
M

η
R

θ
D

α/|η|
K

β
φ, f〉|2w(α,β, η, θ) dαdηdSdβdy = ‖f‖2.

By writing the scalar product above as a convolution and applying Fubini and Plancherel’s theorems,
it follows that

∫

R+×Rn×Sn−1×R+×Rn

|〈TyMη
R

θ
D

α/|η|
K

β
φ, f〉|2 w(α,β, η, θ) dαdηdSdβdy =

∫

Rn×Rn×R+×Sn−1×R+

|〈(M
η
R

θ
D

α/|η|
K

β
φ) ∗ f(− ·)(y)〉|2 w(α,β, η, θ) dydηdαdSdβ =

∫

Rn

|f(ξ)|2
∫

R+×Rn×Sn−1×R+

|(FM
η
R

θ
D

α/|η|
K

β
φ)(ξ)|2 w(α,β, η, θ) dαdηdSdβdξ =

∫

Rn

|f(ξ)|2J(ξ) dξ.

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 33

By the change of variables {λ = α/|η|, dα = |η|dλ} and using the commutation rules for the Fourier
transform we obtain

J(ξ) =

∫

R+×Rn×Sn−1×R+

|(T
η
R

θ
FD

λ
K

β
φ)(ξ)|2 u(λ,β, θ) dλdηdSdβ =

∫

Rn×R+×Sn−1×R+

|(FD
λ
K

β
φ)(Θ(ξ − η))|2 dη u(λ,β, θ)dλdSdβ =

∫

R+×Sn−1×R+

‖FD
λ
K

β
φ‖2

L2(Rn)
u(λ,β, θ) dλdSdβ.

But since F , Dλ and Kβ are unitary, we have ‖FDλKβφ‖2 = ‖φ‖ = 1, and therefore

J(ξ) = ‖φ‖2
∫

R+×Sn−1×R+

u(λ,β, θ) dλdSdβ = 1,

by the assumption on w and the choice of φ. Hence W is an isometry and the reproducing formula
follows immediately.

2.1. Decay rates. The Gaussian wave packets will exhibit superior decay rates compared to
many of the competing representations. To illustrate this we provide a comparison of Gaussian wave
packets and curvelets. We have chosen to compare against curvelets because it is one of the most
popular methods that incorporates multi-scale and multi-orientation structure. A major drawback
of curvelets, however, is that they have large tails. Hence, the scalar product between curvelets can
be quite large even if the curvelets are fairly far apart. This implies that it will be necessary to use
many curvelets in a vicinity of the actual wave front in order to cancel tail artifacts introduced by
the curvelets. The extent of the tails is in principle caused by the comparatively sharp cut-off in
the Fourier domain (although curvelets can also be defined with C∞ functions). A smoother cut-off
causes a more rapid decay in the spatial domain. This is illustrated in Figure 3.

The top panel in Figure 3 shows contour plots of four Gaussian wave packets (left) and four
curvelet packets (right) with similar parameters. The bottom panel shows the same packets in
the frequency domain. For illustrative purposes, we have normalized the wave packets so that
their individual maximum absolute value is one in both domains. The window functions for the
curvelets are designed to have compact support in the frequency domain. For each window function,
a rectangular domain that inscribes the (frequency) support of the window function is selected, a
Fourier series is applied on that to construct associated curvelets translations. We note that the part
in frequency that causes most of the slow decay in space for curvelets, is the wedge-like structure
closest to the origin, since the cut-off is sharpest there. This feature is due to the use of a tensor
description in polar coordinates. While such a tensor product can yield a C∞ window function,
sharp features in the frequency domain will cause slow decay in the spatial domain. We note that
Gaussian windows provide optimal decay in both domains [19].

As shown in [1], it is possible to obtain improved decay in the spatial domain, without loosing
any of the required frequency coverage; that is, without increasing the rectangular domain on which
a Fourier series expansion is used. Hence, it would be more appropriate to compare the performance
of Gaussian wave packets to that of wave packets constructed in [1], which obey the same dyadic
parabolic scaling law of the curvelets designed in [10]. We will, however, make numerical comparisons
with the implementations of [10] as it is considered to be the standard implementation.

3. Discrete Gaussian wave packet transforms. In this section, we will develop numerical
methods for fast implementation of a decomposition similar to the recomposition-formula following
(2.8), in the two-dimensional case. Since the research is motivated by concrete applications, we need
to represent functions in a finite dimensional setting. Hence we will only consider representations of
functions with compact support and to simplify the presentation the support of the functions will

34 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

Fig. 3. Comparison between a few curvelets and Gaussian wave packets with similar parameters. The panels
to the left display Gaussian wave packet while the right panel display curvelets with a similar behaviour, with the
spatial domain being depicted in the top panels and the frequency in the bottom ones.

be assumed to be contained in the unit disc. We shall use the notation

L∞(D) =
{
f ∈ L∞ : supp(f) ⊂ D = {x ∈ R

2 : |x| ≤ 1/2}
}
.

This section aims at giving estimates for the errors introduced by the finite dimensional represen-
tations.

We start by proving some ancillary results that will be used in the discretization of Gaussian
wave packets. In the following lemmas we use the Gaussian function ϕλ(x) =

√
λ/π e−λx2

for a
fixed λ > 0. For a given ǫ > 0, we define the following constants whose meaning will be clarified
below: Kǫ > 0 will denote an even integer such that ϕ̂λ(Kǫ/2) ≤ ǫ, and σǫ > 0 such that σǫ ≥√
− ln(ǫ/Kǫ)/λ and σǫKǫ ∈ N. In particular, Kǫ(1/2 + σǫ) ∈ N. These constants of course depend

on λ as well.
Lemma 3.1. Let f ∈ L1(R) and ǫ ∈ (0, 1/2). Then,

sup
|ξ|≤Kǫ/2

∣∣∣∣∣∣
∑

j

f ∗ ϕλ(j/Kǫ) e
−2πijξ/Kǫ − f̂(ξ)ϕ̂λ(ξ)

∣∣∣∣∣∣
≤ 4ǫ ‖ f̂ ‖∞.

Proof. By the Poisson summation formula applied to f ∗ ϕλ,

∑

j

f̂(ξ + jKǫ)ϕ̂λ(ξ + jKǫ) =
∑

j

f ∗ ϕλ (j/Kǫ) e
−2πijξ/Kǫ

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 35

for any ξ ∈ R. It follows that

sup
|ξ|≤Kǫ/2

∣∣∣∣∣∣
∑

j

f ∗ ϕλ(j/Kǫ) e
−2πijξ/Kǫ − f̂(ξ)ϕ̂λ(ξ)

∣∣∣∣∣∣
= sup

|ξ|≤Kǫ/2

∣∣∣∣∣∣
∑

j (=0

f̂(ξ + jKǫ)ϕ̂λ(ξ + jKǫ)

∣∣∣∣∣∣
.

However, it is straightforward to derive the following estimate

sup
|η|≤Kǫ/2

∣∣∣∣∣∣
∑

j (=0

f̂(η + jKǫ)ϕ̂λ(η + jKǫ)

∣∣∣∣∣∣
≤ ‖ f̂ ‖∞ sup

|η|≤Kǫ/2

∣∣∣∣∣∣
∑

j (=0

ϕ̂λ(η + jKǫ)

∣∣∣∣∣∣

≤ ‖ f̂ ‖∞
∑

j (=0

ǫ4(j+1/2)2 ≤ 4ǫ ‖ f̂ ‖∞,

where in the second inequality we have used the definition of Kǫ.
Lemma 3.2. Let f ∈ L∞(R) with supp(f) ∈ [−1/2, 1/2]. Then, for any ǫ ∈ (0, 1/2)

sup
ξ

∣∣∣∣∣∣
∑

|j|>Kǫ(1/2+σǫ)

f ∗ ϕλ(j/Kǫ) e
−2πijξ

∣∣∣∣∣∣
< ǫ ‖f‖∞.

Proof. By separating the sum over |j| > Kǫ(1/2 + σǫ) into its positive and negative parts, it
follows that

sup
ξ

∣∣∣∣∣∣
∑

|j|>Kǫ(1/2+σǫ)

f ∗ ϕλ(j/Kǫ) e
−2πijξ

∣∣∣∣∣∣
≤ 2 ‖f‖∞

∑

j>Kǫ(1/2+σǫ)

∫ 1/2

−1/2

ϕλ(j/Kǫ − y) dy

≤ 2 ‖f‖∞
∑

j>0

∫ j/Kǫ+1

j/Kǫ

ϕλ(σǫ + y) dy ≤ 2 ‖f‖∞ e−λσǫ
2 ∑

j>0

∫ j/Kǫ+1

j/Kǫ

ϕλ(y) dy.

≤ 2 ‖f‖∞ e−λσǫ
2 ∑

j>0

ϕλ(j/Kǫ) ≤ 2 ‖f‖∞ e−λσǫ
2

Kǫ

∫ ∞

0

ϕλ(y) dy

= ‖f‖∞ e−λσǫ
2

Kǫ ≤ ǫ ‖f‖∞.

A consequence of Lemma 3.2 and Lemma 3.1 is:
Lemma 3.3. Let f ∈ L∞(R) with supp(f) ∈ [−1/2, 1/2]. Then, for any ǫ ∈ (0, 1/2)

sup
|ξ|≤Kǫ/2

∣∣∣∣∣∣
f̂(ξ)ϕ̂λ(ξ)−

∑

|j|≤Kǫ(1/2+σǫ)

f ∗ ϕλ(j/Kǫ) e
−2πijξ/K

∣∣∣∣∣∣
≤ 5ǫ ‖f‖∞.

We define the set of integers ZK,σ as

(3.1) ZK,σ = { j ∈ Z : −Kǫ(1/2 + σǫ) ≤ j < Kǫ(1/2 + σǫ) } .

Moreover, for any discrete set I we use |I| to denote the number of elements of I. In particular,
|ZK,σ| = 2Kǫ(1/2 + σǫ).

Lemma 3.4. Let f ∈ L∞(R) with supp(f) ∈ [−1/2, 1/2]. Then for any ǫ ∈ (0, 1/2) and
j ∈ ZK,σ

∣∣ Qλ,ZK,σ
[f](j/Kǫ)

∣∣ < 5ǫ ‖f‖∞,

36 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

where

Qλ,ZK,σ
[f](j/Kǫ) = f ∗ ϕλ(j/Kǫ)−

1

|ZK,σ|

∑

m∈ZK,σ

f̂(ξm)ϕ̂λ(ξm) e2πiξmj/Kǫ

and ξm = m/(2σǫ + 1).

Proof. It follows from the orthogonality of the discrete Fourier transform that

f ∗ ϕλ(j/Kǫ) = f ∗ ϕλ(j/Kǫ)
1

|ZK,σ|

∑

m,n∈ZK,σ

e2πim(j−n)/(Kǫ+2σǫKǫ)

=
1

|ZK,σ|

∑

m,n∈ZK,σ

f ∗ ϕλ(j/Kǫ)e
2πiξm(j−n)/Kǫ

Hence,

1

|ZK,σ|

∣∣∣∣∣∣
∑

m∈ZK,σ

f̂(ξm)ϕ̂λ(ξm) e2πiξmj/Kǫ − f ∗ ϕλ(j/Kǫ)

∣∣∣∣∣∣
=

1

|ZK,σ|

∣∣∣∣∣∣
∑

m∈ZK,σ


f̂(ξm)ϕ̂λ(ξm)−

∑

n∈ZK,σ

f ∗ ϕλ(j/Kǫ) e
−2πiξmn/Kǫ


 e2πiξmj/Kǫ

∣∣∣∣∣∣
≤

1

|ZK,σ|

∑

m∈ZK,σ

∣∣∣∣∣∣
f̂(ξm)ϕ̂λ(ξm)−

∑

n∈ZK,σ

f ∗ ϕλ(j/Kǫ) e
−2πiξmn/Kǫ

∣∣∣∣∣∣
≤ 5ǫ ‖f‖∞,

where we have used Lemma 3.3 in the last step.

In our discretization we will make use of both spatial and frequency lattices, generalizing (3.1).
To simplify notation, for a given ǫ > 0 and a pair λ1,λ2 > 0, we shall write their corresponding
parameters {Kǫ,σǫ} simply as {K1,σ1} for ϕλ1

and {K2,σ2} for ϕλ2
.

The spatial lattice is defined as

Xθ,K,σ =

{
Θ

t

(
j1/K1

j2/K2

)
: j1 ∈ ZK1,σ1

, j2 ∈ ZK2,σ2

}
,

while the frequency lattice is

Ξη,θ,K,σ =

{
Θ

t

(
|η|e1 +

(
m1/(2σ1 + 1)
m2/(2σ2 + 1)

))
: m1 ∈ ZK1,σ1

, m2 ∈ ZK2,σ2

}
.

There is a bijection between the sets Xθ,K,σ or Ξη,θ,K,σ and ZK1,σ1 ×ZK2,σ2 . In our notation, it will
be understood that if we write ξm ∈ Ξη,θ,K,σ, then m ∈ ZK1,σ1

× ZK2,σ2
and likewise for elements

in Xθ,K,σ.

The following theorem shows that the inner product fγ = 〈f,ϕγ〉 can be approximated by a

quantity f̃γ that can be efficiently computed using the FFT.

Theorem 3.5. Let f ∈ L∞(D) and choose the constants ǫ ∈ (0, 1/2), α,β > 0 and η ∈
R

2. Define the Gaussian parameters λ1 = ln(16)‖η‖2/α2 and λ2 = λ1/β
2. Then for any y =

Θt (j1/K1 j2/K2)
t ∈ Xθ,K,σ

(3.2) | fγ − f̃γ | ≤
20

(
1 +

√
λ1/π

)

ρα,β,η
ǫ‖f‖∞,

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 37

where γ = (y, η,α,β, θ) and

f̃γ =
e2πiη

ty

|Z1,2|

∑

m∈Z1,2

f̂(ξm)ϕ̂γ0(ξm) e2πi(j1m1/|ZK1,σ1
|+j2m2/|ZK2,σ2

|),

where Z1,2 = ZK1,σ1
× ZK2,σ2

and γ0 = (0, η,α,β, θ).
Proof. Using the change of variable u = −Θ(x+ y), we can rewrite the scalar product fγ as

fγ = ρα,β,η

∫

R2

f(x) e−2πiηtTy(x) e−Ty(x)
t
Θ

t
Λ(α,β,η)ΘTy(x) dx

= ρα,β,η

∫

R2

f(y −Θ
tu) e2πi(Θη)tu e−ut

Λ(α,β,η)u du

By introducing the function

g(x) = f(Θtx)e−2πi(Θη)tx,

and defining the two-dimensional Gaussian ϕλ1,λ2(x) = ϕλ1(x1)ϕλ2(x2), we may now write fγ as a
modulated convolution:

fγ = ρα,β,η e
2πiηty

∫

R2

g(Θy − x)e−xt
Λ(α,β,η)xdx

=
2

ρα,β,η
g ∗ ϕλ1,λ2(Θy) e2πiη

ty.(3.3)

Define the vectors z = Θy = (j1/K1 j2/K2)
t and ζm = (ζm1 ζm2)

t with

(3.4) ζm1
= m1/(2σ1 + 1), ζm2

= m2/(2σ2 + 1)

and the auxiliary functions

uz1(x2) = g(· , x2) ∗ ϕλ1(z1) =

∫

R

g(x1, x2)ϕλ1 (z1 − x1) dx1,

and

vm2(x1) = ĝ(x1, ζm2) =

∫

R

g(x1, x2) e
−2πix2 ζm2 dx2.

Note that

ûz1(ζm2
) = vm2

∗ ϕλ1
(z1) and g ∗ ϕλ1,λ2

(z) = uz1 ∗ ϕλ2
(z2) .

In addition, the Fourier transforms of g and ϕγ0
can be written as

ĝ(ζm) = v̂m2(ζm1) = f̂(ξm) and ϕ̂γ0(ξm) =
2

ρα,β,η
ϕ̂λ1,λ2(ζm)

for ξm = Θt(|η|e1 + ζm) ∈ Ξη,θ,K,σ. Note also that we can write

(
j1m1

|ZK1,σ1
|
,

j2m2

|ZK2,σ2
|

)
=

(
j1 ζm1

K1
,
j2 ζm2

K2

)
= (z1 ζm1 , z2 ζm2).

Hence we can rewrite f̃γ as

f̃γ =
2 e2πiη

ty

ρα,β,η

1

|Z1,2|

∑

m

ĝ(ζm) ϕ̂λ1,λ2(ζm) e2πi z
tζm ,

38 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

and since e−2πiηty enters both fγ and f̃γ as a multiplicative factor, using the triangle inequality and
|ϕ̂λ2

| ≤ 1 we obtain

ρα,β,η

2
| fγ − f̃γ | =

∣∣∣∣∣∣
g ∗ ϕλ1,λ2 (z)−

1

|Z1,2|

∑

m∈Z1,2

ĝ(ζm) ϕ̂λ1,λ2(ζm) e2πiζ
tz

∣∣∣∣∣∣

≤
∣∣Qλ2,ZK2,σ2

[uz1](z2)
∣∣+

∣∣∣∣∣∣
1

|ZK2,σ2 |

∑

m2∈ZK2,σ2

ϕ̂λ2(ζm2) e
2πiζm2

z2 Qλ1,ZK1,σ1
[vm2](z1)

∣∣∣∣∣∣
≤

∣∣Qλ2,ZK2,σ2
[uz1](z2)

∣∣+
∣∣Qλ1,ZK1,σ1

[vm2
](z1)

∣∣

Applying Lemma 3.4 to the two terms on the right-hand side yields the final inequality

ρα,β,η

2
| fγ − f̃γ | ≤ 5ǫ ‖uz1‖∞ + 5ǫ ‖vm2

‖∞

≤ 10ǫ
(
1 +

√
λ1/π

)
‖f‖∞.

We now proceed with constructing a tiling of the frequency domain. Given that we want to
work with approximations that are accurate within a frequency domain Ξ ⊂ R

2, we choose a set

(3.5) Ω = {(ηj ,αj ,βj , θj)}j

for a finite set of j such that for a chosen r > 0

(3.6)
∑

(η,α,β,θ)∈Ω

|ϕ̂0,η,α,β,θ(ξ)|
2
> r, ∀ξ ∈ Ξ.

As a motivation for this choice, we note that one way to find a representation of f is to (formally)
Note that the set Ω may vary substantially depending on the structure of the functions whose

sparse decompositions we want to find, and it may be quite redundant in the sense that there may be
a wide overlap of the supports of the functions ϕ̂0,η,α,β,θ. Given Ω, we choose a precision parameter
ǫ > 0 and define the sets Ωǫ and Γǫ as follows:

Ωǫ =

{
(η,α,β, θ,K,σ) : (η,α,β, θ) ∈ Ω, (λ1,λ2) = ln(16)|η|2(1, 1/β2)/α2,

ϕ̂λ1 (K1/2) < ǫ, ϕ̂λ2 (K2/2) < ǫ, ϕλ1 (σ1) < ǫ/K1, ϕλ2 (σ2) < ǫ/K2

}

To each element in Ωǫ we associate a lattice Xθ,K,σ, and form the wave packet parameter set

Γǫ = {γ = (y, η,α,β, θ) : y ∈ Xθ,K,σ, (η,α,β, θ,K,σ) ∈ Ωǫ},

which defines the discrete set of Gaussian wave packets ϕγ , γ ∈ Γǫ that will be used to represent
functions. We define the synthesis operator V : ℓ2(Γǫ) 3→ L2(R2) as

(3.7) Vc =
∑

γ∈Γǫ

cγϕγ .

and the analysis operator V∗ : L2(R2) 3→ ℓ2(Γǫ)

(3.8) V∗f = (〈f,ϕγ 〉)γ∈Γǫ .

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 39

By Theorem 3.5 we know that for a fixed element (η,α,β, θ,K,σ) ∈ Ωǫ and for f ∈ L∞(D) ⊂ L2(R2),
we can efficiently approximate fγ = 〈f,ϕy,η,α,β,θ〉 for y ∈ Xθ,K,σ by means of FFT provided the

values f̂(ξm), ξm ∈ Ξη,θ,K,σ, are known. If f is sufficiently densely sampled on a equally spaced

lattice, then f̂(ξm) can be rapidly evaluated at all the points ξm ∈ Ξη,θ,K,σ by employing USFFT
algorithms [6, 15]. These algorithms have the same time complexity as ordinary FFT algorithms
but with worse complexity constants.

In the evaluation of the approximation of fγ for y ∈ Xη,θ,K,σ through Theorem 3.5, the com-

putation of f̂(ξm), ξm ∈ Ξη,θ,K,σ would constitute a dominant part of the computational time.
However, it is possible to reduce such computational cost by choosing the the parameters Ki and
σi so that the values of f̂(ξm) can be reused. It thus makes sense to have the same set of values
(η,α,β) for a fixed direction θ and restrict to sets Ω in (3.5) of the form

(3.9) Ω = {(ηk,ℓ,αk,ℓ,βk,ℓ, θl)}k,ℓ,

where for each fixed ℓ we choose (common) parametersKℓ
i and σℓ

i such that for every (ηk,ℓ,αk,ℓ,βk,ℓ, θℓ) ∈
Ω

ϕ̂λ1
(Kℓ

1/2) < ǫ, ϕ̂λ2
(Kℓ

2/2) < ǫ, ϕλ1
(σℓ

1) < ǫ/Kℓ
1, ϕλ2

(σℓ
2) < ǫ/Kℓ

2,

where λ1 = ln(16) |ηk,ℓ|
2/α2

k,ℓ and λ2 = ln(16) |ηk,ℓ|
2/α2

k,ℓ β
2
k,ℓ. Given this choice, it is natural to

define

Ωǫ
Kℓ,σℓ

=
{
(ηk,ℓ,αk,ℓ,βk,ℓ, θk,ℓ,K

k,ℓ,σℓ) : (ηk,ℓ,αk,ℓ,βk,ℓ, θℓ) ∈ Ω, Kk,l ≤ Kℓ
}
.

Now, given that the values ηk,l has been chosen such that there exists a ηl such that |ηl|−σl|ηk,l| ∈ Z

then we have that

(3.10) Ξηk,l,θ,Kk,ℓ,σℓ ⊂ Ξηl,θ,Kℓ,σℓ .

This implies that it is only necessary to evaluate f̂(ξℓm), ξℓm ∈ Ξη,θ,Kℓ,σℓ , to obtain all the values

f̂(ξk,ℓm), ξk,ℓm ∈ Ξη,θ,Kk,ℓ,σℓ that are required for rapidly approximating the application of the analysis
operator V∗ in (3.7).

4. Sparse and redundant representations. Given a function f ∈ L∞(D) and a collection
of wave packets Γ = Γǫ, we want to find an element c ∈ ℓ2(Γ) such that Vc ≈ f (see (3.7)) with
few non-zero elements c(γ), γ ∈ Γ. As noted in the Introduction, a popular way to obtain such a
sparse representation is by minimizing an L2 data-misfit with an ℓ1 penalty. The coefficients c are
thus obtained by solving the quadratic programming problem

(4.1) argminc∈ℓ2(Γ)

1

2
‖Vc− f‖22 + µ‖c‖1 = argminc∈ℓ2(Γ)

1

2
c∗V∗Vc−ℜ(c∗V∗f) + µ‖c‖1.

The problem (4.1) is sometimes referred to as the LASSO problem, [31]. The wave packet
parameter set Γ will typically give rise to rather redundant representations. This is useful from
the point that it provides a wider selection of c ∈ ℓ2(Γǫ) for which Vc ≈ f , which increases our
chances of finding a c with few non-zero elements such that Vc ≈ f . Since Γ is a discrete set but
the space L∞(D) we want to approximate (accurately within some frequency domain Ξ, cf. (3.6)
), is not, we will speak about redundancy not in terms of the usual ratio between the number of
“basis” functions at hand and the dimension of the space to be approximated, but rather in terms
of the ratio between the number of “basis” functions at hand and the (numerical) rank of the Gram
matrix

Gγ,γ′ = 〈ϕγ ,ϕγ′〉, γ, γ′ ∈ Γǫ.

40 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

We note that G can also be obtained by the product

(4.2) G = V∗V.

The Gram matrix will play a crucial role in our framework.
The problem of developing computationally efficient algorithms to solve quadratic program-

ing problems such as (4.1) has received much attention in recent years [14, 16, 30]. The sim-
plest algorithm seems to be iterative soft thresholding, which is defined as follows: Let Sµ(x) =
sign(x)(|x| − µ)+ be the soft thresholding operator. It is shown in [14], that for problems of the
form (4.1), the iterative procedure (with Sµ applied component wise)

(4.3) cn+1 = Sµ(c
n − V∗Vcn + V∗f),

will converge to the solution c† of (4.1) as n → ∞ provided ‖V∗V‖ ≤ 1. If ‖V∗V‖ > 1 then (4.3) can
be easily modified by incorporating a normalization factor in V. Other popular methods are based
on iterative reweighted least squares, see [13] and references therein. The idea is the following: Let
c† be the solution to (4.1) for a fixed µ. If c† would have been known, we could choose weights

wj = µ/|c†j | (or practically as wj = µ(|c†j |
2 + ǫ2)−1/2, for some precision parameter ǫ) and consider

the solution of the penalized weighted least square problem

min
c∈ℓ2(Γǫ)

1

2
‖Vc− f‖22 + ‖c‖2w,

which by variational calculus is seen to have the solution

(G + diag(w))c = ℜ(V∗f).

Now, we do not know how to choose the weights wj , since c† is not known. But it turns out that
it is possible to obtain it (under some conditions) through the following iterative procedure: This

Algorithm 1 Iteratively reweighted least squares for the LASSO problem (4.1)

1: Let w0
j = µ.

2: for k ≥ 0 do

3: Solve ck = (G + diag(w))−1ℜ(V∗f),
4: Assign wk

j = µ|ckj |
−1.

5: end for

6: return c∞

algorithm does not always converge, particularly if the initial guess cb† = 1 (i.e., w0
j = µ) is too far

away from the true c†. However, for practical purposes it is useful because it is simple and fast.
In [13] convergence and sparsity results for an iteratively reweighted least squares algorithm for a
related problem is shown, as well as generalizations to the counterpart ℓp problem for p < 1.

A common feature of with methods for solving (4.1) is the iterative application of the synthesis
and analysis operators V and V∗. For large-scale problems, it is crucial that these operations can be
applied in a fast manner. As shown in the previous section and Theorem 3.5, we have a method to
approximate V∗f that requires O(N logN) operations. 1 An important point is that many of the
algorithms for solving (4.1) only employ the combination of V and V∗ as in (4.2), or at least it is
possible to modify them to only employ that combination. We will take advantage of this feature.
We note that, even though G will be very sparse, its complete computation is not computationally
feasible.

1A similar argument can be used for the evaluation of Vc(x) for points x on finite lattices (again by using USFFT
algorithms).

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 41

An unattractive aspect of iteratively applying V and V∗ when looking for a sparse solution c†

to (4.1), is that most of the elements in c† will be zero, and thus since a lot of the computed values
of Gc = V∗Vc for c ≈ c† will never be used, it seems unnecessary to compute them. Ideally, we
would like to compute only the elements that we believe are relevant. However, to modify a fast
algorithm so that it only computes relevant elements is in many cases difficult; a typical case of this
is the FFT algorithm.

Real-valued formulation. In this section we describe an efficient method to find sparse rep-
resentations of real-valued functions using Gaussian wave packets. We can do this if we assume
that the basis functions that we work with exists in conjugated pairs. The case of complex-valued
functions is in fact simpler to treat, since this assumption is not necessary. But as the principle is
the same we satisfy with considering the real case.

Throughout the remainder of the paper we will assume that the set of linearly independent
functions Γ is such that (y, η,α,β, θ) ∈ Γ if and only if (y,−η,α,β, θ) ∈ Γ. Note that ϕy,−η,α,β,θ =
ϕy,η,α,β,θ. We introduce Γi = {j : 1 ≤ j ≤ |Γ|/2} and assume that the functions {ϕγk

}γk∈Γ have
been ordered so that

ϕγ2j
= ϕγ2j−1

, j ∈ Γi.(4.4)

For simplicity we shall write ϕk in place of ϕγk
. If the function Vc is real-valued, then c2j−1 = c2j

and we can write

Vc =
∑

j∈Γi

(c2j−1ϕ2j−1 + c2jϕ2j−1) =
∑

j∈Γi

2ℜ(c2j−1ϕ2j−1).

We define the support of c

supp(c) = {j : (c2j−1, c2j) &= 0}.

For convenience of the reader we include the following lemma.
Lemma 4.1. Let {ψj}

N
j=1, with ψj ∈ L2(R2) being complex-valued and having unit norm, and

such that ψ2j = ψ2j−1. Suppose that f ∈ L2(R2) is real-valued, and let

(4.5) Gj,k =

(
ℜ〈ψ2j−1,ψ2k−1〉+ ℜ〈ψ2j−1,ψ2k〉 −ℑ〈ψ2j−1,ψ2k−1〉+ ℑ〈ψ2j−1,ψ2k〉
ℑ〈ψ2j−1,ψ2k−1〉+ ℑ〈ψ2j−1,ψ2k〉 ℜ〈ψ2j−1,ψ2k−1〉 − ℜ〈ψ2j−1,ψ2k〉 .

)

Construct the 2N × 2N matrices

G̃ =
1

2




G1,1 G1,2 . . . G1,N

G2,1 G2,1 . . . G2,N

...
...

. . .
...

GN,1 GN,2 . . . GN,N


 ,

(4.6) G =
1

2

(
G̃+ G̃t

)
,

and the vector b = (b1, b2, . . . , bN)t,

(4.7) bj = (ℜ〈f,ψ2j−1〉,ℑ〈f,ψ2j−1〉).

Let A : ℓ22N 3→ L2(R2) be defined by Ax =
∑2N

j=1 xjϕj, and let c† be the solution to

(4.8) argminc∈R2N

1

2
ctGc− ctb+ µ

N∑

j=1

√
c22j−1 + c22j .

42 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

If x† is the solution to

argminx∈ℓ1N

1

2
‖Ax− f‖22 + µ‖x‖1,

then

x†
j =

{
c†j + i c†j+1, if j is odd;

c†j−1 − i c†j , if j is even.

Proof. Since f is real valued and ψ2j = ψ2j−1, j = 1, . . . , N , it follows that (A∗f)2j = (A∗f)2j−1.
The assertion of the lemma then follows immediately from expanding ‖Ax−f‖22 and by decomposing
x and the elements of A∗A into real and imaginary parts.

Lemma 4.2. Given the same assumptions as in Lemma 4.1, let c be a solution to (4.8). To
simplify the notation, introduce dj =

(
c2j−1, c2j

)
. Then, for dj &= 0 it holds that

(
(Gc− b)2j−1, (Gc− b)2j

)
= −µ

dj
‖dj‖

,

while for dj = 0 we have

∥∥∥
(
(Gc− b)2j−1, (Gc− b)2j

)∥∥∥ ≤ µ,

and conversely, if the conditions above hold, then c is the solution to (4.8).
Proof. The proof will be done in a similar fashion as in [18]. We will need the notion of

subdifferentials, cf. [25] for details. Let

h =
1

2
ctGc− ctb+ µ

N∑

j=1

√
c22j−1 + c22j =

1

2
ctGc− ctb+ µ

N∑

j=1

‖dj‖.

Since h is convex, it follows that (4.8) has a unique solution. Since h is locally Lipschitz, a necessary
and sufficient condition for c to be the unique solution is that 0 ∈ ∂(h), where ∂h denotes the
subdifferential of h, cf. [25, Theorem 3.2.5]. The subdifferential is

∂




N∑

j=1

‖dj‖


 =

{
u = (u1, . . . , uN) :uj = dj/‖dj‖, if dj &= 0,

uj(1)
2 + uj(2)

2 ≤ 1, if dj = 0

}
.(4.9)

The condition 0 ∈ ∂h can therefore be written as

(4.10)
(
(Gc− b)2j−1, (Gc− b)2j

)
+ µuj = 0,

for all 1 ≤ j ≤ N (with uj as in (4.9)). For j such that dj &= 0 we thus obtain from (4.10) that

(
(Gc− b)2j−1, (Gc− b)2j

)
= −µdj/‖dj‖,

and for j such that dj = 0 we have that ‖
(
(Gc − b)2j−1, (Gc − b)2j

)
‖ ≤ µ, since ‖uj‖ < 1 in this

case.
To circumvent the computationally expensive application of the full synthesis (V) and analysis

(V∗) in each iteration, we propose an alternative method described in Algorithm 2. The idea is

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 43

to work with active sets and exploit the fact that it is much easier to evaluate submatrices of the
Gram matrix G (the same holds for its real counterpart G). That is, we wish to iteratively solve the
minimization problem

(4.11) min
supp(c)⊂P

1

2
ctGc− ctb+ µ

|Γi|∑

j=1

√
c22j−1 + c22j , P ⊂ Γi,

where P ∈ {1, . . . , |Γi|} is chosen to suit the data b. Note that the above can be formulated as a
minimization over R2N ′

for some N ′ << N , (compare with (4.8)).

Algorithm 2 ℓ1-optimization using active sets and Gram matrices for a real-valued function f .

1: Let Q0 = ∅, c0 = 0, m = 0, use V∗f and compute b through (4.7).

and R0 =
{
j :

∥∥∥
(
b2j−1, b2j

)∥∥∥ > µ
}
.

2: while Rm &= ∅ do

3: Let m = m + 1 and select a non-empty subset Sm ⊂ Rm−1 of new candidates for the
representation.

4: Let Pm = Qm−1 ∪ Sm.
5: Let cm be the solution of

(4.12) min
supp(c)⊂Pm

1

2
ctGc− ctb+ µ

|Γi|∑

j=1

√
c22j−1 + c22j .

6: Let Qm = supp(cm).
7: Define

Rm =
{
j :

∥∥∥
(
(Gcm − b)2j−1, (Gcm − b)2j

)∥∥∥ > µ
}
.

8: end while

9: return cm

The main advantage of Algorithm 2 is that the full synthesis V and analysis V∗ operators
are needed only comparatively few times. The analysis operation V∗ is needed once during the
initialization to compute b. After that, each of the operations is applied only once per iteration over
m. For functions f that are approximated well by a sparse representation, it is possible to keep
comparatively few terms in each of the sets Pm, and (in combination that G and the corresponding
submatrices will be sparse) which makes it possible to find solutions to (4.12) much faster compared
to methods that depend on applying the full operators V and V∗ in each iterative step for solving
(4.12).

Lemma 4.3. Algorithm 2 converges in finitely many steps to the solution of the full minimization
problem

(4.13) min
c

1

2
ctGc− ctb+ µ

|Γi|∑

j=1

√
c22j−1 + c22j .

Proof. Define the function

(4.14) h(c) =
1

2
ctGc− ctb+ µ

|Γi|∑

j=1

√
c22j−1 + c22j .

44 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

We will show that (h(qm))m is a strictly decreasing sequence. By construction, it is clear that

min
supp(c)⊂Pm

h(c) = min
supp(c)⊂Qm

h(c).

For j ∈ Sm+1, let

(4.15) τj =
∥∥∥
(
(Gcm − b)2j−1, (Gcm − b)2j

)∥∥∥− µ > 0,

where the positivity of τj follows from the definition of Rm. It is easily seen from the proof of
Lemma 4.2 that

min
supp(c)⊂Qm

h(c) = min
supp(c)⊂Pm+1

h(c) +
∑

j∈Sm+1

τj

√
c22j−1 + c22j ,

because cm is the unique minimizer of both expressions and cmj = 0 for j ∈ Sm+1. In adition, it is
clear that

(4.16) min
supp(c)⊂Pm+1

h(c) +
∑

j∈Sm

τj

√
c22j−1 + c22j ≥ min

supp(c)⊂Pm+1
h(c).

Now, the only way to get equality in (4.16) is if the solution c̃m+1 of the left-hand side of (4.16) is
such that c̃m+1

j = 0 for all j ∈ Sm. But in this case c̃m+1 = cm, and Lemma 4.2 then implies that

τj = 0 for all j ∈ Sm+1, which contradicts the construction. Hence, we must have

min
supp(c)⊂Pm

h(c) > min
supp(c)⊂Pm+1

h(c).

The algorithm converges in finitely many steps because there are only finitely many subsets of
Γi and h(cm) is decreasing with m.

One way of solving (4.12) is to use Algorithm 1 with the weight update on line 4 replaced by
wk

j = µ(c22j−1 + c22j)
−1/2.

ℓp-formulation. Just as in [13], it is interesting to change the ℓ1 penalty in (4.8) to an ℓp-type
of penalty with p < 1, since this may lead to a sparser solution. This change however leads to
nonconvex versions of (4.8) for which there is no guarantee that the algorithms will not get stuck
at local minima. It is still interesting to look for formulations of (4.8) that may promote sparser
solutions. The following lemma provides as example of such formulation.

Lemma 4.4. Given the same assumptions as in Lemma 4.1, define

(4.17) Υp,µ(t) =
µ|t|

1 + (1− p)(|t|/µ)1−p
,

and let c be a solution to

(4.18) min
c

1

2
ctGc− ctb+

N∑

j=1

Υp,µ

(√
c22j−1 + c22j

)
.

Then
∥∥∥
(
(Gc− b)2j−1, (Gc− b)2j

)∥∥∥ ≤ µ.

Proof. The proof follows as in the proof of Lemma 4.2 by noting that
∣∣∣∣
d

dt
Υp,µ(t)

∣∣∣∣ < µ, t &= 0,

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 45

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 4. The function Υp,µ(t) for p = 0.5, q = 2, and µ = 0.5 in black, and the function t → |t| in gray.

and that for t = 0 the sub-differential of Υp,µ coincides with the sub-differential of the function
t 3→ |t|.

Again, one way of solving (4.18) is to use Algorithm 1 with the weight update on line 4 replaced
by

(4.19) wk
j =

(
Υp,µ

(√
c22j−1 + c22j

))−1

.

In the sequel we will show the results of numerical simulations, similar to those done for (4.8),
that show good sparsity and computational properties of the modified framework.

5. Numerical examples.

5.1. Missing data. As an example of how Gaussian wave packets perform we use the follow-
ing missing traces example from the SPARCO toolbox [4]. The data consists of synthetic seismic
data traces, given on a rectangular lattice, but where some of the data columns are missing. The
missing data can be modeled by introducing the multiplication with a characteristic function χ.
The proposed ℓ1 model in the SPARCO toolbox for this problem is slighly different from the one in
(4.1);

(5.1) argminc∈ℓ2(Γǫ)‖χ(Vc− f)‖1 subject to ‖c‖1 ≤ σ,

for some choice of regularization parameter σ. Above, χ is one where the data is available and zero
where it is missing. The factor χ will destroy the analytic expressions for the element of the Gram
matrix, since the Gram matrix in the case (5.1) will be of the form Gχ = V∗χA.

To solve (5.1) we make use of the software package SPGL1, [32, 5], which employs iterative
applications of V and V∗. For illustrative reasons, we want to compare our results with Gaussian
wave packet representations with competing representations. We compare against a curvelet repre-
sentation, i.e., the USFFT-based version, as it according to the authors [10, p 10] yields “the most
faithful discretization of the continuous definition”. For reasons of simplicity, we have also used the
MATLAB implementation, although it probably is not as optimized with regards to computational
speed as the C++ version.

The results after applying SPGL1 to the Gaussian wave packet, and curvelet2, representions,
respectively, are depicted in Figure 5, with the Gaussian wave packet result to the left and the

2we have included weight so that the coefficients in the right term of (5.1) corresponds to basis functions with
unit norm

46 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

Fig. 5. Results for the missing traces example from the Sparco toolbox. To left the result from using Gaussian
wave packets, and to the right the result from using curvelets.

Table 5.1

Table of results corresponding to Figure 6

Method # Coeffients Time(s) RMS Error # Iterations
GWP ℓ1 597 53 0.05 12
GWP ℓ0.1 214 39 0.06 12
Curvelet ℓ1 675 4001 0.08 512

curvelet result to the right. Note that the images are thresholded to be in the range [−0.0001, 0.0001]
in order to better see the details.

The same parameters were used for the both representations, with σ = 0.03. The Gaussian
wave packet representation required 83 synthesis operations and 56 analysis operations, yielding
a total time of 528 seconds. The corresponding number for the curvelet representation were 188
synthesis operations and 122 analysis operations, with a total time of 1453 seconds.

Since the Gaussian wave packet implementations are optimized, and the curvelet implementation
is not, it is not fair to compare the times directly. However, we not that the Gaussian wave packet
representations required fewer operations for convergence. More importantly, judging from Figure
5, we deem that result wise, the usage of Gaussian wave packets is superior to the usage of curvelets
for this missing data example.

5.2. Sparse image representations. In this section we provide some numerical experiments
regarding the compression of functions in two variables. To begin with, we will use Algorithm 2 to
solve (4.1). Algorithm 1 is then used to solve the sub-problems (4.12).

To measure the quality of our approach we compare our results with the ones obtained by using
a curvelet representation. As the way we solve to (4.1) makes use of the analytic properties of the
Gaussian wave packets, we need to use a different numerical tool to solve the counterpart of(4.1) for
the curvelet representation. Using the simple iterative thresholding algorithm, cf. (4.3), or a version
of Algorithm 1 would not be fair, as it would be very computationally expensive. To make a more
fair comparison, we have used the SPG-LASSO routine of the SPGL1 package [5, 32], as one of the
current state of the arts methods for solving large scale problems if this kind. The formulation used
in the SPG-LASSO routine differs slightly from that of (4.1). If A is the matrix that contains the
“basis functions” that we wish to use, then, for a given choice of parameter τ , SPG-LASSO solves

(5.2) argmin‖Ax− f‖22 subject to ‖x‖1 ≤ τ .

It is easy to see that there is a one–to–one relation between the parameter τ above the the parameter

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 47

Fig. 6. Compression comparison between Gaussian wave packets and curvelets. The original image has a range
of [-0.5 0.5], and all images are shown in the range [-0.25 0.25]. Top left: original image, Top right: curvelet (ℓ1)
representation with 675 coefficients, Bottom left: Gaussian wave packet (ℓ1) representation with 597 coefficients,
Bottom right: Gaussian wave packet (ℓ0.1) representation with 214 coefficients

Table 5.2

Table of results corresponding to Figure 7

Method # Coeffients Time(s) RMS Error # Iterations
GWP ℓ1 1855 132 0.10 20
GWP ℓ0.1 901 87 0.11 20
Curvelet ℓ1 2054 3315 0.10 434

µ in the formulation

(5.3) argmin‖Ax− f‖22 + µ‖x‖1,

cf. [32]. In Figures 6, 7 we show some results of compression. In the top left Figures 6, Figure 7
we show two snap shots from a two dimensional wave propagation problem. Given a heterogeneous
velocity model, we have numerically solved the wave equation with a time dependent point source
by a standard finite difference method. The two snap shots in the top left of Figures 6, 7 contain
the numerical solutions for two time instances; where Figure 6 corresponds to the earlier of the
two time instances. The heterogeneous velocity model has been chosen to create a complex wave
pattern, even for very simple point source functions. For the simulations presented here, we have
used a one-dimensional Gaussian wave packet as a point source. In the bottom left panels of
Figures 6, 7 we show the results obtained by solving 4.1. In the top right panel the counterpart
results using curvelets are depicted. We have chosen the parameters µ in (4.1) and τ in (5.2) so

48 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

Fig. 7. Compression comparison between Gaussian wave packets and curvelets. The original image has a range
of [-0.5 0.5], and all images are shown in the range [-0.25 0.25]. Top left: original image, Top right: curvelet (ℓ1)
representation with 2054 coefficients, Bottom left: Gaussian wave packet (ℓ1) representation with 1855 coefficients,
Bottom right: Gaussian wave packet (ℓ0.1) representation with 901 coefficients

that the solutions have about the same number of non-zero coefficients (number of basis function).
In both the examples, we have allowed for slightly more curvelet coefficients than Gaussian wave
packet coefficients.

In addition to the two ℓ1 formulations (4.1) and (5.2), we explore the case of ℓp, p < 1 in the
formulation (4.18). We have used Algorithm 2 with (4.12) replaced by (4.18), and Algorithm 1 with
the weights wk

j in step 4 replaced by the weights given by (4.19), so solve the subproblems of the
form (4.18) corresponding to line 5 in Algorithm 2. The results for the same choice of µ for the
Gaussian wave packet solutions to (4.1) are shown in the bottom right of Figures 6, 7. For these
cases we have used p = 0.1 (where p again refers to the ℓp-like formulation (4.18)).

In Tables 5.1, 5.2, we show the number of coefficients used in the representation, the computa-
tional time, the standard deviation between the original and the compressed representations, and
the number of times that the either one of the analysis and synthesis operators, for the respective
cases, has been applied. For the Gaussian wave packets, a total of 12 and 20 applications of either
V and V∗ has been applied, for the respective examples. This corresponds to 6 and 10 “outer” itera-
tions of Algorithm 2, respectively. For the curvelet representations, substantially more applications
of the corresponding synthesis and analysis operations are required, 434 and 512 respectively for
the two examples considered. The large difference in the required number of operator applications,
makes the curvelet approach subtantially slower3. We recognize that the times presented in Tables

3However, we note that we would expect those numbers to be substantially higher if, e.g., an iterative soft
thresholding method would have been used instead of SPG-LASSO would have been used.

REPRESENTATION OF FUNCTIONS WITH GAUSSIAN WAVE PACKETS 49

Table 5.3

Parameters used to construct the wave packet parameter set Γ used in the simulations of the section.

ηk 28,81 40,74 57,62 81,49 115,24 162,97
28,81 40,74 57,62 81,49 115,24 162,97

14,41 20,37 28,81 40,74 57,62 81,49 115,24 162,97
αk 1 1 1 1 1 1

2 2 2 2 2 2
1 1 1 1 1 1 1 1

βk 4 4 4 4 4 4
2 2 2 2 2 2

2 2 2 2 2 2 2 2

5.1, 5.2 for the curvelet cases, could have been less if the C++ versions would have been used.

However, although it seems like the Gaussian wave packet approach seems to perform superior
to the curvelet approach, the primary motivation for the comparisons in this section concerns the
quality of the compressed representations. Here we note that Gaussian wave packet results seems
to agree visually much better with original data than the curvelet representations. Just as in Figure
3, we see that the “tails” of the curvelets produce disturbing artifacts. We also note large boundary
artifacts for the curvelets.

For the simulations with Gaussian wave packets we have used the parameter set in (3.9) with
θℓ = ℓπ/32, Z ∋ ℓ = [0, 32), and ηk,ℓ = ηk(cos(θℓ), sin(θℓ)), αk,ℓ = αk, and βk,ℓ = αk, with ηk, αk

and βk chosen as in Table 5.3. We have also used ǫ = 1e − 3, and σ = 1.0. The simulation was
made using 512x512 data sets.

It is interesting to note that using ℓ0.1 (p = 0.1 in (4.18)) instead of ℓ1 (p = 1 in (4.18))in the
formulation for the Gaussian wave packets we obtain fairly good results with only half as many coef-
ficients. A drawback is that the reconstruction has slightly more distinctive artifacts. On the other
hand, the p = 0.1-case has better amplitude agreement than the p = 1-case. However, this ampli-
tude correction problem can easily be resolved using p = 1 as a variable selection procedure to select
which coefficients to use, and thereafter use ordinary least squares with the selected coefficients.

One important application that we have in mind is the decompoition of data originating from
measurements of solutions of the wave equation (e.g., seismic data). In this case the primary interest
is not in the actual compression ratio that can be achieved but in the sparsity that can be used in
the analysis of the data. In this way, the Gaussian wave packet representations are natural, as it is
easy to relate physical properties to the reconstructions.

6. Conclusions. We have shown that Gaussian wave packets are useful for representing func-
tions with wave-like features. They satisfy several appealing invariance properties that are useful
for many reasons, for example they provide analytic formulas for the Gram matrix. For the con-
tinuous transform, we have provided an inversion formula and illustrated the good decay properties
associated with Gaussian wave packets. Moreover, we have shown how to construct fast algorithms
for a discrete transform, and how to choose precision parameters associated with it. Using the
analytic properties of the Gaussian wave packets to compute elements of the Gram matrix directly,
we have constructed a new numerical algorithm for obtaining sparse recovery for very redundant
representations, without having to compute full analysis and synthesis operations.

REFERENCES

[1] F. Andersson, M.V. de Hoop, H.F. Smith, and G. Uhlmann. A multi-scale approach to hyperbolic evolution
equations with limited smoothness. Comm. Partial Differential Equations, 33(4-6):988–1017, 2008.

[2] F.G. Meyer andl R.R. Coifman. Brushlets: A tool for directional image analysis and image compression. Applied
and Computational Harmonic Analysis, 4:147–187, 1997.

50 F. ANDERSSON, M. CARLSSON, AND L. TENORIO

[3] J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S.T. Ali. Two-dimensional wavelets and their relatives.
Cambridge University Press, 2004.

[4] E. van den Berg, M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and Ö. Yılmaz. Sparco: A testing
framework for sparse reconstruction. Technical Report TR-2007-20, Dept. Computer Science, University of
British Columbia, Vancouver, October 2007.

[5] E. van den Berg and M.P. Friedlander. SPGL1: A solver for large-scale sparse reconstruction, June 2007.
[6] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal.,

2(4):363–381, 1995.
[7] A.M. Bruckstein, D.L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling

of signals and images. SIAM Review, 51:34–81, 2008.
[8] V. Bucha. Gaussian packet prestack depth migration. part 3: Simple 2-d models: Seismic waves in complex 3-d

structures. Technical Report 19, Charles University, 2009.
[9] E.J. Candès and D.L. Donoho. Continuous curvelet transform. II. Discretization and frames. Appl. Comput.

Harmon. Anal., 19(2):198–222, 2005.
[10] E.J. Candès, D.L. Laurent, D. Donoho, and L. Ying. Fast discrete curvelet transforms. Multiscale Model.

Simul., 5(3):861–899, 2006.
[11] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.,

20(1):33–61, 1998.
[12] I. Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992.
[13] I. Daubechies, M. Fornasier, and C. S. Gntrk. Iteratively reweighted least squares minimization for sparse

recovery. Communications on Pure and Applied Mathematics, 63(1):1–38, 2010.
[14] I. Daubechies and M. Defriseand C. De Mol. An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint. Comm. Pure Appl. Math., 57(11):1413–1457, 2004.
[15] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14(6):1368–

1393, 1993.
[16] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist., 32(2):407–499, 2004.
[17] H.G. Feichtinger and T. Strohmer. Gabor analysis and algorithms: theory and applications. BirkHuser, 2003.
[18] J.-J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory, 50(6):1341–

1344, 2004.
[19] K. Gröchenig. Foundations of time-frequency analysis. Birkhäuser, 2001.
[20] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group representations. I.

General results. J. Math. Phys., 26(10):2473–2479, 1985.
[21] K. Guo and D.Labate. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal.,

39(1):298–318, 2007.
[22] N.R. Hill. Prestack gaussian-beam depth migration. Geophysics, 66:1240–1250, 2001.
[23] L. Klimeš. Notes on summation of gaussian beams and packets: Seismic waves in complex 3-d structures.

Technical Report 14, Charles University, 2004.
[24] A.K. Louis, P. Maass, and A. Rieder. Wavelets: theory and applications. Wiley, 1997.
[25] M.M. Mäkelä and P. Neittaanmäki. Nonsmooth optimization. World Scientific Publishing Co. Inc., River Edge,

NJ, 1992. Analysis and algorithms with applications to optimal control.
[26] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal

Processing, 41:3397–3415, 1993.
[27] E.P. Simoncelli and W.T. Freeman. The steerable pyramide: a flexible architechture for multi-scale derivate

computation. IEEE Conf. Imag. Proc., 3:444–447, 1995.
[28] H.F. Smith. A parametrix construction for wave equations with C1,1 coefficients. Ann. Inst. Fourier (Grenoble),

48(3):797–835, 1998.
[29] R. Tibshirani T. Hastie and J. Friedman. The Elements of Statistical Learning. Springer-Verlag, 2001.
[30] A. Beckand M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM

J. Imaging Sci., 2(1):183–202, 2009.
[31] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267–288,

1996.
[32] E. van den Berg and M.P. Friedlander. Probing the pareto frontier for basis pursuit solutions. SIAM Journal

on Scientific Computing, 31(2):890–912, 2008.
[33] R.-S. Wu, Y. Wang, and M. Luo. Beamlet migration using local cosine basis. Geophysics, 73(5):S207–S217,

2008.

