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INVERSE SCATTERING OF SEISMIC DATA IN THE REVERSE TIME
MIGRATION (RTM) APPROACH
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Abstract. In this paper, we revisit the reverse-time imaging procedure. We discuss an inverse scattering
transform derived from reverse-time migration (RTM), and establish its relation with generalized Radon transform
inversion. In the process, the explicit evaluation of the so-called normal operator is avoided, at the cost of introducing
other pseudodifferential operator factors. Using techniques from microlocal analysis, we explain the recently discussed
RTM ‘artifacts’ and provide a method to remove them. We present a seamless integration of reverse-time imaging
with downward-continuation based imaging, and establish an explicit relation between RTM and interferometry, and
what is sometimes referred to as the ‘virtual-source’ method.
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1. Introduction. Over the past few years, there has been a revived interest in reverse time
migration (RTM). Carrying out RTM has become computationallly feasible. RTM is attractive
as an imaging procedure because it avoids approximations derived from asymptotic expansions or
one-way wave propagation.

In this paper we revisit the original reverse-time imaging procedure [22, 12, 2, 21]; we do this,
also, in the context of the integral formulation of Schneider [17] and the inverse scattering integral
equation of Bojarski [4].

From reverse-time migration (RTM) to inverse scattering. We discuss an inverse scat-
tering transform derived from RTM, and establish its relation with generalized Radon transform
inversion. The explicit evaluation of the normal operator is avoided, at the cost of introducing other
pseudodifferential operator factors in the procedure, which is, thus, different from Least-Squares
migration-based approaches [15]. We address the following topics:

(i) We explain the recently discussed RTM ‘artifacts’ [25, 13, 10, 24, 11] and provide a technique
to remove them.

(ii) We develop a seamless integration of reverse-time imaging with downward-continuation
based imaging.

(iii) We establish an explicit relation between RTM and interferometry [7, 23] and what is
sometimes referred to as the ‘virtual-source’ method [1].

(iv) We point out how the inverse scattering transform simplifies when dual sensor streamer
data are available.

The outline of the paper is as follows. In Section 2 we review the principle of inverse scattering
in the RTM approach, using a constant background and an incident plane wave. In Section 3 we
discuss modelling and the Born approximation using the first-order system of partial differential
equations describing the scattering of waves. In Section 4 we introduce backpropagation, and
discuss retrofocusing and develop the techniques for a seamless integration of the RTM approach
with the downward continuation approach to imaging. In Section 5 we introduce inverse scattering
in the RTM approach from a microlocal analysis point of view, applicable in the high-frequency
regime. We obtain an inverse scattering transform and show that it is a Fourier integral operator
the canonical relation of which is a graph. In Section 6, we derive a wave-equation analogue of
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this inverse scattering transform, which is naturally implemented in terms of solving Helmholtz
equations. We conclude with the introduction of annihilators of the data that can be exploited for
developing RTM based reflection tomography.

2. Incident plane-wave, constant coefficients, inversion formula. We begin with solving
the inhomogeneous wave equation in R

2 given coordinates (x, z),

(2.1) (c−2∂2
t − ∂2

x − ∂2
z )u = Aδ

(
t − z

c

)
r(x, z),

for the scattered field, u. In this equation, the right-hand side contains an incoming plane wave
with constant amplitude A which travels in the positive z direction, multiplied by a reflectivity
r = r(x, z). The (background) medium velocity is a constant denoted by c. (This equation is
not entirely the same as the linearization used in the remainder of this paper, but it captures the
essential components.)

2.1. Solution of the wave equation in the (t, ξ, ζ) domain. We first review the elementary
solution of an initial value problem with nonzero initial value for the first derivative, and then
construct the solution of the inhomogeneous wave equation. We do this in the (t, ξ, ζ) domain. The
resulting solution for the inhomogeneous equation is given at the end of this subsection in (2.8).

The relevant initial value problem is given by

(c−2∂2
t − ∂2

x − ∂2
z )u = 0,(2.2)

u(t = t0) = 0, ∂tu(t = t0) = u1.(2.3)

Fourier transformation in the (x, z) variables yields the equation

(c−2∂2
t + ξ2 + ζ2)ũ = 0,

from which it follows that

(2.4) ũ = A exp[ic
√

ξ2 + ζ2(t − t0)] + B exp[−ic
√

ξ2 + ζ2(t − t0)].

The parameters A,B depend on (ξ, ζ) and need to be determined from the initial conditions. These
give

A + B = 0,

ic
√

ξ2 + ζ2A − ic
√

ξ2 + ζ2B = ũ1(ξ, ζ),

and, hence, we find that

A = −B =
1

2ic
√

ξ2 + ζ2
ũ1(ξ, ζ),

so that the solution of (2.2) with initial conditions (2.3) follows to be

(2.5) ũ(t, ξ, ζ) = (exp[ic
√

ξ2 + ζ2(t − t0)] − exp[−ic
√

ξ2 + ζ2(t − t0)])
1

2ic
√

ξ2 + ζ2
ũ1(ξ, ζ).

We denote by U(t, t0) the map from u1 to u(t) given in (2.5). We note that, from the initial
conditions,

U(t, t0)|t=t0
= 0, ∂tU(t, t0)|t=t0

= Id .

We next consider the inhomogeneous wave equation

(2.6) (c−2∂2
t − ∂2

x − ∂2
z )u = f, u(t < 0) = 0.
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We claim that the solution is

(2.7) u(t, ., .) =

∫ t

0

U(t, s)c2f(s, ., .) ds.

Proof. We have

∂tu(t, ., .) = U(t, t)c2f(t, ., .) +

∫ t

0

∂tU(t, s)c2f(s, ., .) ds =

∫ t

0

∂tU(t, s)c2f(s, ., .) ds,

since U(t, t) = 0. Furthermore,

∂2
t u(t, ., .) = ∂tU(t, t)c2f(t, ., .) +

∫ t

0

∂2
t U(t, s)c2f(s, ., .) ds

= c2f(t, ., .) +

∫ t

0

∂2
t U(t, s)c2f(s, ., .) ds.

It follows that

(
c−2∂2

t − ∂2
x − ∂2

z

) ∫ t

0

U(t, s)c2f(s, ., .) ds

= f(t, ., .) +

∫ t

0

(c−2∂2
t − ∂2

x − ∂2
z )U(t, s)c2f(s, ., .) ds

= f(t, ., .)

which is what we had to show.
Combining (2.5) and (2.7) we find the following solution for the inhomogeneous wave equation,

(2.8) ũ(t, ξ, ζ) =

∫ t

0

(exp[ic
√

ξ2 + ζ2(t − s)] − exp[−ic
√

ξ2 + ζ2(t − s)])
c2

2ic
√

ξ2 + ζ2
f̃(s, ξ, ζ) ds.

2.2. Modelling: Solving for the scattered field. The application of (2.8) requires Fourier
transforming Aδ(t− z

c )r(x, z) to the (t, ξ, ζ) domain. We let ř = ř(ξ, z) be the Fourier transform of
r with respect to x but not z. Then

(2.9)

∫
exp[−izζ]Aδ

(
t − z

c

)
ř(ξ, z) dz = cA exp[−iζct] ř(ξ, ct).

We use (2.8) and (2.9) to solve (2.1):

(2.10) ũ(t, ξ, ζ) =

∫ t

0

(exp[ic
√

ξ2 + ζ2(t − s)] − exp[−ic
√

ξ2 + ζ2(t − s)])

c2

2ic
√

ξ2 + ζ2
cA exp[−iζcs]ř(ξ, cs) ds.

A second form of this formula is obtained by a change of variable, cs = z̃,

(2.11) ũ(t, ξ, ζ) =

∫ tc

0

(exp[i
√

ξ2 + ζ2(ct − z̃)] − exp[−i
√

ξ2 + ζ2(ct − z̃)])

c2

2ic
√

ξ2 + ζ2
A exp[−iζ z̃] ř(ξ, z̃) dz̃.

We recognize in this formula a Fourier transformation with respect to z̃. However, the Fourier
transform of r is not evaluated at ζ, but at ζ ±

√
ξ2 + ζ2, because z̃ occurs at several places in the
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complex exponents. Under the assumption that the support of r is contained in 0 < z < ct (in other
words, that we consider the field at time t such that the incoming wave front has completely passed
the support of the reflectivity), the formula equals

(2.12) ũ(t, ξ, ζ) = exp[i
√

ξ2 + ζ2ct]
c2A

2ic
√

ξ2 + ζ2
r̃(ξ, ζ +

√
ξ2 + ζ2)

− exp[−i
√

ξ2 + ζ2ct]
c2A

2ic
√

ξ2 + ζ2
r̃(ξ, ζ −

√
ξ2 + ζ2).

The field in position coordinates is given by the inverse Fourier transform of this expression, that is

(2.13) u(t, x, z) =
1

(2π)2

∫∫ [
exp[i

√
ξ2 + ζ2ct]

c2A

2ic
√

ξ2 + ζ2
r̃(ξ, ζ +

√
ξ2 + ζ2)

− exp[−i
√

ξ2 + ζ2ct]
c2A

2ic
√

ξ2 + ζ2
r̃(ξ, ζ −

√
ξ2 + ζ2)

]
exp[i(xξ + zζ)] dζ dξ.

The two terms yield complex conjugate contributions after integration. To see this, we change the
integration variables in the second term to (−ξ,−ζ), and use that the property that r(x, z) is real
for all (x, z) is equivalent to r̃(ξ, ζ) = r̃(−ξ,−ζ) for all (ξ, ζ). Therefore,

(2.14) u(t, x, z) =
1

(2π)2
Re

∫∫
exp[i

√
ξ2 + ζ2ct + i(xξ + zζ)]

c2A

ic
√

ξ2 + ζ2
r̃(ξ, ζ +

√
ξ2 + ζ2) dξ dζ.

Geometrical acoustics. We observe that ±c
√

ξ2 + ζ2 is a frequency, τ .

For the positive frequencies (the first term with exp[i
√

ξ2 + ζ2ct]), ũ(t, ξ, ζ) hence depends on

r̃(ξ, ζ +
√

ξ2 + ζ2). For the positive frequencies the ζ vector of the incoming wave field is negative

because it propagates in the positive z direction while τ is positive, whence it must equal −
√

ξ2 + ζ2.

For the negative frequencies, ũ(t, ξ, ζ) depends on r̃(ξ, ζ −
√

ξ2 + ζ2). For the negative frequen-
cies, the ζ component of the wave vector of the incoming wave field is positive.

If we denote by (ξin, ζin) the wave vector of the incoming field, by (ξout, ζout) that of the scattered
field, and by (ξscat, ζscat) that of the component of the reflectivity r involved, then we find that in
both cases

(ξout, ζout) = (ξin, ζin) + (ξscat, ζscat),

in accordance with diffraction tomography [9]. We summarize these observations in the table below.

wave vector positive frequency negative frequency

(ξin, ζin) (0,−
√

ξ2 + ζ2) (0,
√

ξ2 + ζ2)
(ξout, ζout) (ξ, ζ) (ξ, ζ)

(ξscat, ζscat) (ξ, ζ +
√

ξ2 + ζ2) (ξ, ζ −
√

ξ2 + ζ2)

2.3. Imaging and reconstruction of r. The basic idea of imaging is to correlate the source
(incoming) field with the receiver (scattered) field. Approximating the source field by Aδ(t− z

c ) this
becomes (ignoring the amplitude) evaluating the receiver field at the arrival time of the incoming
wave. Thus a first attempt to generate an image of r would be,

I0 = u(z/c, x, z).
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By some advance knowledge (see comments around (2.18)) we will define instead as our first try for
the imaging operator,

(2.15) I1 = (∂t + c∂z)u(z/c, x, z).

Using (2.14) we find that

(2.16) (∂t + c∂z)u(t, x, z) =
1

(2π)2
Re

∫∫ (
1 +

ζ√
ξ2 + ζ2

)

exp[i
√

ξ2 + ζ2ct + i(xξ + zζ)]c2A r̃(ξ, ζ +
√

ξ2 + ζ2) dξ dζ.

Setting t = z/c, yields

(2.17) (∂t + c∂z)u(z/c, x, z) =
1

(2π)2
Re

∫∫ (
1 +

ζ√
ξ2 + ζ2

)

exp[i(xξ + z(ζ +
√

ξ2 + ζ2)]c2A r̃(ξ, ζ +
√

ξ2 + ζ2) dξ dζ.

We carry out a coordinate transformation (for the positive frequencies) according to

ζ̃ = ζ +
√

ξ2 + ζ2.

The image of this transformation is the halfplane ζ̃ > 0, while the Jacobian is given by

(2.18)
∂ζ̃

∂ζ
= 1 +

ζ√
ξ2 + ζ2

,

and exactly equals the factor 1+ ζ√
ξ2+ζ2

from the derivative operator ∂t +c∂z we incorporated with

advance knowledge into (2.15)1. Therefore, by a change of variables, (2.17) equals

(2.19) (∂t + c∂z)u(z/c, x, z) =
1

(2π)2
Re

∫∫

ζ̃>0

exp[i(xξ + zζ̃)]c2A r̃(ξ, ζ̃) dξ dζ̃,

or

(∂t + c∂z)u(z/c, x, z)

=
c2A

2(2π)2

∫∫

ζ̃>0

[exp[i(xξ + zζ̃)] r̃(ξ, ζ̃) + exp[−i(xξ + zζ̃)] r̃(−ξ,−ζ̃)] dξ dζ̃

=
c2A

2
r(x, z).(2.20)

Hence, up to a factor c2A
2 , we have reconstructed r. Therefore, we recover the reconstruction

formula,

I(x, z) =
2

c2A
(∂t + c∂z)u(z/c, x, z)

yielding r(x, z). Here, ∂z should be interpreted as the gradient component in the direction of the
incoming field. The result extends straightforwardly to dimension 3. We will extend the recon-
struction developed for the constant background velocity case to the case of a smoothly varying
background in general dimension n in the remainder of the paper.

1Without this derivative operator, we would reconstruct a pseudodifferential operator acting on r. The Jacobian
∂ζ̃
∂ζ

can also be described in other ways, in terms of the angle θ between in an outgoing rays it is e.g. given by

∂ζ̃
∂ζ

= 1 + cos(θ).
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3. Modelling: The Born approximation. While considering the general coefficients case,
our point of departure becomes the first-order system for acoustic pressure, p, and particle velocity,
v, in R

n,

κ ∂tp −
n∑

j=1

∂xj
vj = q,(3.1)

ρ ∂tvi − ∂xi
p = fi, i = 1, . . . , n,(3.2)

subject to initial conditions, p|t=0 = 0 and v|t=0 = 0. Here, ρ stands for density of mass and κ

stands for compressibility. We introduce the causal Green’s functions:

Gpq(., ., x′), Gvq
i (., ., x′) if q(x, t) = δ(x − x′)δ(t) and f(x, t) ≡ 0,

and

Gpf
j (., ., x′), Gvf

ij (., ., x′) if q(x, t) ≡ 0 and f(x, t) = ejδ(x − x′)δ(t).

We restrict our configuration to the domain Ω ⊂ R
n with boundary ∂Ω ∼ Sn−1. We denote the

time convolution evaluated at t by
(t)
∗ .

The perturbed or scattered field, {psc, vsc}, under perturbations δρ of ρ and δκ of κ, satisfies
the system of partial differential equations,

κ ∂tp
sc −

n∑

j=1

∂xj
vsc

j = qsc,(3.3)

ρ ∂tv
sc
i − ∂xi

psc = f sc
i ,(3.4)

and is hence given by

(3.5) psc(x, t, s) =

∫

Ω

Gpq(x, ., x′)
(t)
∗ qsc(x′, ., s) dV (x′) +

∫

Ω

n∑

j=1

Gpf
j (x, ., x′)

(t)
∗ f sc

j (x′, ., s) dV (x′),

and

(3.6) vsc
i (x, t, s) =

∫

Ω

Gvq
i (x, ., x′)

(t)
∗ qsc(x′, ., s) dV (x′) +

∫

Ω

n∑

j=1

Gvf
ij (x, ., x′)

(t)
∗ f sc

j (x′, ., s) dV (x′),

using Duhamel’s principle. In the Born approximation, we have

(3.7) qsc(x, t, s) = −δκ(x) ∂tp
0(x, t, s), f sc

j (x, t, s) = −δρ(x) ∂tv
0
j (x, t, s),

where p0, v0
j describe the incident field and satisfy (3.1)-(3.2). The coefficients, ρ,κ, describing the

background medium are assumed to be smooth. Furthermore, we assume that supp qsc and supp f sc

are contained in the interior of Ω. Then

(3.8) vsc
j (x, t, s) = ρ(x)−1∂−1

t ∂xj
psc(x, t, s) for x ∈ ∂Ω.

Depending on whether δρ vanishes, we may assume that the supports of the sources, q and f , are
also contained in the interior of Ω; however, in applications the sources could be supported close to
the boundary ∂Ω.

The scalar-wave Green’s function, G(x, t, x′), follows to be the pressure, p(x, t), subject to the
identifications f(x, t) ≡ 0 and ρ(x)∂tq(x, t) = δ(x−x′)δ(t) cf. (3.1)-(3.2). In applications, one often
assumes that ρ is constant, and that δρ ≡ 0. Then we obtain

(3.9) psc(x, t, s) = −∂2
t

∫

Ω

G(x, ., x′)
(t)
∗ p0(x′, ., s) δc−2(x′) dV (x′),
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with c−2 = ρκ. In this expression, we identify the contrast source,
−∂2

t p0(x′, t, s) δc−2(x′). Let nj be the outer normal to ∂Ω. Via restriction to ∂Ω, this equation
defines a map from δc−2(x′) (with x′ ∈ Ω) to {psc(x, t, s), nj(x)(∂xj

psc)(x, t, s)} (with (x, t) ∈
∂Ω × (0, T )) from which, also, nj(x)vsc

j (x, t, s) can be obtained, cf. (3.8). We extract the single
scattering operator, F , with

(3.10) F : δc−2(x′) → psc(x, t, s) (with (x, t) ∈ ∂Ω × (0, T )).

In the further analysis, we consider the case where p0(x, t, s) = G(x, t, s). Thus, p̂0(x, τ, s) =∫
p0(x, t, s) exp(−iτ t) dt can be identified with the solution, û(x, τ, s) say, of the Helmholtz equation,

(3.11) [c(x)−2τ2 + ∇2
x] û(x, τ, s) = δ(x − s).

In the inverse scattering problem under consideration, the data are modelled by psc(x, t, s). The
source at s will be fixed, while the receivers at x are restricted to a set Σs ⊂ ∂Ω, signifying limited
acquisition aperture and the data are observed over a time interval (0, T ); we write Ys = Σs×(0, T ).
We hasten to mention that present day data acquisition systems can measure not only psc(x, ., s)
but also

∑n
j=1 nj(x)vsc

j (x, ., s) (dual sensor streamers) or
∑n

j=1 nj∂xj
psc(x, t, s) (‘over-under’ towed-

streamer acquisition). In the further analysis it will be made explicit how to exploit these extended
measurements in inverse scattering in the RTM appproach.

Rakesh [16] showed that, with this acquisition geometry, F is a Fourier integral operator of
order (n − 1)/2 subject to

Assumption 1. There are no rays connecting s with x ∈ Σs with traveltime t such that
(x, t) ∈ Ys. For all ray pairs connecting x ∈ Σs via some scattering point in the suburface Ω to s
with total time t such that (x, t) ∈ Ys, the receiver rays intersect Σs transversally at x.

4. Backpropagation and retrofocusing. We construct the inverse scattering in the RTM
approach by backpropagation (this section), imaging followed by “amplitude and illumination”
correction (next section).

Here, we develop the (common-source) backpropagation procedure. We continue to assume that
the density ρ is constant. Motivated by (A.4) in Appendix A, substituting (3.8), while suppressing
qsc, it is natural to introduce the field

p̂f:r(x′, τ, s) =

∫

∂Ω

[
−

n∑

j=1

nj(x)(∂xj
p̂sc)(x, τ, s) Ĝ(x, τ, x′)

+ p̂sc(x, τ, s)
n∑

j=1

nj(x)(∂xj
Ĝ)(x, τ, x′)

]
dA(x) for x′ ∈ Ω\∂Ω,

or, using reciprocity,

(4.1) p̂f:r(x′, τ, s) =

∫

∂Ω

[
−

n∑

j=1

nj(x)(∂xj
p̂sc)(x, τ, s) Ĝ(x′, τ, x)

+ p̂sc(x, τ, s)

n∑

j=1

(∂xj
Ĝ)(x′, τ, x)nj(x)

]
dA(x) for x′ ∈ Ω\∂Ω.

Subjecting the entire equation to time reversal yields

(4.2) P̂ f:r(x′, τ, s) := p̂f:r(x′,−τ, s) =

∫

∂Ω

Ĝ(x′, τ, x)

[
−

n∑

j=1

nj(x)(∂xj
p̂sc)(x,−τ, s)

]
dA(x)

+

∫

∂Ω

n∑

j=1

(∂xj
Ĝ)(x′, τ, x)

[
p̂sc(x,−τ, s)nj(x)

]
dA(x) for x′ ∈ Ω\∂Ω,
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which upon introduction of an appropriate surface measure attains the form of equation (3.5). Thus,
one can interpret the scattered field, that is, ‘data’ through time reversal in terms of q and f sources.
(The field P f:r(x′, t, s) can be viewed as the solution to a system of ‘adjoint’ equations in the context
of optimization.)

The data are only available on a finite time interval, and hence (4.1) should be subjected to (A.2)
and understood in terms of time correlations. In the context of the seismic migration literature,
equation (4.1) can be called the time-correlation analogue of the ‘Rayleigh integral’ [3]. To account
for the actual acquisition aperture, the domain of integration ∂Ω is replaced by Σs. Equation (4.1)
defines a map from (dual sensor data) {psc(x, t, s), nj(x)(∂xj

psc)(x, t, s)} (with (x, t) ∈ Σs × (0, T ))
to pf:r(x′, t, s) (with x′ ∈ Ω\∂Ω).

We proceed with expressing p0 and pf:r near the boundary Σs, in terms of one-way wave propaga-
tion. We introduce coordinates (z, x) on R

n, and we assume that n = (nz, nx) = (nz, 0) at Σs ⊂ ∂Ω,
where z = 0. We summarize the procedure of directional wavefield decomposition [19, 20, 18]:

(4.3) Q

(
0 1

−A 0

)
Q−1 =

(
iB+ 0
0 iB−

)
, A = A(z, x,Dx, Dt) = c(z, x)−2D2

t − D2
x.

Here,

(4.4) Qx(z) = 1
2

(
(Q+,x(z)∗)−1 −Q+,x(z)H
(Q−,x(z)∗)−1 Q−,x(z)H

)
,

Q−1
x (z) =

(
Q+,x(z)∗ Q−,x(z)∗

HQ+,x(z)−1 −HQ−,x(z)−1

)
,

in which H denotes the Hilbert transform in time, while H (Q±,x(z)∗Q±,x(z))−1 = ∓iB±,x(z) and
B2

± = A. We have the property,

∫
(Q±(z, x,Dx, τ)û(z, x, τ)) v̂(z, x, τ) dx =

∫
û(z, x, τ) (Q∗

±(z, x,Dx, τ)v̂(z, x, τ)) dx

for arbitrary u, v, and similarly for B±(z, x,Dx, τ).
Assuming upcoming waves in the surface receivers at (0, x) ∈ Σs, we can write

(4.5) psc(0, x, ., s) ∼ Q−,x(0)∗psc
−

(0, ., ., s), ∂zp
sc(0, x, ., s) ∼ −HQ−,x(0)−1psc

−
(0, ., ., s),

so that ∂zp
sc(0, x, ., s) ∼ iB−,x(0)psc(0, ., ., s). Correspondingly,

(4.6) G(0, x, ., z′, x′) ∼ −Q∗

−,x(0)
[

G−(0, z′) 1
2Q−,.(z)H δ(. − x′)δ(.)

]
,

∂zG(0, x, ., z′, x′) ∼ −Q−,x(0)−1
[

G−(0, z′) 1
2Q−,.(z

′) δ(. − x′)δ(.)
]
,

so that ∂zG(0, x, ., z′, x′) ∼ iB−,x(0)G(0, x, ., z′, x′). Then we have

∫

Σs

[
−

n∑

j=1

nj(x)(∂xj
p̂sc)(x, τ, s) Ĝ(x, τ, x′)

]
dA(x)

∼ −
∫

(iB−(0, x,Dx, τ)psc(0, x, τ, s)) Ĝ(0, x, τ, z′, x′)dx

=

∫
psc(0, x, τ, s) (iB−(0, x,Dx, τ)Ĝ(0, x, τ, z′, x′))dx

∼
∫

Σs

p̂sc(x, τ, s)
n∑

j=1

(∂xj
Ĝ)(x′, τ, x)nj(x)dA(x).
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Exploiting this equivalence in (4.1) leads to

(4.7) p̂f:r(x′, τ, s) ∼ 2

∫

Σs

p̂sc(x, τ, s)

n∑

j=1

(∂xj
Ĝ)(x′, τ, x)nj(x)dA(x) for x′ ∈ Ω\∂Ω

for the backpropagated field.

Remark 4.1. Using (4.7) we observe that pf:r(x′, t, s) can be identified with the solution,
w∗(x′, t, s) say, of an adjoint equation:

(4.8) [c(x′)−2τ2 + ∇2
x′ ] ŵ∗(x′, τ, s) = −2

∫

Σs

n∑

j=1

p̂sc(x, τ, s)nj(x)∂jδ(x
′ − x)dA(x′).

That is, p̂f:r(x′, τ, s) = ŵ∗(x′, τ, s). We note that the incident field, p̂0, was already identified with
the solution of the (forward) Helmholtz equation (3.11).

Remark 4.2. Both pf:r and p0 can be subjected to a projection, in the subsurface, extract-
ing locally the upcoming or downgoing wave constituents. The relevant operators are of the form

( 1 0 )P±

(
1
∂z

)
with

P+ = Q−1

(
1 0
0 0

)
Q = 1

2

(
I (−iB+)−1

−iB+ I

)
, P− = 1

2

(
I −(iB−)−1

−iB− I

)
.

Remark 4.3. We can express p0 and pf:r in terms of one-way wave propagation, subject to the
so-called double-square-root (DSR) assumption. For the incident field, considering the downward
radiating component of a density normalized point injection source, we obtain

(4.9) p0(z′, x′, ., s) ∼ Q∗

+,x′(z′)G+(z′, 0) 1
2Q+,.(0)H δ(. − s)δ(.).

On the other hand, upon substituting (4.6) and (4.5) into (4.1), the backpropagated field takes the
form

(4.10) pf:r(z′, x′, ., s) ∼ Q∗

−,x′(z′)G−(0, z′)∗psc
−

(0, ., ., s).

Using these representations, one can design a seamless integration of reverse-time (full-wave) based
with downward-continuation (one-way-wave) based inverse scattering.

By backsubstituting p̂sc from (3.9) into (4.1), we obtain a map δc−2(x′) to
pf:r(x′, t, s). We analyze this map in the Section 6.

5. High-frequency inverse scattering: RTM formulation.

5.1. Modelling operator. Assumption 2. The incident field p0(x′, t, s) is free of caustics.

The source field, p0, in the absence of caustics, can be asymptotically represented as

(5.1) G(x′, t, s) =

∫
a(x′, s, τ) exp[iτ(t − T (x′, s))] dτ,

where T (x′, s) denotes the travel time along a ray connecting x′ with s; T satisfies an eikonal
equation. To leading order, a is given by A(x′, s)τm, where m = n−3

2 ; A satisfies a transport
equation. The contrast source in (3.9) can then, to leading order, be written in the form

(5.2) −∂2
t Dm

t ELAδc−2(x′, t, s), ELg(x′, t, s) = δ(t − T (x′, s))g(x′).
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Here, s is viewed as a parameter.

The adjoint of EL is the restriction RL = E∗

L which can be written as a time correlation
evaluated at zero lag,

(5.3) RLf(x′) =

∫
δ(t′ − T (x′, s)) f(x′, t′)dt′.

The Green’s function associated with the wave equation admits an oscillatory integral repre-
sentation of the type,

(5.4) G(y, t, x′) =

∫
a(yI , x

′, ηJ , τ) exp[iφ(y, x′, t, ηJ , τ)] dηJdτ.

The adjoint, U∗Ea, of RaU has the kernel

(5.5)

∫
a(yI , x′, ηJ , τ) exp[−iφ(y, x′, t, ηJ , τ)] dηJdτ.

There exists a generating function S = S(yI , x
′, ηJ , τ) such that

(5.6) yJ = − ∂S

∂ηJ
, ηI =

∂S

∂yI
, t = −∂S

∂τ
, ξ′ =

∂S

∂x′

and

(5.7) φ(x′, y, t, ηJ , τ) = S(yI , x
′, ηJ , τ) + 〈ηJ , yJ〉 + τ t.

The Green’s function defines the solution operator, U , to the wave equation. We let Ra denote
the restriction to the receiver manifold Σs ⊂ ∂Ω, which is locally described by z = 0 if x = (z, y).
Assumption 1 excludes the presence of grazing rays.

The modelling of scattered waves, psc, in the ‘high-frequency’ Born approximation can then be
written as the composition of operators, F0 = −∂2

t Dm
t RaUELA, with

(5.8) (F0δc
−2)(y, t, s) = −∂2

t Dm
t RaUELAδc−2(y, t, s) =

∫ ∫
τm+2a(yI , x

′, ηJ , τ) A(x′, s)

exp[i(S(yI , x
′, ηJ , τ) + 〈ηJ , yJ〉 + τ(t − T (x′, s)))] dηJdτ δc−2(x′) dx′.

5.2. Inversion formula. The imaging operator, F ∗

0 = ARLU∗Ea (−Dm
t ∂2

t ), acts on data as

(5.9) (F ∗

0 d)(x′) =

∫ ∫
τm+2A(x′, s) a(yI , x′, ηJ , τ)

exp[−i(S(yI , x
′, ηJ , τ) + 〈ηJ , yJ〉 + τ(t − T (x′, s)))] dηJdτ d(y, t, s) dydt

=

∫
τmA(x′, s) exp[−iτT (x′, s)]

{ ∫ ∫
τ2a(yI , x′, ηJ , τ) exp[i(S(yI , x′, ηJ , τ) + 〈ηJ , yJ〉 + τ t)] d(y, t, s) dydt dηJ

}
dτ

= A(x′, s)

∫
δ(t′ − T (x′, s))

∫ ∫
τm+2a(yI , x′, ηJ , τ)

exp[−i(S(x′, yI , ηJ) + 〈ηJ , yJ〉 + τ(t − t′))] d(y, t, s) dydtdηJdτ dt′.

Upon carrying out the integration over t′, we recover the classical RTM imaging condition (see, for
example, [5]).
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It is possible to modify the imaging operator and obtain an inverse scattering transform, like
in the constant background case. We introduce

C0 = A−1
n∑

j=0

(ΞjRL)ΞjU
∗Ea (−2) iNS (−D−m

t ∂−1
t )

in which S = S(Dt) with

(5.10) S(τ) =
2

τ2
,

and N = N (y, Dy, Dt) with

(5.11) N (y, η, τ) = τ [c(0, y)−2 − τ−2‖η‖2]1/2

corresponds with the boundary differential operator nj(x)∂j (outgoing wave constituents), that is,
N corresponds with B−,.(0); Ξ = Ξ (x′, Dx′ , Dt) is given by

(5.12) Ξ0(x
′, ξ′, τ) = c(x′)−1τ, Ξj(x

′, ξ′, τ) = ξ′j , j = 1, . . . , n.

We have

(5.13) (C0d)(x′) ≈
∫

A(x′, s)−1
n∑

j=0

Ξj(x
′, τ∂x′T (x′, s),−τ) exp[−iτT (x′, s)]

{ ∫ ∫
τ−mS(τ)(iτ)−1a(yI , x′, ηJ , τ)Ξj(x

′,−∂x′S(yI , x
′, ηJ , τ),−τ)

exp[i(S(yI , x′, ηJ , τ) + 〈ηJ , yJ〉 + τ t)] (−2) iN (y, Dy, Dt)d(y, t, s) dydt dηJ

}
dτ.

We note that we can incorporate a pseudodifferential cutoff in combination with the application of
N to ensure that Assumption 1 is satisfied.

Theorem 5.1. (“Kirchhoff”-RTM) Let ψ denote a pseudodifferential cutoff with a conically
compact support (Σs). Under Assumptions 1, 2, it holds true that

(5.14) C0 ψF0 = Ψ0 + R0,

where Ψ0 = Ψ0(x
′, Dx′) is a pseudodifferential operator of order 0 with principal symbol 1 microlo-

cally where there is illumination, and R0 = R0(x
′, Dx′) is a pseudodifferential operator of order

−1.

6. Inverse scattering: Wave-equation analogue. We initially follow the imaging principle
proposed by Claerbout [6], including the division by the amplitude squared of the incident field
(Baysal et al. [2]), while deriving an inverse scattering formulation for the common-source acquisition
geometry

Theorem 6.1. (“Wave-equation” RTM) Let pf:r be given by (4.1). Let Ξj, j = 0, 1, . . . , n be
given by (5.12) and S by (5.10). Let C be given by

(6.1) (Cd)(x′) =
1

2π

∫

R

1

|p̂0(x′, τ, s)|2
S(τ) (iτ)−1

[
−

n∑

j=0

(Ξj(x
′, Dx′ , τ)p̂0(x′, τ, s)) (Ξj(x

′, Dx′ , τ)p̂f:r(x′, τ, s))

]
dτ.



102 C. STOLK, M. V. DE HOOP, AND T. J. P. M. OP’T ROOT

Under Assumptions 1, 2, it holds true that

(6.2) C ψF = Ψ + R,

where Ψ = Ψ(x′, Dx′) is a pseudodifferential operator of order 0 with principal symbol 1 microlocally
where there is illumination, and R = R(x′, Dx′) is a pseudodifferential operator of order −1.

Proof. We will exploit the occurrence of a cross-correlation Green’s function. The reciprocity
relation of the time-correlation type generates a Green’s function through cross correlations: for
x′, x′′ ∈ Ω\∂Ω

(6.3) Ĥ(x′, τ, x′′) =

∫

∂Ω

[
−

n∑

j=1

nj(x)(∂xj
Ĝ)(x, τ, x′′) Ĝ(x′, τ, x)

+ Ĝ(x, τ, x′′)
n∑

j=1

nj(x)(∂xj
Ĝ)(x′, τ, x)

]
dA(x);

with integration over the full boundary,

(6.4) Ĥ(x′, τ, x′′) = Ĝ(x′, τ, x′′) − Ĝ(x′′, τ, x′) = 2i Im{Ĝ(x′, τ, x′′)};

clearly Ĥ(x′,−τ, x′′) = Ĥ(x′, τ, x′′), while

H(x′, t, x′′) = G(x′, t, x′′) − G(x′,−t, x′′).

In the above, x plays the role of receiver and x′′ the role of ‘virtual’ source. Upon replacing ∂Ω in
(6.3) by Σs, Ĥ is replaced by ĤΣs .

Substituting (3.9) into (4.1) using (6.3) yields

(6.5) p̂f:r(x′, τ, s) = τ2

∫

Ω

ĤΣs(x′, τ, x′′)p̂0(x′′, τ, s) δc−2(x′′) dV (x′′),

which compares directly to the scattering equation (3.9) with x′ ∈ Ω\∂Ω. This may be referred
to as the outcome of retrofocusing the scattered field in receivers. As before, we will assume that
p0(x′′, t, s) = G(x′′, t, s). It then follows that the kernel of the composition C ψF is given by
(2π)−1

∫
N(x′, x′′, τ ; s) dτ , with

(6.6) N(x′, x′′, τ ; s) =
1

|p̂0(x′, τ, s)|2
S(τ)τ2(iτ)−1

[ n∑

j=1

(∂x′
j
p̂0(x′, τ, s)) (∂x′

j
ĤΣs(x′, τ, x′′)) p̂0(x′′, τ, s)

− p̂0(x′, τ, s) τ2c(x′)−2 ĤΣs(x′, τ, x′′) p̂0(x′′, τ, s)

]
.

Because N(x′, x′′,−τ ; s) = N(x′, x′′, τ ; s), we have

(2π)−1

∫
N(x′, x′′, τ ; s) dτ = Re π−1

∫

R≥0

N(x′, x′′, τ ; s) dτ.

Up to various (pseudodifferential) factors, (2π)−1
∫

N(x′, x′′, τ ; s) dτ generates the kernel of the
normal operator F ∗F (cf. (3.10)) which is given by

∫ ∫

Σs

τ4 p̂0(x′, τ, s) Ĝ(x, τ, x′) p̂0(x′′, τ, s) Ĝ(x, τ, x′′) dA(x)dτ.
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This kernel is a conormal distribution. To show this, we consider the propagation of singularities
following the composition of F ∗ with F , thus accounting for the integration over x while using
the method of stationary phase. We view the pair consisting of a source ray connecting s with x′′

and a receiver ray connecting x = r with x′′. We let T denote travel time along a ray, and write
tinc(x

′′, s) = T (x′′, s) for the travel time along the source ray. If t denotes the so-called two-way
time associated with a reflection off a scatterer at x′′, the travel time along the receiver ray must
be given by t − tinc(x

′′, s) which equals T (i)(r, x′′) if i labels branches in the case of multi-pathing.
We have ρ = τ∂rt and σ = τ∂st defining the directions of the receiver ray at the receiver and of the
source ray at the source, respectively. Under the assumption that no caustics develop in the incident
field, r, ρ and t and determine tinc and σ, and hence the geometry of the ray pair, uniquely (see
[14]). But then the wavefront set of the above mentioned kernel must be contained in the diagonal
of T ∗

Ω\0 × T ∗
Ω\0.

We revisit the alternative kernel representation, which involves regrouping the factors in the
integrand,

∫
p̂0(x′, τ, s) ĤΣs(x′, τ, x′′) p̂0(x′′, τ, s) dτ,

see Fig. 1. From the method of stationary phase, it follows that x′ and x′′ must lie on a common
receiver ray (the particular receiver, which must be contained in Σs, giving the stationary contri-
bution to the integration over x in (6.3)). In comparison with the previous analysis, the travel
time T (i)(r, x′′) has been correlated out, whereas T (i)(x′, x′′) = T (i)(r, x′) − T (i)(r, x′′); the same
reasoning, based on the mean value theorem, applies.

Fig. 1. Retrofocusing: The phase of (2π)−1
R

N(x′, x′′, τ ; s) dτ can be stationary only if x′ lies on the ray

connecting x′′ with x = r. Dashed: A description in terms of interferometry. The rays indicate the propagation of

singularities.

We proceed with determining the symbol of (2π)−1
∫

N(x′, x′′, τ ; s) dτ . We consider the near-
field expansion

(6.7) p̂0(x′, τ, s) p̂0(x′′, τ, s) = |p̂0(x′, τ, s)|2 exp[−iτ ∂x′T (x′, s) · (x′ − x′′)] + l.o.t.

To arrive at the near-field expansion of ĤΣs(x′, τ, x′′), we first consider the early time representation,

(6.8) 1
2HΣs(x′, t, x′′) =

∫

R≥0

F (x′, τ, x′′)
[exp(iτ t) − exp(−iτ t)]

2π
dτ,
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in which

(6.9) F (x′, τ, x′′) =
1

(2π)n−1

c(x′′)2

2

1

iτ[ ∫

Eν(x′)

(τc(x′)−1)n−1 exp[iτc(x′)−1ν · (x′ − x′′)] c(x′)−1dν + l.o.t.

]
,

whence

(6.10) 1
2Ĥ(x′, τ, x′′) =

{
F (x′, τ, x′′) if τ > 0

−F (x′,−τ, x′′) if τ < 0.

Substituting (6.7) and (6.10) into (6.6) yields

(6.11)
1

2π

∫

R

N(x′, x′′, τ ; s) dτ =
1

2π
Re

∫

R≥0

1

2n−1πn−1
c(x′)2(−)

∫

Eν(x′)

(τc(x′)−1)n−1

[

P

n
j=1

∂x′
j
T (x′,s) (c(x′)−1νj−∂x′

j
T (x′,s))

︷ ︸︸ ︷
n∑

j=1

(∂x′
j
T )(x′, s) c(x′)−1νj − c(x′)−2

]

exp[iτ (c(x′)−1ν − ∂x′T (x′, s)) · (x′ − x′′)] c(x′)−1dτdν + l.o.t.

With ∂x′T (x′, s) fixed, we form ξ = τ (c(x′)−1ν − ∂x′T (x′, s)), the superposition of source and
receiver co-vectors, associated with the source and receiver rays connecting the image point x′ to
the source (at s) and a receiver (at x), respectively, see Fig. 2. The integration in ξ is over a part
Eξ(x

′), obtained from Eν(x′), of a sphere with radius c−1
0 (x′) centered at ∂x′T (x′, s). We then

change variables of integration, from (τ, ν) to ξ, with

dξ =

[
c(x′)−2 −

n∑

j=1

(∂x′
j
T )(x′, s) c(x′)−1νj

]
c(x′)(|τ |c(x′)−1)n−1dτdν,

so that

1

2π

∫

R

N(x′, x′′, τ ; s) dτ =
1

(2π)n

∫

Eξ(x′)

exp[iξ · (x′ − x′′)] dξ + l.o.t.

that is, the principal symbol of (2π)−1
∫

R
N(x′, x′′, τ ; s) dτ equals 1 where there is illumination.

Traditionally, in RTM-based wave-equation imaging, the terms with operators Ξj(x
′, Dx′ , τ),

j = 1, . . . , n in (6.1) are missing. The ‘true-amplitude’ imaging condition generating (6.1) has the
property that it ‘annihilates’ field constituents propagating from the source at s towards x′, and
hence acts as a ‘one-way filter’.

The ‘true-amplitude’ image Cd is artifact free under the assumption of absence of source caustics
(receiver caustics are allowed). This coincides with the result in Section 5.1 in Nolan and Symes
[14].

Corollary 6.2. We consider the multi-source application. The composition
(

∂
∂t

)−1
F ∂

∂sC
defines pseudodifferential operators of order 1 which are annihilators of the data.

The annihilators characterize the range of F . They can be exploited to develop wave-equation
reflection tomography.
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Fig. 2. Mapping from ν to ξ.

7. Discussion. We presented a microlocal analysis point of view of inverse scattering in the
RTM approach, while making use of the notion of backpropagation. The resulting inverse scattering
transform is a Fourier integral operator the canonical relation of which is a graph, and lends itself,
for example, directly to a sparse discretization using wave packets or ‘curvelets’ [8]. We explained
the recently discussed RTM ‘artifacts’ and provided a technique to remove them. We also presented
a seamless integration of reverse-time imaging with downward-continuation based imaging, and
established an explicit relation between RTM and interferometry.

In practice, inverse scattering in the RTM approach is carried out using data generated by a
large number of sources, while the results are integrated or averaged. In this situation, annihilators
with the source coordinate(s) being the “redundant” one(s) can be constructed and used to develop
reflection tomography. However, under the assumptions presented in the main text, it is also
possible to apply the inverse scattering transform to data corresponding with a sparse set of sources.
The incorporation of (sparsity promoting) regularization techniques can still yield a proper image.
The resulting approach can be applied both in exploration seismology and global seismology. We
discussed a way to implement the RTM-based inverse scattering transform in terms of solving a
couple of inhomogeneous Helmholtz equations.

Appendix A. Time reversal and wavefield extrapolation.

In preparation of developing the proper backpropagation component of reverse-time-migration
derived inverse scattering, we briefly review the reciprocity relation including time reversal and its

implications. We denote the time correlation evaluated at t by
(−t)
∗ . For two general functions f, g

we have

f
(−t)
∗ g =

∫

R

f(t − t′)g(−t′) dt′.
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The reciprocity relation of the time-correlation type, using (3.3)-(3.4), implies

(A.1)

∫

∂Ω

[
n∑

j=1

nj(x)vsc
j (x, ., s)

(−t)
∗ p(x, .) + psc(x, ., s)

(−t)
∗

n∑

j=1

nj(x)vj(x, .)

]
dA(x)

=

∫

Ω

[
psc(x, ., s)

(−t)
∗ q(x, .) +

n∑

j=1

vsc
j (x, ., s)

(−t)
∗ fj(x, .)

]
dV (x).

+

∫

Ω

[
qsc(x, ., s)

(−t)
∗ p(x, .) +

n∑

j=1

f sc
j (x, ., s)

(−t)
∗ vj(x, .)

]
dV (x).

This relation is directly connected to the energy balance, where the boundary integral can be
identified with flux. In the boundary integral, we can make use of relation (3.8). In expression
(A.1), ∂Ω is viewed as the manifold containing the receivers.

We will make use of Fourier representations, for example,

(A.2) psc(x, t, s) =

∫

R

p̂sc(x, τ, s) exp(iτ t) dτ.

We have

(A.3)

∫

Ω

[
p̂sc(x, τ, s) q̂(x, τ) +

n∑

j=1

v̂sc
j (x, τ, s) f̂j(x, τ)

]
dV (x)

+

∫

Ω

[
q̂sc(x, τ, s) p̂(x, τ) +

n∑

j=1

f̂ sc
j (x, τ, s) v̂j(x, τ)

]
dV (x)

=

∫

∂Ω

[
n∑

j=1

nj(x)v̂sc
j (x, τ, s) p̂(x, τ) + p̂sc(x, τ, s)

n∑

j=1

nj(x)v̂j(x, τ)

]
dA(x).

As before, we assume δρ ≡ 0. Let x′ ∈ Ω\∂Ω. With q(x, t) = δ(x − x′)δ(t) and f(x, t) ≡ 0, we
obtain

(A.4) p̂sc(x′, τ, s) +

∫

Ω

q̂sc(x, τ, s) Ĝpq(x, τ, x′)dV (x)

=

∫

∂Ω

[
n∑

j=1

nj(x)v̂sc
j (x, τ, s) Ĝpq(x, τ, x′) + p̂sc(x, τ, s)

n∑

j=1

nj(x)Ĝvq
j (x, τ, x′)

]
dA(x),

while with q(x, t) ≡ 0 and f(x, t) = eiδ(x − x′)δ(t), we obtain

(A.5) v̂sc
i (x′, τ, s) +

∫

Ω

q̂sc(x, τ, s) Ĝvq
i (x, τ, x′)dV (x)

=

∫

∂Ω

[
n∑

j=1

nj(x)v̂sc
j (x, τ, s) Ĝpf

i (x, τ, x′) + p̂sc(x, τ, s)
n∑

j=1

nj(x)Ĝvf
ji (x, τ, x′)

]
dA(x).

We have the symmetries, Gvq
i (x, t, x′) = Gpf

i (x′, t, x) and Gvf
ij (x, t, x′) = Gvf

ji (x′, t, x).
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