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MIGRATION VELOCITY ANALYSIS USING WAVE PACKETS - GEOMETRIC

APPROACH ∗

ANTON A. DUCHKOV† , MAARTEN V. DE HOOP‡ , AND FREDRIK ANDERSSON§

Abstract. Current algorithms for imaging seismic reflection data can be subdivided into two classes: Kirchhoff

(generalized Radon transform) and wave-equation (double-square-root and reverse-time) migration. Kirchhoff type
methods rely on asymptotic and ray-geometrical considerations. Wave-equation imaging algorithms (one-way or two-
way) appear to be more robust in the case of complicated velocity models and aim to account for finite-frequency
effects. Integration of the two classes, using wave packets or “curvelets”, for the purpose of migration velocity analysis
is the subject of this paper. One can represent full wave-form data in terms of wave packets with arbitrary accuracy
on the one hand. On the other hand, every packet is characterized by a central point and direction that provides
geometrical information that can be further utilized in “ray”-geometrical analysis, which is exploited, here, in the
context of reflection tomography using annihilators derived from the wave-equation angle transform.
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1. Introduction. It is a well-known feature of seismic data and seismic images that signals are
concentrated along piece-wise smooth hypersurfaces (traveltime surfaces in the data and interfaces
in the (extended) image). Points on these surfaces are tied to orientations ((co)normal vectors).
This information is indirectly used in Kirchhoff migration as a constructive summation principle.
Local slant stack analysis has been used to reveal orientations present in the data, which, in turn,
have been utilized in, for example, parsimonious migration [13], map migration [14], etc.; for a more
complete list of references, see [4]. Goldin [10, 11] used contact elements to describe the propagation
of singularities by migration-demigration. Here, we use elements of symplectic geometry instead.

Wave packets have been used to construct parametrices of the wave and evolution equations
[18, 1]. The concentration of wave packets replaces the notion of propagation of singularities in the
microlocal point of view. Evolution equations describe the continuation of initial data with respect
to an evolution parameter. Examples include downward continuation (using the double-square root
(DSR) equation) and velocity continuation; for a more detailed discussion see [7].

Wave packets, and the frames they form, are derived from the so-called dyadic parabolic decom-
position of phase space. Different discretizations include the “curvelets” [2] and the discrete, almost
symmetric wave packets [1]. The associated transforms yields sparse representations of seismic data
and images, and replace the above mentioned naive local slant stack analysis. The decompositions
into wave packets also appear to be a powerful tool for compressing, denoising, interpolating and
regularizing seismic data or images [5, 12].

One can represent full wave-form data in terms of wave packets with arbitrary accuracy on
the one hand. On the other hand, every packet is characterized by a central point and direction
that provides geometrical information that can be further utilized in “ray”-geometrical analysis,
which is exploited, here, in the context of reflection tomography using annihilators derived from the
wave-equation angle transform.

2. Angle transform and velocity continuation.

2.1. Angle transform and common-image point gathers. To express redundancy in
seismic reflection data, d, we use the so-called angle transform, Awe, defined in [21]. This transform
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is dependent on the background, velocity model, c; here, we consider a one-parameter family of such
background models, c(α). Each model c(α) defines an angle transform Awe(α). We have

(2.1) Awe(α) : d(xs,xr, t) → w(α,x,p, z),

where the w(α,x,p, z) are referred to as common-image point gathers (CIGs). (The term CIG
is conventially reserved for w with x fixed.) Asymptotically, w recovers the singularities of the
contrast (reflectivity); p is related to the scattering angle and azimuth (in 3D) of reflection, and
can be viewed as a semblance parameter.

The particular angle transform used in this paper, is composed of data downward continuation
and certain beamforming. In [21] it was shown that under mild conditions (essentially rays being
nowhere “horizontal”) the angle transform Awe is microlocally invertible. For the “true” back-
ground model, w(α,x,p, z) is independent of p, which is exploited in designing an error criterion
for background velocity estimation.

2.2. Velocity continuation of common-image point gathers. Assuming invertibility of
Awe(α) for all α in an interval of interest, we define a velocity continuation operator for common-
image point gathers according to

(2.2) C(α,α0) = Awe(α)A−1
we(α0);

C(α,α0) is the solution operator to an initial value problem for an evolution equation (cf. [7]):

(2.3)

{
[∂α − iP (α, x̃, ∂x̃)]w(α, x̃) = 0,

w(α, x̃)|α=α0
= w0(x̃),

where P is a pseudodifferential operator of order 1, and w0(x̃) is an set of CIGs obtained using an
initial background velocity model, c(α0). We use the shorthand notation, x̃ = (x,p, z).

2.3. Geometric representation. Equation (2.3) describes how CIGs evolve under changing
background models. Asymptotically, the wavefront set of w propagates according to a Hamiltonian
flow, where the Hamiltonian is the principal symbol, P1, of P . The corresponding rays are referred
to as velocity rays. Equation (2.3) is a generalization (to arbitrary velocity perturbations) of the
result given by S. Fomel (cf. [9]) who introduced the concept of velocity continuation and velocity
rays for time migrated images.

The wavefront set of w can, in principle, be estimated from its representation in terms of
wave packets or “curvelets”. In [1] a frame of discrete, almost symmetric wave packets, ϕγ , is
constructed, which we will use here; γ = (j, ν, k) with multi-index j representing translations in
x̃-space, ν denoting orientations, and k denoting the scale. A wave packet, essentially, looks like an
oriented, “fat”, localized plane wave. We have the transform pair,

(2.4) w0(x̃) =
∑

γ

w0γϕγ(x̃), w0γ =

∫
ϕγ(x̃)w0(x̃) dx̃,

where w0γ are the wave-packet coefficients.
A construction and analysis of the solution of initial value problems of the type (2.3), using

wave packets, is given in [1]. In this construction, an approximate solution is introduced that is
based on decomposing the initial data into wave packets, ϕγ , according to (2.4), and subjecting the
individual wave packets to a rigid motion derived from the Hamiltonian flow defined by P1 (that is,
the velocity rays in phase space) and initial values, (x̃j , ν 2k). A weak solution of the initial value
problem is obtained by solving a Volterra integral equation the kernel of which is derived from this
approximate solution.

To extract relevant information out of w0, we need to obtain a sparse decomposition of the type
(2.4):

(2.5) w0(x̃) ≈
∑

m∈{1,...,M}

wγm
ϕγm

(x̃),
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with M minimal. Such a sparse decomposition can, for example, be obtained by methods of sparsity
promoting optimization using ℓ1 regularization (cf. [15]). We identify

(xγm ,pγm , zγm) = x̃jm
, (kγm

x ,kγm

p , kγm

z ) = 2km νm, m ∈ {1, . . . ,M}.

We note that (kγm

x , zγm) provides information about the image dip, locally, at (xγm , zγm) if km is
sufficiently large.

3. Velocity estimation.

3.1. Optimization formulation - a geometric approach. An optimization approach to
estimate the background velocity model using the angle transform was proposed in [3]. Here, we
use an error criterion derived from this approach (cf. [19]) which has the appearance of a differential
semblance [22]:

(3.1) J(α) = ‖∂pw(α, ., ., .)‖2
(x,p,z), w = Awe(α)d.

(In our notation, we suppress the presence of a deconvolution, ∂−1
t , that should be applied to the

data.) Through a composition with A−1
we , ∂p generates annihilators of the data. We say that ∂p

maps a CIG to a “residual” CIG,

(3.2) r(α,x,p, z) = ∂pw(α,x,p, z);

r = 0 if c(α) coincides with the “true” velocity model.
Returning to the wave packet decomposition of w0, we now make use of the property that

∂pϕγm
≈ kγm

p ϕγm
,

up to an error of O(2−km/2). Thus, the geometric counterpart of the residual gathers, r(α0,x,p, z),
becomes

(3.3) rg = {kγm

p }m=1,...,M .

The corresponding, geometric, error function is given by

(3.4) Jg =
∑

m∈{1,...,M}

|kγm

p |2.

Because, for sufficiently fine scales, in the “true” velocity model we obtain kγm

p = 0, we can view
the elements of the set rg as describing “residual angle dip (RAD)”, expressed by the notation,
∆m = −kγm

p , m ∈ {1, . . . ,M}.

3.2. A comparison with Residual Move Out. Instead of extracting (jointly, for
all reflectors) {kγm

p }m∈{1,...,M} for sufficiently fine scales, we could also have extracted subsets
{(xγm , zγm ,pγm)}m∈Nr

pertaining to common reflectors labelled by r. Within each subset, we let
pγm

r1 be distinct from pγm
r2 , mr1,mr2 ∈ Nr. We then arrive at a natural choice for an error

function to estimate the background velocity,

(3.5)
∑

r

|zγm
r2 − zγm

r1 |2,

which reflects the so-called residual moveout (RMO), [23, 16, 17]. (Instead of this differential RMO,
one has also considered the curvature evaluated at p = 0.)

The RMO evolution and RAD evolution with background velocity are illustrated in Fig. 1. Here,
we consider the constant velocity case, that is, c(α) is independent of (x, z) for all α considered, and
insert a horizontal reflector. (The “true” velocity was normalized to 1 km/s.) In Fig. 1,a) we show
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Fig. 1. Background velocity continuation for the constant velocity case (the “true” velocity being c0 = 1 km/s)
and a horizontal reflector; a) depth RMO evolution (a horizontal gather corresponds to “true” velocity); b) RAD
evolution (vertical orientation of k corresponds to “true” velocity).

the RMO evolution starting from a velocity, c(α0) = .7 km/s, as the differential RMO (cf. (3.5))
tends to zero. In Fig. 1,b) we show the RAD evolution, again, starting from a velocity, c(α0) = .7
km/s, as the p components of k (cf. (3.4)) tend to zero.

Equation (3.5) measures only one component of the RMO, and, in general, all components
should be accounted for. That is, |xγm

r2 − xγm
r1 |2 needs to be included in the error function to

obtain full sensitivity to changes in the background velocity. We illustrate this in Fig. 2. In Fig. 2,a)
we show the constant velocity evolution of a CIG for a horizontal reflector, and in Fig. 2,b) we show
the constant velocity evolution of a CIG for a dipping reflector. In the latter case, the RMO in x

vs. p would yield a significant contribution to the full differential RMO error function.

Fig. 2. RMO evolution of common-image point gathers (thick horizontal line) with “true” velocity being c0 = 1
km/s; a) the case of a horizontal (flat) reflector, yielding depth RMO; b) the case of a dipping (flat) reflector, yielding
RMO in all directions.

4. Sensitivity kernel - perturbation theory. We introduce the background model pertur-
bation as a decomposition,

(4.1) δs(x, z) = δc(x, z)−2 =

N∑

n=1

δsn ψn(x, z),

where the ψn(x, z) are smooth, and chosen appropriately in the sense that they represent the models
under consideration in some optimal way. In the above, s = c−2 represents model slowness squared.
We assume that the model chosen in the application of the angle transform is sufficiently close to
the “true” model, that is, δs represents a perturbation about the “true” model.

In the context of velocity continuation, we have δs = −2c(α0)
−3∂αc|α=α0

δα (δα = α − α0),
where c(α0) stands for the “true” model. We integrate the Hamilton system defined by the principal
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symbol, P1 (cf. (2.3)), backwards with initial data (at α) estimated from the CIGs. From the
solution we extract −kγm

p (α0;α) which models ∆m if α0 is the first value of the evolution parameter
encountered where kγm

p becomes 0. In the context of optimization, we have modelled a “line search”.
In this section, we use ray perturbation theory to obtain the Fréchet derivative of kγm

p . Invoking
an adjoint state method, this Fréchet derivative determines a search “direction” in the space of
slowness model perturbations. We note the similarities with linearized transmission tomography.

4.1. DSR ray perturbation. In preparation of constructing the Fréchet derivative of kγm

p ,
we summarize the perturbation of DSR rays underlying the geometry of the angle transform. The
double-square root (DSR) equation has been introduced for data downward/upward continuation.
The propagation of singularities by the solution of the DSR equation is considered in detail in [6].
The Hamiltonian for tracing DSR rays in phase space is given by

(4.2) HDSR(z,xs,xr, kz,ks,kr,ω) = kz −
√

s(xs, z)ω2 − |ks|2 −
√

s(xr, z)ω2 − |kr|2;

the frequency, ω > 0 while z ∈ [0, Z], where Z denotes the maximum depth considered.
We consider perturbations of the background model in terms of s, with

(4.3) s(ǫ,x, z) = s0(x, z) + ǫs1(x, z).

Following [8] we expand the Hamiltonian according to

(4.4) HDSR = HDSR
0 + ǫHDSR

1 + . . .

We have

HDSR
0 = kz −

√
s0(xs, z)ω2 − |ks|2 −

√
s0(xr, z)ω2 − |kr|2,(4.5)

HDSR
1 = −

1

2

[
s1(xs, z)ω2

√
s0(xs, z)ω2 − |ks|2

+
s1(xr, z)ω2

√
s0(xr, z)ω2 − |kr|2

]
.(4.6)

In this section, we use the shorthand notation x̃ = (xs,xr, t) and k̃ = (ks,kr,ω). The ray trajecto-
ries are expanded according to

(4.7) x̃(z) = x̃0(z) + ǫx̃1(z) + . . . , k̃(z) = k̃0(z) + ǫk̃1(z) + . . . ,

where (x̃0(z; x̃0, k̃0), k̃0(z; x̃0, k̃0)), describe unperturbed DSR rays as solutions to the unperturbed
Hamilton system,

dx̃0

dz
= ṽ1 =

∂HDSR
0

∂k̃
, x̃0(0) = x̃0,

dk̃0

dz
= ṽ2 = −

∂HDSR
0

∂x̃
, k̃0(0) = k̃0.(4.8)

We write ṽ1 = (v1s,v1r, v1t), ṽ2 = (v2s,v2r, v2t). DSR rays can be considered as curves in

(z,xs,xr, t) space. We also introduce the notation Γ0 = (x̃0, k̃0).

The first-order perturbations, (x̃1(z), k̃1(z)), satisfy the system of equations,

dx̃1

dz
=

∂2HDSR
0

∂k̃∂x̃

∣∣∣∣
(ex0,ek0)

· x̃1 +
∂2HDSR

0

∂k̃∂k̃

∣∣∣∣
(ex0,ek0)

· k̃1 +
∂HDSR

1

∂k̃

∣∣∣∣
(ex0,ek0)

, x̃1(0) = 0,

dk̃1

dz
= −

∂2HDSR
0

∂x̃∂x̃

∣∣∣∣
(ex0,ek0)

· x̃1 −
∂2HDSR

0

∂x̃∂k̃

∣∣∣∣
(ex0,ek0)

· k̃1 −
∂HDSR

1

∂x̃

∣∣∣∣
(ex0,ek0)

, k̃1(0) = 0,

writing x̃1 = (x1s,x1r, t1) and k̃1 = (k1s,k1r,ω).

On the unperturbed DSR bicharacteristics, HDSR
0 = 0, while (x̃1, k̃1) satisfy the constraint,

(4.9)
∂HDSR

0

∂x̃
· x̃1 +

∂HDSR
0

∂k̃
· k̃1 + HDSR

0 = 0.
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4.2. Geometry of the angle transform and perturbation of kγm

p . The DSR assumption,
stating that rays are nowhere horizontal, implies that (two-way) travel time t depends monotoni-
cally on depth z. In the unperturbed (zero-order) situation, the geometry of the angle transform
is recovered in the following manner. Given the initial values, Γ0, equation (4.8) is solved yield-
ing (x0s(z,Γ0),x0r(z,Γ0), t0(z,Γ0) and (k0s(z,Γ0),k0r(z,Γ0),ω). Then, z0 is determined by the
constraint,

(4.10) ω−1 〈 1
2 (k0s(z0,Γ0) − k0r(z0,Γ0)),x0r(z0,Γ0) − x0s(z0,Γ0)〉 = t0(z0,Γ0),

see [6] for details. Substituting this z0, we obtain

(4.11)
x0 = 1

2 (x0s + x0r) , k0x = k0s + k0r,

p0 = 1
2ω

(k0s − k0r) , k0p = ω(x0r − x0s)

giving a map from Γ0 to (x0,p0, z0,k0z,k0p, k0z) with k0z = Θ(z0,x0s,x0r,k0s,k0r,ω). Here Θ :
ω → kz, for given (z,xs,xr,ks,kr), solves the equation,

(4.12) HDSR(z,xs,xr,Θ(z,xs,xr,ks,kr,ω),ks,kr,ω) = 0

[20, Lemma 4.1]; this mapping has an inverse, Θ−1 : kz → ω.
Upon perturbing the DSR rays, equation (4.10) is satisfied by z0 + ǫz1 + . . . replacing z0, with

(4.13) z1 =
〈 1
2 (k1s − k1r),x0r − x0s〉 + 〈 1

2 (k0s − k0r),x1r − x1s〉

ωv1t − [〈 1
2 (v2s − v2r),x0r − x0s〉 + 〈 1

2 (k0s − k0r),v1r − v1s〉]

all evaluated at (z0,Γ0). We then expand kp = k0p + ǫk1p + . . ., with

(4.14) k1p = ω [x1r(z0,Γ0) + z1 v1r(z0,Γ0) − x1s(z0,Γ0) − z1 v1s(z0,Γ0)].

This equation provides the Fréchet derivative of kp with respect to a model perturbation of “strength”
ǫ. Through the presence of x1s, x1r, and also of k1s, k1r, we note the relation with the geodesic
X-ray transform for transmission tomography.

In the application, we estimate (x0,p0, z0,k0z,k0p, k0z) from the CIGs, but using the geometry
of the angle transform, these provide Γ0.
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[7] A.A. Duchkov, M.V. De Hoop, and A. Sá Barreto, Evolution-equation approach to seismic image, and

data, continuation, Wave Motion, 45 (2008), pp. 952–969.
[8] V. Farra, Computation of second-order traveltime perturbation by hamiltonian ray theory, Geophys. J. Int.,

136 (1999), pp. 205–217.
[9] S. Fomel, Velocity continuation and the anatomy of residual prestack time migration, Geophysics, 68 (2003),

pp. 1650–1661.
[10] S.V. Goldin, Geometric fundamentals of seismic imaging: A geometric theory of the upper level, in Amplitude-

preserving seismic reflection imaging, London, 1998, Proceedings of the Workshop, Geophysical Press,
pp. 120–223.



MVA WITH WAVE PACKETS 163

[11] , Geometrical fundamentals of seismic imaging: realization of contact mappings, Sib. Journ. Num. Math.,
6(4) (2003), pp. 323–345.

[12] F. Herrmann, G. Hennenfent, and P. Moghaddam, Seismic imaging and processing with curvelets, Extended
Abstracts, EAGE 69th Annual Meeting, (2007).

[13] B. Hua and G. A. McMechan, Parsimonious 2D prestack Kirchhoff depth migration, Geophysics, 68 (2003),
pp. 1043–1051.

[14] E. Iversen and H. Gjostdal, Event-oriented velocity estimation based on prestack data in time or depth
domain, Geoph. Prosp., 44 (1996), pp. 643–686.

[15] I. Loris, G. Nolet, I. Daubechies, and F.A. Dahlen, Tomographic inversion using ℓ1-norm regularization
of wavelet coefficients, Geophys. J. Int., 170 (2007), pp. 359–370.

[16] P.C. Sava and B. Biondi, Wave-equation migration velocity analysis –I: Theory, Geophysical Prospecting, 52
(2004), pp. 593–606.

[17] P.C. Sava and S. Fomel, Time-shift imaging condition in seismic migration, Geophysics, 71(6) (2006),
pp. S209–S217.

[18] H.F. Smith, A Hardy space for Fourier integral operators, Jour. Geom. Anal., 8 (1998), pp. 629–654.
[19] C.C. Stolk and M.V. De Hoop, Seismic inverse scattering in the ‘wave-equation’ approach, MSRI preprint,

#2001–047 (2001).
[20] , Modeling of seismic data in the downward continuation approach, SIAM J. Appl. Math., 65 (2005),

pp. 1388–1406.
[21] , Seismic inverse scattering in the downward continuation approach, Wave Motion, 43 (2006), pp. 579–

598.
[22] W.W. Symes and J. Carazzone, Velocity inversion by differential semblance optimization, Geophysics, 56

(1991), pp. 654–663.
[23] X.B. Xie and H. Yang, The finite-frequency sensitivity kernel for migration residual moveout and its applica-

tions in migration velocity analysis, Geophysics, 73(6) (2008), pp. S241–S249.


