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SEISMIC INVERSE SCATTERING VIA DISCRETE HELMHOLTZ OPERATOR
FACTORIZATION AND OPTIMIZATION∗

SHEN WANG† , MAARTEN V. DE HOOP‡ , AND JIANLIN XIA§

Abstract. We present a joint seismic inverse scattering and finite-frequency (reflection) tomography program,
formulated as a coupled set of optimization problems, in terms of inhomogeneous Helmholtz equations. We use a higher
order finite difference scheme for these Helmholtz equations to guarantee sufficient accuracy. We adapt a structured
approximate direct solver for the relevant systems of algebraic equations, which addresses storage requirements
through compression, to yield a complexity for computing the gradients or images in the optimization problems
that consists of two parts, viz., the cost for all the matrix factorizations which is O(rN log N) times the number of
frequencies, and the cost for all solutions by substitution which is O(N log(r log N)) times the number of frequencies
times the number of sources (events), where N = nd if n is the number of grid samples in any direction, and r is a
parameter depending on the preset accuracy and the problem at hand. With this complexity, the multi-frequency
approach to inverse scattering and finite-frequency tomography becomes computationally feasible with large data
sets, in dimensions d = 2 and 3.
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1. Introduction. Computational “full-wave” seismic inverse scattering and reflection tomog-
raphy are driven by solving the wave equation in large subdomains of R

d, d = 2, 3, representing
Earth’s subsurface, while accounting for the broad bandwidth of the available data. Following a
multi-frequency approach, the wave equation is transformed to the Helmholtz equation. Compu-
tationally, upon discretization, solving the Helmholtz equation amounts to solving a large linear
system of algebraic equations. This has to be repeated for a significant number of frequencies (in
the mentioned bandwidth) as well as for a large number of different right-hand sides corresponding
with the large number of sources generating a seismic data set. Current seismic data sets consist
of observations of the wave fields in large arrays of receivers at Earth’s surface generated by a large
number of sources indeed. The multi-frequency approach, in the context of seismic imaging, was
already discussed by Marfurt [1].

The nature of the multi-frequency formulation of the inverse scattering and reflection tomog-
raphy problem leads one to explore the use of the LU decomposition or factorization (once per
frequency) of the coefficient matrix defining the above mentioned linear system of algebraic equa-
tions and a direct solver. However, the system is so large in applications (in particular, in dimension
d = 3) that the associated memory requirements become unsurmountable. Here, we introduce an
alternative approach based on the structured approximate direct solver in [2], which addresses the
memory requirements through compression.

For different frequencies, the coefficient matrices representing the linear systems share the same
nonzero pattern. Thus, an efficient sparse direct solver remains a natural choice for the inverse
problem at hand. Sparse direct solvers commonly involve four stages: mesh ordering, symbolic
factorization, numerical factorization, and system solution. For all the systems that need to be
solved, the mesh ordering and symbolic factorization stages need to be carried out only once. For
each frequency, one numerical factorization is needed. However, sparse direct solvers are often
considered expensive due to the problem of “fill-in”. That is, even if the original matrix is sparse,
the factorization generally introduces many new nonzero entries into the factors. Moreover, the
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accuracy of traditional direct solvers is generally not explicitly controllable. Also, methods used as
preconditioners such as incomplete factorizations often suffer from the problem of “breakdown”.

The structured approximate direct method in [2] is a black-box solver based on structured
approximations of dense fill-in in the direct factorization of the coefficient matrix. The accuracy is
controllable. A robustness strategy is used to avoid breakdown. The full integration of sparse matrix
graphical techniques and structured matrix computations makes the method efficient. The cost for
the factorization is only O(rN log N), where N is the matrix size and r is a parameter depending
on the preset accuracy and the problem at hand. The storage is O(N log(r log N)).

The solver uses a supernodal multifrontal method with nested dissection ordering of the mesh
nodes. It has been observed that in the factorization of some discretized problems, the off-diagonal
blocks of these dense matrices have small numerical ranks because the Green’s functions of these
problems are smooth away from the “diagonal” singularity. For problems such as the one defined by a
discrete Helmholtz equation, the off-diagonal numerical ranks may not be small enough. However, [3]
and [2] show that the method in [2] can still be satisfactory if only modest accuracy is needed. Dense
intermediate matrices are factorized into data-sparse semiseparable matrices. Operations of compact
semiseparable matrices are usually fast, such as linear complexity matrix multiplications and system
solutions. Fast operations for semiseparable matrices lead to the efficiency of the structured sparse
solver exploited here.

Various alternative strategies to solving the discrete Helmholtz equation have been introduced
in the past few years. We mention the Krylov-based iterative solvers with preconditioners (Elman
et al. [4], Plessix and Mulder [5], Erlangga et al. [6, 7] and Riyanti et al. [8]). Operto et al. [9]
discuss a (massively parallel) direct solver based on domain decomposition (Larsson [10]).

We integrate our discrete Helmholtz equation solver with the optimization formulations of “full-
wave” seismic inverse scattering and reflection tomography through the adjoint state method (Sec-
tion 2). The gradient computation coincides with imaging. In the case of inverse scattering, such a
formulation, based on a least-squares misfit, can be found in Lailly [11] and Tarantola [12], while a
computational realization using the Helmholtz equation can be found in Mulder and Plessix [13]. We
further mention the work of Kühl and Sacchi [14] on least-squares wave-equation migration. Multi-
frequency waveform tomography has been developed, also, using a least-squares misfit (see Pratt
[15] and Operto et al. [16]). Here, we follow an approach to reflection tomography reminiscent of the
one based on annihilators of the data (see Stolk and De Hoop [17]). One class of such annihilators
can be constructed from the so-called angle transform in the “downward continuation” approach
(derived using a wavefield splitting technique) to seismic imaging; the corresponding adjoint states
equations can be found in De Hoop et al. [18]. Under certain conditions, another class of annihila-
tors can be constructed reflecting data redundancy in the source coordinates, following an approach
known as “reverse time migration”. As in Xie and Yang [19], we use this redundancy in combination
with the notion of image continuation [20] to arrive at a misfit criterion and optimization scheme
for wave-equation reflection tomography.

In Section 3 we give the discretization of the Helmholtz operator. In Section 4 we discuss the
structured approximate direct solver tailored to the discrete Helmholtz equation. We present some
comparisons with the direct LU, multilevel Krylov-multigrid and multifrontal methods in terms
of computational complexity and storage requirements. The overall complexity for solving all the
instances of the discrete Helmholtz equations in our problem has two parts, viz., the cost for all
the matrix factorizations which is O(rN log N) times the number of frequencies, and the cost for
all solutions by substitution which is O(N log(r log N)) times the number of frequencies times the
number of sources. In Section 5 we present the computational performance of our method through
a numerical example (d = 2) with a model containing a smoothed, low wavespeed lens leading to
the formation of caustics and a flat discontinuity. We give some conclusions in Section 6. How to
connect the inverse scattering program developed here to a multi-scale approach, see Wang et al.

[21], and Brytik et al. [22] concerning the tomographic aspects.
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2. Inverse scattering program. The causal acoustic-wave Green’s function G(x, t; xs) for a
point source at x = xs is the solution of

(2.1) [c(x)−2∂2
t − ∆] G(x, t; xs) = δ(t)δ(x − xs),

with G = 0, t < 0. Here, c = c(x) is the wavespeed of the medium. The partial differential equation
is considered on a set X ⊂ R

d (d ≥ 2). Upon applying the Fourier transform, with

Ĝ(x, ω;xs) =

∫
G(x, t; xs) exp(−iωt) dt,

we obtain the corresponding Helmholtz equation,

(2.2) [∆ + ω2c(x)−2] Ĝ(x,ω;xs) = −δ(x − xs),

with the Sommerfeld radiation condition

R

[
∂Ĝ

∂R
+

iω

c
Ĝ

]
→ 0 as R → ∞, R = |x|.

In the following subsections, the inverse scattering scheme is described in terms of the associated
Helmholtz operator.

2.1. Linearized modelling. In the development of seismic scattering, imaging and inverse
scattering theory, it is common practice to invoke the Born or single scattering approximation. We
introduce r(x) = δc(x)/c(x), a relative perturbation of the wavespeed. Linearization of the wave
equation yields for the corresponding perturbation of the Green’s function,

(2.3) [∆ + ω2c(x)−2] δĜ(x,ω;xs) = 2ω2c(x)−2r(x) Ĝ(x, ω;xs),

using the solution of (2.2) in the right-hand side. It is, here, assumed that c = c(x) is a smooth
function, while r = r(x) is of low regularity.

Frequency-domain seismic data, d̂(xs, xr,ω) say, are modelled as δĜ(x,ω;xs), by solving (2.3)
after solving (2.2), upon restricting x to points xr ∈ Σr and xs to Σs with Σs,Σr ⊂ ∂X. Moreover,
the data are measured in a finite frequency bandwidth, ω ∈ Ω = [ω1,ω2] with 0 < ω1 < ω2, only.

This then defines a so-called single-scattering operator, F̂ = F̂ [c] : r(x) → δĜ(xr,ω;xs), mapping
subsurface reflectors to surface reflections. In the further development, we will assume that X is a
rectangular domain, and that Σs,Σr are subsets of its “top” side, representing part of the earth’s
surface; also, we will asume that the dimension of Σr is d − 1. The results presented here are
straightforwardly extended to more generally shaped domains and boundaries upon introducing
curvilinear coordinates, as in Stolk et al. [23].

In the seismic inverse problem, the objective is to reconstruct c (referred to as the background)
and r (referred to as the reflectivity) from the data, d. The imaging and reconstruction of r is
referred to as the inverse scattering problem, while the imaging and reconstruction of c is referred
to as the (wave-equation) reflection tomography problem. In the next subsections, we summarize
the optimization formulations of these problems in terms of adjoint states equations.

2.2. Imaging of the (relative) contrast: Optimization and gradient. Inverse scattering
has been formulated as an optimization problem, that is,

〈r〉 = arg min 1

2
‖d̂ − F̂ [c]r‖2

Σs×Σr×Ω
,

where 〈r〉 is the estimate of r. The gradient of the underlying mismatch criterion is the image,

I = F̂ [c]∗d̂, given by
(2.4)

I(x) =

∫

Σs

1

2π

∫
ŵs(x, ω;xs) û∗(x, ω;xs) dω dxs =

∫

Σs

Re
1

π

∫

Ω

ŵs(x, ω;xs) û∗(x, ω;xs) dω dxs,
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and obtained by solving

(2.5) [∆ + ω2c(x)−2] ŵs(x,ω;xs) = −δ(x − xs),

referred to as “pde”, and

(2.6) [∆ + ω2c(x)−2] û∗(x,ω;xs) = ω2

∫

Σr

d̂(xs, xr,ω) δ(x − xr) dxr,

referred to as “pde∗” in the diagram,

(2.7) data
ց

pde
ց
ր

pde∗

→ image

summarizing the data-field flow in the gradient computation for each source. The integration over
frequency in (2.4) signifies the imaging condition, that is, a cross correlation in time, see Taran-
tola [12] and others.

We introduce the kernel, K = K(x;xs, xr, t), of the imaging operator, F [c]∗, that is,

(2.8) I(x) =

∫

Σs

∫

Σr

∫
K(x;xs, xr, t) d(xs, xr, t) dtdxrdxs

=

∫

Σs

∫

Σr

1

2π

∫
K̂(x;xs, xr,ω) d̂(xs, xr,ω) dωdxrdxs.

This kernel integral representation expresses that each data sample, at (xs0, xr0, t0) say, is being
“smeared” over the support of K(x;xs0, xr0, t0) viewed as a function of x. Accounting for the data
frequency bandwidth, this function is referred to as the finite-frequency isochron corresponding with
(xs0, xr0, t0). It is computed by solving

[∆ + ω2c(x)−2] ŵs(x,ω;xs0) = −δ(x − xs0),

[∆ + ω2c(x)−2] û∗(x,ω;xs0) = ω2 exp(−iωt0)δ(x − xr0),

followed by the cross correlation, Re 1

π

∫
Ω

ŵs(x, ω;xs0) û∗(x,ω;xs0) dω, cf. (2.4).

We briefly mention that the action of the normal operator F [c]∗F [c] on r, is obtained by sub-

stituting the restricted solution δĜ(xr,ω;xs) of (2.3) for d̂(xs, xr,ω) in (2.6). Essentially, the op-
timization results in compensating the image for this normal operator, while requiring that the
so-called Bolker condition is satisfied [17, p.**].

The imaging described by (2.4)-(2.6) is a multi-source, multi-frequency operation. Upon invok-
ing standard quadratures, and an FFT for the (inverse) Fourier transform, we obtain a discretization
with ns sources, nω frequencies and nr receivers. In the next section, we will introduce the dis-
cretization of the Helmholtz operator, on a box of O(nd) samples; we have nr ≈ nd−1. For seismic
data sets, ns, nr and nω are large. To generate an image, or inverse scattering gradient, one has
to solve a couple of Helmholtz equations ns · nω times. This motivates the factorization of the
(discretized) Helmholtz operator common to all sources, thus leading to fast solvers once the fac-
torization is completed. We will develop and analyze the performance of such a solution method
for frequency-domain imaging and inverse scattering in dimension d = 2, and compare it with the
performance of iterative methods with preconditioners (such as the one developed by Erlangga et

al. [7]), in Sections 4 and 5 of this paper.
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2.3. Single-source inverse scattering transform. If the incident field (ws in (2.5)) does not
form caustics, it is possible to generate an (artifact-free) image using a single source (see Nolan and
Symes [24]), with Σs = {xs0} say. By incorporating judiciously chosen operators in the right-hand
side of the adjoint equation (cf. (2.6)) and the imaging integral (cf. (2.4)), the imaging operator
(F [c]∗) can be turned into an inverse scattering transform thus bypassing the optimization. We
summarize this transform for dimension d = 2, see Levy and Esmersoy [25]: Let n denote the
outward normal to ∂X. The adjoint equation becomes

(2.9) [∆ + ω2c(x)−2] û∗(x, ω;xs0) = −

∫

Σr

d̂(xs0, xr,ω) 2n(xr) ·∇δ(x − xr) dxr.

The imaging integral is adjusted according to

(2.10) Is0(x) =
1

|Ω|−1

∫

Ω

|ŵs(x,ω′;xs0)|
2dω′

Re
1

π

∫

Ω

2i

ω3

[
ω2c(x)−2ŵs(x, ω;xs0) û∗(x, ω;xs0) + (∇ ŵs(x, ω;xs0)) · (∇ û∗(x, ω;xs0))

]
dω,

which becomes, locally, a direct estimate, 〈r(x)〉, of r(x), that is, where there is illumination. The
general development and analysis of the “common-source” class of inverse scattering transforms,
and their relation to interferometry, can be found in Stolk et al. [26].

2.4. Imaging of the background: Optimization and gradient. We consider the imaging
of common-source data and assume that the incident field does not form caustics as before:

Is0(x) =
1

2π

∫
ŵs(x, ω;xs0) û∗(x,ω;xs0) dω,

cf. (2.4). We develop a method for wave-equation reflection from the continuation [20] of this image
at a point x0 under a smooth perturbation, δc, of c, which is described by a complex phase multiplier
exp[i δΦ(x0,ω;xs0)] applied to ŵs(x0,ω;xs0) û∗(x0,ω;xs0) evaluated in the original background. Let
δφ(x0,ω;xs0) = Re δΦ(x0,ω;xs0). We follow Xie and Yang [19] and apply the Rytov approximation,
when

(2.11) δφ(x0,ω;xs0) = Im

{
δŵs(x0,ω;xs0)

ŵs(x0,ω;xs0)
+

δû∗(x0,ω;xs0)

û∗(x0,ω;xs0)

}
.

Here, δŵs(x0,ω;xs0) satisfies

[∆ + ω2c(x)−2] δŵs(x, ω;xs0) = 2ω2c(x)−2 δc(x)

c(x)
ŵs(x,ω;xs0),

cf. (2.3) and (2.5), while δû∗(x0,ω;xs0) satisfies

[∆ + ω2c(x)−2] δû∗(x, ω;xs0) = 2ω2c(x)−2 δc(x)

c(x)
û∗(x, ω;xs0),

cf. (2.3) and (2.6). We identify ŵs(x,ω;xs) with Ĝ(x,ω;xs) and note that the oscillatory integral

representations of û∗(x,ω;xs0) and δĜ(x,ω;xs0) (non-smooth perturbation r) share the same phase
function [26, Section 3].

Upon dividing the phase perturbation by frequency, we identify the source-field and scattered-
field finite-frequency traveltime functions:

(2.12)

∫
1

ω
δφ(x0,ω;xs0) dω = δtws

(x0;xs0) + δtu∗(x0;xs0),
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where

(2.13) δtws
(x0;xs0) =

∫
1

ω
Im

{
δŵs(x0,ω;xs0)

ŵs(x0,ω;xs0)

}
dω =

∫

X

Ks(x0, x
′;xs0)

δc(x′)

c(x′)
dx′

and

(2.14) δtu∗(x0;xs0) =

∫
1

ω
Im

{
δû∗(x0,ω;xs0)

û∗(x0,ω;xs0)

}
dω =

∫

X

K∗(x0, x
′;xs0)

δc(x′)

c(x′)
dx′,

in which

(2.15) Ks(x0, x
′;xs0) =

∫
1

ω
Im

{
2ω2c(x′)−2 Ĝ(x0,ω;x′) ŵs(x′,ω;xs0)

ŵs(x0,ω;xs0)

}
dω

and

(2.16) K∗(x0, x
′;xs0) =

∫
1

ω
Im

{
2ω2c(x′)−2 Ĝ(x0,ω;x′) û∗(x′,ω;xs0)

û∗(x0,ω;xs0)

}
dω.

We let the kernel Ks define the integral operator Hs and the kernel K∗ define the integral operator
H∗.

The natural formulation of the optimization problem for wave-equation reflection tomography
follows to be

〈δc〉 = arg min 1

2

∥∥∥∥
∫

1

ω
δφ(.,ω;xs0) dω −

(
H

δc

c

)
(.;xs0)

∥∥∥∥
2

X0

, H = Hs + H∗.

Here, X0 ⊂ X denotes the part of X illuminated by the data. The quantity 1

ω
δφ(.,ω;xs0) (“data”)

is to be measured by intercepting the imaging process for inverse scattering. The phase perturbation
criterion used here also appears in wave-equation transmission tomography, see Zhao et al. [27]; for
an analysis of the relevant integral operator kernel, see De Hoop and Van der Hilst [28]. The
gradient of the mismatch criterion is the composite tomographic image, I = Is + I∗, with Is =
H∗

s

∫
1

ω
δφ(.,ω;xs0) dω and I∗ = H∗

∗

∫
1

ω
δφ(.,ω;xs0) dω. We have

(2.17) Is(x) =

∫
Im 2ωc(x)−2ŵs(x, ω;xs0) Û∗

s (x,ω;xs0) dω,

obtained by solving (2.5), referred to as “pde” as before, and

(2.18) [∆ + ω2c(x)−2] Û∗

s (x,ω;xs0) = −
1

ŵs(x,ω;xs0)

∫
1

ω′
δφ(x,ω′;xs0) dω′,

referred to as “pde∗” in the diagram,

(2.19) “data”
ց

pde

↓ source
ց
ր

pde∗

→ image

We note the difference in data-field flow between this diagram for reflection tomography and the
diagram in (2.7) for inverse scattering. Similar adjoint states equations appear in the work of Liu
and Tromp [29]. Likewise,

(2.20) I∗(x) =

∫
Im 2ωc(x)−2û∗(x, ω;xs0) Û∗

∗
(x,ω;xs0) dω,
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obtained by solving (2.6) and

(2.21) [∆ + ω2c(x)−2] Û∗

∗
(x,ω;xs0) = −

1

û∗(x, ω;xs0)

∫
1

ω′
δφ(x, ω′;xs0) dω′.

The kernel, Ks(x0, x;xs0) + K∗(x0, x;xs0), viewed as a function of x for x0 fixed (expressing how a
unit “data” sample at x0 contributes to the tomographic image) is computed following this scheme,
upon replacing (2.21) by

[∆ + ω2c(x)−2] Û∗

∗
(x,ω;xs0) = −

1

û∗(x0,ω;xs0)
δ(x − x0).

In the actual inverse problem, one does not have access to the quantity δφ(x0,ω;xs1), since the true
background is unknown. To overcome this, we exploit that two disctinct sources should yield the
same image. Thus we consider the relative phase perturbation,

arg

{
ŵs(x0,ω;xs1) û∗(x0,ω;xs1)

ŵs(x0,ω;xs0) û∗(x0,ω;xs0)

}
= δφ(x0,ω;xs1) − δφ(x0,ω;xs0),

the left-hand side signifying a deconvolution, while still using the kernels derived above. The real
part of the relative phase perturbation yields a finite-frequency measure of so-called residual moveout
in image gathers parametrized by source coordinates.

3. Discretization of the Helmholtz equation. Here, we discuss an approximation of the
Helmholtz equation based on a centered compact finite-difference discretization. We treat its dif-
ferent appearances in the previous section jointly by considering a general right-hand side, that
is,

(3.1) [−∆ − ω2c(x)−2] û(x, ω) = ŝ(x,ω),

while restricting the computations to the finite domain, X, introduced before. Thus, the original
unbounded domain has been truncated, whence the outgoing Sommerfeld radiation condition has
to be appproximated at ∂X. Though the perfect matched layer (PML) approach (see, for example,
[30, 31]) could be applied, we choose, here, to use an absorbing boundary condition (ABC, see [32])
on ∂X. We take the second-order one:

(3.2) n ·∇û = −ikû −
i

2k
∆τ û on ∂X,

with k(ω) = ωc(x)−1 the wavenumber, n the outward normal direction to the boundary, and τ

representing the boundary components of boundary normal coordinates. For the corners of the
domain, we implement a specific corner boundary condition:

(3.3)

d∑

i=1

∂û

∂ni

= −ikû
(
d − 1

2

)
, d = 2, 3.

A centered compact finite-difference discretization with a 2J order scheme gives:

(3.4)

J∑

j=1

[
cd,J
1,j

h2
(ûi1−j,i2,...,id

+ ûi1+j,i2,...,id
) + . . . +

cd,J
d,j

h2
(ûi1,i2,...,id−j + ûi1,i2,...,id+j)

]

+

(
cJ

h2
−

ω2

c2
i1,i2,...,id

)
ûi1,i2,...,id

= ŝi1,i2,...,id
,
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where h is the grid stepsize, 2J is the discretization order, and cd,J
k,j (k = 1, 2, . . . , d) and cJ are the

coefficients of the scheme, which is displayed in Figure 1 in terms of stencils. To guarantee sufficient
accuracy required in seismic imaging with typical wavefield sampling, we use a nine point, fourth
(J = 2) order, finite difference scheme ([33, 34]) to discretize (3.1)-(3.3). Figure 1(a) shows the nine
point stencil that we use to discretize the Laplace operator (−∆). The Helmholtz operator adds
another, variable, wavenumber term to the Laplacian (−∆−ω2c(x)−2). (Since this term is variable,
the use of the classical, for d = 2, nine point stencil the grid points of which are distributed over a
3 × 3 square, does not provide the desired fourth order accuracy.)

1660
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1

11 16

16

16

1

1

 6

 4

40

11

11  6  4

3

350 36  16 48

 48

36

 16

(a) (b) (c)

Fig. 1. Fourth-order nine point stencils for d = 2; (a) inner gid point stencil, (b) a near-boundary point stencil,
and (c) a corner point stencil.

The fourth order finite difference scheme described above, leads to the linear system of equations,

(3.5) A(ω)u = s,

where A(ω) is a sparse complex matrix depending on the frequency, s denotes the vector of samples
ûi1,i2,...,id

of the source ŝ, and u denotes the vector of samples ûi1,i2,...,id
of û. Although the original

Helmholtz operator is self adjoint, in view of the absorbing boundary conditions, the A(ω) is neither
Hermitian nor positive definite.

For each fixed ω, the system needs to be solved for multiple right-hand sides, s. For different
ω, the matrix A(ω) maintains the same nonzero pattern. Thus, a robust and efficient direct fac-
torization of A(ω) can be attractive. A direct method typically involves four stages [35, 36]: Node
ordering, symbolic factorization, numerical factorization, and solution. The first and second stages
only need to be done once for all frequencies, sources, and receivers. The third stage needs to be
done once for each frequency. However, direct solvers are often considered expensive because of the
problems of fill-in or loss of sparsity.

Here, we use a recently developed robust approximate structured factorization method [2, 3, 37].
The main idea of the solver is to fully integrate graphical sparse matrix techniques, structured ma-
trix compressions, and robust enhancements. The dense fill-in will be approximated by structured
matrices and are thus data sparse. Dense off-diagonal blocks are compressed in the direct factor-
ization of the matrix. These compressions improve both the efficiency and the robustness. The
approximate factorization can be carried out to any specified accuracy. Moreover, the factorization
appears to be relatively insensitive to frequency, or wavelength, in various test problems using the
elasticity, Helmholtz, and Maxwell equations [2, 3].

Since the robust structured solver in [2] is designed for symmetric, positive definite matrices,
we consider the following normal system for (3.5):

(3.6) M(ω)u = b,

where M(ω) = A(ω)HA(ω) and b = A(ω)Hs. Matrix A(ω) is sparse, and it is not expensive to form
(3.6). It is well known that, in Helmholtz equation problems, the condition number of this M(ω)





118 S. WANG, M. V. DE HOOP, AND J. XIA

4.2. Supernodal multifrontal method. The factorization of M is organized by the multi-
frontal method [40, 41]. The basic idea of the method is to reorganize the overall factorization of
a large sparse matrix into partial updates and factorizations of small dense matrices. The method
eliminates variables and accumulates updates according to an elimination tree [42, 43, 44, 45] where
each variable (or matrix row or column) corresponds to a node in the elimination tree.

Here we use a supernodal version, that is, each separator in nested dissection is treated as a
supernode in the elimination tree. See Figure 4 for an example. Variables are eliminated along the
postordering of the elimination tree. Information from a child tree node is passed to its parent only.
Two types of matrices are considered in the multifrontal method: update matrices, corresponding
to the information contributed to parents, and frontal matrices, corresponding to the collection of
information of nodes themselves and related upper level nodes. Update matrices from children are
assembled into frontal matrices with an operation called extend-add, which aligns indices, expands
matrices, and adds entries.

1 2 4 5 8 9 11 12

3 6 10 13

7

15

Level

0

1

2

3

14

Fig. 4. Elimination tree for the third graph in Figure 2.

The multifrontal method has been widely used in numerical methods for partial differential
equations, optimization, fluid dynamics, and other areas. It takes good advantage of dense block
matrix operations in factorizing sparse problems, and is also good for parallelization.

4.3. Rank property and robust structured factorization. It has been shown that during
the factorization of the discretized matrices arising from some problems such as elliptic partial
differential equations, the off-diagonal of certain Schur complements have bounded numerical ranks

independent of mesh sizes [46, 47, 48]. (A numerical rank is the number of singular values greater
than a given absolute tolerance or a relative tolerance times the largest singular value.) The Green’s
functions for these problems are smooth away from the diagonal singularity. In the factorization of
M, we notice that the frontal and update matrices in the supernodal multifrontal method also have
relatively small off-diagonal numerical ranks. This means, the dense frontal and update matrices
are compressible. Thus, the method in [2] forms each dense frontal matrix first and then partially
factorize it. The leading block is directly factorized into triangular structured factors. The Schur
complement remains dense and is used to form the upper level frontal matrix. The solver can still
perform well even if the off-diagonal numerical ranks are not extremely small. See [2, 3] for some
numerical examples.

The solver in [2] integrates a robustness technique using an implicit Schur compensation. Dur-
ing this factorization, off-diagonal blocks are compressed to increase efficiency. In the meantime,
the Schur complements are automatically compensated with the information dropped in the com-
pression. No extra cost or stablization step is needed.

The structured matrices used in the solver are called hierarchically semiseparable (HSS) matrices
[49, 50, 51]. Figure 5 shows an example. An off-diagonal block of an HSS structure is defined to be a
block row (column) excluding the diagonal block. Off-diagonal blocks are defined recursively for all
levels of the partition of the matrix. These off-diagonal blocks are compressed and the compressed
representations actually appear in the HSS representation. If the maximum numerical rank of the
off-diagonal blocks at all levels is small as compared with the matrix size, we say the matrix has
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4.4. Efficiency, robustness, and frequency insensitivity. The algorithm in [2] works as a
black-box solver. It costs O(rN log N) flops to approximately factorize M, where r is the maximum
numerical rank in all off-diagonal block compressions. The storage requirement is O(N log(r log N)).
The cost for solving (3.6) using the approximate factor is O(N log(r log N)) flops. The parameter
r depends on the tolerance and is relatively small as compared to N especially when only modest
accuracy is desired. Thus, the storage and solution cost are nearly linear in N .

Due to the robustness technique, the approximate factorization LLT is guaranteed to exist for
any tolerance. LLT has enhanced positive definiteness and no breakdown will occur like in many
other approximate or incomplete factorizations.

Unlike methods such as multigrid where coarse mesh information is used to approximate fine
meshes, this structured factorization uses a reasonable amount of information at all mesh points
to approximate the exact matrix. Our numerical tests indicate that the factorization is relatively
insensitive to a large range of frequencies, which is different from many other algorithms that are
not numerically stable in high frequencies. Table 4.2 shows the complexity and storage for solving
(3.6) with different ω for a fixed mesh.

ω

2π
5 10 20 30 40

Factorization cost (×1011 flops) 2.931 2.957 3.305 3.146 3.290
Solution (×109 flops) 1.468 1.511 1.625 1.766 1.922

Storage (×109) 2.583 2.719 3.081 3.528 4.038
Table 4.2

Statistics of solving (3.6) on a 1001×551 mesh with different frequencies (from the lens model example described
in Subsection 5.4) which shows the frequency insensitivity of the structured solver in [2].

5. Numerical tests.

5.1. Algorithm summary. We use the approximate factorization algorithm in [2] to directly
solve (3.6) for different frequencies, sources, and receivers. The overall procedure is as follows, in
contrast with the standard sparse direct solution process.

1. Node ordering. Use nested dissection to order mesh points. Organize mesh points into
separators. This is done once for all ω.

2. Symbolic factorization. Predict fill-in and storage for HSS matrices based on numerical rank
estimation with given tolerances. Decide optimal total factorization levels and structured
factorization levels. When only modest accuracy is desired, this also only needs to be done
once for all ω.

3. Numerical factorization. For each ω, factorize M once. Separators are eliminated with
the supernodal multifrontal method. Each current separator is eliminated, or dense frontal
matrices are partially factorized into HSS factors. Schur complements or update matrices
are formed. Structured factors are generated following the elimination tree.

4. System solution. Use the structured factors to solve systems with different s. Traverse the
elimination tree to solve the overall system. Solve intermediate structured systems with
triangular HSS solvers.

Since the complexity for the solution step is almost linear in N , we can also include few steps
of iterative refinements or CG iterations to further improve the solution.

Based on the cost of the structured solver in the previous section, we have the complexity
for solving all the systems as shown in Table 5.1. For comparison, we also included the cost for
the classical multifrontal direct factorization with nested dissection whose cost is optimal for exact
factorizations for 2D problems. The structured approximate solver with modest accuracy is generally
much faster than both the classical direct factorization and MKMG.

5.2. Accuracy tests. In this subsection, we verify that our discretization scheme does achieve
a fourth-order accuracy. We conducted our test in a 1000m ×1000m homogeneous medium with
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Fig. 11. Original model, containing a low velocity lens (background) and a horizontal reflector (constrast) at a
depth of 2km. The model is sampled on a Cartesian grid with a 5m stepsize.

Fig. 12. Snapshot (early time) of an incident wavefield using the model illustrated in Figure 11; the location of
the source is indicated by the solid triangle. The frequency bandwidth is 5 − 40Hz.

Fig. 13. Snapshot (later time) of the linearized scattered field using the model illustrated in Figure 11; the
location of the source is indicated by the solid triangle. The frequency bandwidth is 5 − 40Hz.
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Fig. 14. Image of the reflector in Figure 11, or inverse scattering gradient, using all the data (multi-source
adjoint states computation.)

Fig. 15. Top: Single source image (adjoint states computation using common source data), or inverse scattering
gradient, with xs0 = (−1.98, 0)km indicated by the solid triangle. Bottom left: Single source reconstruction; we note
the reduction of limited illumination effects. Bottom right: Reconstructed (left) and imaged (right) regularizations of
r below the surface location x = (−0.1, 0)km, with the source at xs0 = (−1.98, 0)km; we note that the reconstruction
is close zero phase. The incident field does not develop caustics.
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Fig. 16. Single source image (adjoint states computation using common source data), or inverse scattering
gradient, with xs0 = (0, 0)km indicated by the solid triangle. The incident field develops caustics, and, hence, the
image contains artifacts.

The inverse scattering transform yields a direct estimate of r in Figure 15 bottom, using the sin-
gle source data used to generate the image of r in Figure 15 top. We show the functions representing
the reconstructed and imaged regularizations of r below a central surface location.

The anatomy of the inverse scattering gradient is best illustrated by the associated finite fre-
quency isochrons. We choose three different data points, all asymptotically corresponding with
reflections off the flat discontinuity in the original model, see Figures 17-19; for comparison, we also
plot the singular supports derived from (high frequency) asymptotic considerations. The image of
the discontinuity follows the envelope of such isochrons.

Finally, we illustrate the gradient for wave-equation reflection tomography (final iteration),
using single-source data. The associated kernel, for image point x0 (and xs0) fixed, is shown in
Figure 20. We choose x0 to lie on the discontinuity and on the finite frequency isochron, sharing the
same source, illustrated in Figure 18. High frequency asymptotic considerations lead to the (broken)
ray geometrical counterpart of the finite frequency reflection tomography kernel, which can still be
recognized in Figure 20.

6. Conclusions. We presented a joint seismic inverse scattering and finite-frequency (reflec-
tion) tomography program, formulated as a coupled set of optimization problems, in terms of in-
homogeneous Helmholtz equations. We used a higher (fourth-)order finite difference scheme for
these Helmholtz equations to guarantee 3 digits of accuracy at a sampling rate of 10 points per
minimum wave length. We applied the second-order absorbing boundary condition, and subjected
it to a finite difference approximation of the same order. This yields no complication, since our
solution approach does not use the explicit structure of the coefficient matrix defining the resulting
system of algebraic equations. The overall complexity for computing the gradients or images in
our optimization problems has two parts, viz., the cost for all the matrix factorizations which is
O(rN log N) times the number of frequencies, and the cost for all solutions by substitution which
is O(N log(r log N)) times the number of frequencies times the number of sources, where N = nd

if n is the number of grid samples in any direction. With this complexity, the multi-frequency
approach to inverse scattering and finite-frequency tomography becomes computationally feasible
for dimensions d = 2 and 3.

Acknowledgment. The authors would like to thank Anton Duchkov for carrying out the
geometrical acoustics computations.
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Fig. 17. Finite frequency isochron, or kernel of the inverse scattering gradient, for xr0 = (0, 0)km, t0 = 4.486s
and xs0 = (−1.98, 0)km. Bottom: singular support obtained by methods of geometrical acoustics.
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Fig. 18. Finite frequency isochron, or kernel of the inverse scattering gradient, for xr0 = (1, 0)km, t0 = 4.932s
and xs0 = (−1, 0)km. Bottom: singular support obtained by methods of geometrical acoustics.
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Fig. 19. Finite frequency isochron, or kernel of the inverse scattering gradient, for xr0 = (1.5, 0)km, t0 = 5.082s
and xs0 = (−1, 0)km. Bottom: singular support obtained by methods of geometrical acoustics.

Fig. 20. Kernel of the reflection tomography gradient (xs0 = (−1, 0)km, x0 = (0.38, 2)km), superimposed on
the kernel of the inverse scattering gradient shown in Figure 18 (xr0 = (1, 0)km and t0 = 4.932s), illustrating their
interplay of sensitivities in the inverse scattering program.
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