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A TALE OF TWO BEAMS: GAUSSIAN BEAMS AND BESSEL BEAMS

ROBERT L. NOWACK∗

Abstract. An overview is given of two types of focused beams, Gaussian beams and Bessel beams. First I
describe some of the basic properties of Gaussian beams in homogeneous media which stay collimated over a certain
distance range after which they diverge. Bessel beams are then described which are among a class of solutions to the
wave equation that are diffraction-free and do not diverge when they propagate. For pulsed signals, another solution
that propagates in an undistorted fashion is called an X-wave. I will then compare and contrast these different beam
solutions to the wave equation.

1. Introduction. Gaussian beams are focused wave solutions to the wave equation that stay
collimated out to some distance range after which they diverge. In the 1980’s, Durnin (1987) and
Durnin et al. (1987) showed that realistic beams could propagate without change of shape to a
large range in comparison to Gaussian beams and were called Bessel beams. There solutions were
found earlier by Stratton (1941, pp. 356), Courant and Hilbert (1966, Vol. 2, pp. 760, Bateman
(1915) among others, and an overview is given in Recami et al. (2008). However, these solutions
are endowed with infinite energy, similar to plane waves, and did not attract much interest at the
time.

In this overview, I will first describe some of the basic properties of Gaussian beams as examples
of beams that diffract and then describe Bessel beams as examples of beam modes that are diffraction
free.

2. Gaussian Beams in Homogeneous Media. Gaussian beams can be derived in several
ways (Siegman, 1986). These include the complex source point approach in which an analytic
continuation of a point source from a real source location x0

3 to x0
3 − ib is performed. The solution

for a point source eikR/R is then modified to a Gaussian beam with R = [(x1 − x0
1)

2 + (x2 − x0
2)

2 +
(x3 − x0

3)
2]1/2 with a complex x0

3 (Deschamps, 1971; Felsen, 1976). This approach can be used to
extend analytical results for point sources to Gaussian beams. Other approaches to derive Gaussian
beams are the differential equation approach based on the “paraxial” wave equation, the Huygens-
Fresnel integral with an initial Gaussian amplitude profile, a plane wave expansion approach, and
solutions to the Helmholtz equation in oblate spheroidal coordinate systems.

The field of a Gaussian beam can be written as (Siegman, 1986)

(2.1) u(ρ, x3) = (2/π)1/2 eik x3

W (x3)
e−ψ(x3)e

−ρ
2

W2(x3) e
ikρ

2

2R(x3)

where k = ω/v is the wavenumber, ρ2 = x2
1 + x2

2, W0 is the initial beam width where the amplitude
decays to 1/e in lateral distance ρ. For larger x3 distances, W (x3) = W0(1 + ( x3

XR

3
)2)1/2 , where

XR
3 = πW 2

0 /λ is called the Rayleigh distance. At this range the amplitude decays to 1/e at

ρ =
√

2W0. The radius of curvature of the beam is R(x3) = x3

(

1 +
(

XR

3

x3

)2
)

. The distance

x3 = 0 is called the beam waist where the beam is narrowest and the phase front is planar with
R(x3) = ∞. As x3 → ∞, the radius of curvature also goes to infinity. The radius of curvature
is smallest (maximum curvature) at the Rayleigh distance R(x3). ψ(x3) is called the Gouy phase,
and Gouy showed in 1890 that all waves going through a focus experience a π phase advance. For
a Gaussian beam, ψ(x3) = tan−1( x3

xR

3
).

Figure 1 summaries the characteristics of a Gaussian beam in a homogeneous media. θ in Figure
1 is the far field spread of the beam where θ = λ

πW0
. The collimated part of the beam is between

−xR
3 < x3 < xR

3 where xR
3 is the Rayleigh distance. Figure 2 shows that as the initial beam width

W0 gets smaller, the Rayleigh distance also gets smaller and the far field angular spread of the beam
θ gets larger.
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Fig. 1. A summary of Gaussian beam propagation (from the www.mellesgriot.com website on Gaussian beam
optics ).

Fig. 2. Diffraction spreading of two Gaussian beams with different spot sizes at the beam waist (from, Siegman,
1986, Figure 17.6).

The oblate speroidal coordinate system well represents the shape of a Gaussian beam and can
be used to derive Gaussian solutions to the Helmholtz equation. There coordinates were originally
used for antenna theory, e.g. Stratton (1956) and Flammer (1957), and a recent overview of wave
solutions in oblate spheroidal coordinates is given by McDonald (2002).

All waves that go through a focus experience a phase advance called the Guoy phase ψ(x3).
Feng and Winful (2001) inferred that for a Gaussian beam, this results from the lateral beam spread
as the wave eminates from the beam waist. Instead of the relation k3 = ω/v = k, the average x3

component of the wavenumber across the beam is, k3 ≈ k − k2
1

k − k2
2

k , where k2
1 and k2

2 are averages
of the lateral squared wavenumber components across the beam. Feng and Winful (2001) inferred
that for a Gaussian beam a phase shift would result as

(2.2) ψ(x3) =

∫ x3

0

(

k2
1 + k2

2

)

dx3 =

(

1

2
+

1

2

)

tan−1

(

x3

xR
3

)

For x3 → ∞, then ψ(x3) = π/2 (π/4 for each lateral dimension). For a Gaussian beam, this
phase shift is progressive from 0 to π/2 from the beam waist for 0 < x3 < ∞. In 2-D ribbon
beams, this phase shift goes from 0 to π/4. In Huygens-Fresnel integrals of a wavefront in terms
of secondary wavelets, a π/2 phase shift is also required between the incident wavefront and the
diverging secondary wavelets. For −∞ < x3 < +∞, the Gouy phase results in a phase shift of π

for a wave going through a focus and for Gaussian beams this is progressive.
Paraxial Gaussian beams in inhomogeneous media can be described by dynamic ray tracing

with complex initial conditions along a real ray, and this provides a major computational advantage
for the calculation of high-frequency Gaussian beams in smoothly varying media. Overviews of
paraxial Gaussian beams using dynamic ray tracing are given by Kravtsov and Berczynski (2007),
Popov (2002), Cerveny (2001) and aren’t discussed further here.

3. Bessel Beams in Homogeneous media. In the 1980’s there was an interest in non-
diffracting beam solutions including focus wave modes (Brittingham, 1983), exact wave solutions
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Fig. 3. Cylindrical Bessel functions of different orders (from Weber and Arfken, 2004).

with complex source locations (Ziolkowski, 1985), and even solutions called electromagnetic missiles
(Wu, 1985). Durnin (1987) and Durnin et al. (1987) showed that Bessel beams can propagate
without change of shape to a large range in free space. These types of beams were described earlier,
for example by Stratton (1941, pp. 356), but because of their infinite energy (like plane waves), did
not attract much interest at the time. To derive these solutions, consider the scalar wave equation

(3.1) ∇2u − 1

v2

∂2u

∂t2

A trial solution is used of the form

(3.2) u(x, t) = f(ρ)ei(k3x3−ωt)

where ρ = (x2
1 +x2

2)
1/2 is the transverse distance to x3, and the lateral shape f(ρ) is preserved with

distance x3. Substituting this trial solution into the wave equation results in

(3.3) ρ2 d2f(ρ)

dρ2
+ ρ

df(ρ)

dρ
+ ρ2

(

k2 + k2
3

)

f(ρ) = 0

where k2 = ω2/v2. Recall Bessel’s equation, (for example Weber and Arfken (2004), pp. 590)

(3.4) x2 dJν(x)

dx2
+ x

Jν(x)

dx
+

(

x2 − ν2
)

Jν(x) = 0

where Jν(x) is a cylindrical Bessel function of order ν. Figure 3 shows cylindrical Bessel functions
of several orders. For equation 3.2, f(ρ) = J0(kρρ) where k2

ρ = k2 − k2
3 . Therefore, a solution to

the wave equation in free space that doesn’t change lateral shape with distance is

(3.5) u(x, t) = J0(kρρ)ei(k3x3−ωt)

where k2 = ω2/v2 = k2
1 + k2

2 + k2
3 = k2

ρ + k2
3 with kρ = k sin θ and k3 = k cos θ. Then,

(3.6) u(x, t) = J0(k sin θρ)ei(k cos θ x3−ωt)

for some angle θ. In fact, Equations 3.5 and 3.6 represent “conical waves” which are analogous to
plane wave solutions in cylindrical coordinates. For θ = 0, the solution reduces to a plane wave
traveling in the x3 direction.

To show that this solution can be described in terms of conical waves, the Bessel function can
be written as

(3.7) J0(ρ) =
1

2π

∫ 2π

0

dαeiρ cos α
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Fig. 4. Wavenumber vectors making up a non-diffracting Bessel beam. All the plane waves in the Bessel beam
have the same inclination angle θ0 with respect to the propagation axis kz (from Lopez-Mariscal et al., 2007).

Let α = φ − φ′, then cos α = cos(φ − φ′) = cos φ cos φ′ + sin φ sin φ′. Also, let x1 = ρ cos φ′ and
x2 = ρ sin φ′, then

(3.8) J0(ρ) =
1

2π

∫ 2π

0

dφ ei(cos φ x1+sin φ x2)

Now,

(3.9) u(x, t) = J0(k sin θρ)ei(k cos φ x3−ωt)

and,

(3.10) u(x, t) =

∫ 2π

0

dφei(k sin θ cos φ x1+k sin θ sin φ x2+k cos θ x3−ωt)

This then equals

(3.11) u(x, t) =

∫ 2π

0

dφei
−→
k ·−→x −ωt

where the integrand is now in the form of plane waves with
−→
k = ω

k (sin θ cos φ, sin θ sinφ, cos θ)T .
Equation 3.11 defines a cone of plane waves normals with respect to the x3 axis. In seismology,
these are sometimes call conical waves, where the angle θ gives the opening angle of the cone. This
cone of plane wave normals creates a Bessel beam which has a lateral cross-section which is invariant
with distance, and thus is a diffraction free beam solution of the wave equation in free space (Figure
4).

The transverse cross-section is a Bessel function and and for intensity this is illustrated in Figure
5. Like a plane wave, Bessel beams have infinite energy and propagate in a diffraction free manner.
In optics, a Bessel beam can be formed in several ways. Durnin et al. (1987) used an annular
aperture followed by a lens to make plane waves. Bessel beams can also be formed by a so-called
axicon lens (McGloin and Dholakia, 2005). In each of these cases, the diffraction free range xmax

3

is limited practically by the size of the lens R, where xmax
3 = R

tan θ
and θ is the open angle of the

beam. Figure 6 shows a kaleidoscope pattern of a non-diffracting beam formed from a discrete set
of a finite number of plane waves (from Bouchal, 2003).

Bessel beams are free-wave mode solutions in a cylindrical coordinate system, and therefore can
be used to decompose other cylindrically symmetric wavefields. For example, a spherical wave can
be either decomposed into plane waves as

(3.12)
eiωR/v

R
=

i

2π

∫

∞

∞

dk1dk2
1

k3
ei(k1x1+k2x2+k3|x3|)



A TALE OF TWO BEAMS 53

Fig. 5. The transverse intensity pattern of a zero-order Bessel beam (from Bouchal, 2003).

Fig. 6. A kaleidoscope of nondiffracting beam patterns can be obtained as a discrete set of a finite number of
plane waves. This shows the case for N = 5 plane waves (from Bouchal, 2003).

where k3 = (ω2/v2 − k2
1 − k2

2)
1/2 with Im(k3) > 0 and Re(k3) > 0, and this is called the Weyl

integral (Aki and Richards, 1980; Chew, 1990). Also,

(3.13)
eiωR/v

R
= i

∫

∞

0

dkρ

kρ

k3
J0(kρρ)eik3|x3|

and this is called the Sommerfeld integral (Aki and Richards, 1980; Chew, 1990), which is a decom-
position of a spherical wave into conical waves or Bessel beams.

As a comparison of Gaussian beams and Bessel beams, Gaussian beams concentrates the energy,
but are diffracting. In contrast, Bessel beams have a transverse pattern which is stationary in x3

and therefore are non-diffracting, but the energy is not all concentrated along the central axis.
Figure 7 compares a Gaussian beam with a finite-aperture limited-diffraction Bessel beam (from
Salo and Friberg, 2008). The central maximum of the diffraction free beam has the same width as
the beam-waist of the Gaussian beam. The diffraction free range of the Bessel beam is ultimately
limited by the size of the initial lens or other aperture as described earlier.

A question of “superluminal” behavior of beam solutions in free space (or faster than light speed
or medium speed in acoustics) was asked by Mugnai et al. (2000). Recall that a Bessel beam can
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Fig. 7. A Gaussian beam and a finite-aperture limited-diffraction Bessel beam are compared. The maximum of
the central maximum of the Bessel beam has the same width as the beam waist of the Gaussian beam (from Salo and
Friberg, 2008).

be written as

(3.14) u(x, t) = J0(k sin θ ρ)ei(k cos θ x3−ωt)

so the “velocity” of the Bessel beam vbb in the x3 direction is

(3.15) k3 x3 = k cos θ x3 =
ω

v
cos θ x3 =

ωx3

vbb

where vbb = v
cos θ

. When θ > 0, then vbb > v where v is the medium speed. So one can ask, can
a Bessel beam really go faster than the medium velocity, and the answer is yes. But, then one can
ask, can a EM wave go faster than light speed, and again the answer is yes. The question then
is, can energy for a Bessel beam go faster than the medium speed (or the speed of light), and the
answer is no. It turns out that vbb is an apparent phase speed in the xx direction.

Since a Bessel beam is made up of plane waves, each traveling at an angle θ to the x3 axis, it

is most straightforward to look at the individual plane waves making up the Bessel beam. The
−→
k

vector for a plane wave is in the direction of the wavefront normal and ki = ω
v si where −→s is the

unit normal to the plane wave. The phase velocity is then vp
i = ω

ki
= v

si
. For si in the x1−x3 plane,

then −→s = (sin θ, 0, cos θ) for some angle θ from x3 direction. Then, vp
1 = v

sin θ
and vp

3 = v
cos θ

. For
θ = 0, then vp

3 = v the phase speed of the medium. For θ > 0, then vp
3 > v. As an example, for a

wave hitting a beach, the apparent speed of the wave along the direction of the beach can be large,
and even infinite if θ = 90 degrees when all points on the beach are hit at the same time.

However, energy does not travel with the phase velocity, but rather at the group velocity for a
non-attenuating medium (Cerveny, 2001) where

(3.16) vg
i =

dω

dki

Now siki = si
ω
v si = ω

v since sisi = 1. Then ω = vsiki. So, vg
i = d

dki
(vsjkj) = vsi. Thus, for an

individual plane wave traveling at an angle θ to the x3 axis, then vg
1 = v sin θ and vg

3 = v cos θ.
For θ = 0, vg

3 = v = vp
3 in the direction of wavefront travel. For θ > 0, then vg

3 < v and
vp > v. Therefore, the apparent vg in the x3 direction is less than or equal to the medium speed.
Thus, for an oblique direction to the plane wave direction, group velocities cannot go faster than v.
Nonetheless, apparent phase velocities can go faster than v, and this is regularly used and measured
in seismological applications using arrays. As a check on this, a relation for plane waves in both
isotropic and anisotropic, non-attenuating media is

(3.17)
−→
vg

·

−→p = 1
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where −→p = −→s /v is the slowness vector (Cerveny, 2001, Eqn. 2.2.67). Using the relations above for
the group velocity then (vsi)(si/v) = sisi = 1.

Since Bessel beams are made up of a cone of plane waves all traveling obliquely with the same
angle θ with respect to the x3 axis, then vbb = v/ cos θ is the phase velocity of the Bessel beam
package traveling in the x3 direction. Although this velocity is greater than the medium velocity
v, there are no “faster than light” difficulties, but rather only confusion between phase, group and
energy velocities.

In the physics literature there was some early confusion on different definitions of beam velocity
since k3 = k cos θ = ω

v cos θ and some researchers inferred vg
3 = dω

dk3
= k3v

cos θ
= v/ cos θ. So it

was incorrectly concluded that vg
3 was greater than v, the same as vp for a Bessel beam. (see for

example, McDonald, 2000 ). Nonetheless, an energy velocity for a Bessel beam was derived, and
this was thought to be different from both the phase and group velocity. For example, Sauter and
Paschke (2001) obtained an energy velocity of ve = v cos θ and concluded that energy for a Bessel
beam did not go faster than light. However, as shown above this is also the group velocity in a
non-attenuating medium for the individual plane waves making up the Bessel beam. As a result
of these controversies, different definitions of signal velocities were re-assessed (Milonni, 2005), and
there was also a renewed interest in classic work on wave speeds, such as that of Brillouin (1960).

In addition to Bessel beams in free space, a number of “paradoxes” were found in “exotic media”
where faster than light propagation have been inferred in recent years. For example, Wang et al.
(2000) found superluminal light propagation in gain-assisted media. In examples like these, further
explanations are required for large apparent velocities along the beam axis. Also, there have been
inferences of ultra-slow light propagation in special media, for example by Vertergaard et al. (1999).
A number of examples of fast and slow light have been summarized by Milonni (2005). How these
results will ultimately be interpreted and if they have potential applications in seismology is yet to
be determined.

As an example of multi-frequency pulsed-signals, Heyman and Felsen (2001) investigated Gaus-
sian beams and pulsed-beam dynamics using complex-source and complex-spectrum formulations.
For pulsed Bessel beams, researchers have found so-called “X-waves” which travel in the shape of
an “X” in the x3 direction. In acoustics, these were described and observed by Lu and Greenleaf
(1992a,b) from work performed at the Mayo Clinic (see also, Lu and Greenleaf, 1994; Lu, 2008). For
light propagation, Figure 8 shows an example of Bessel X-wave propagation from Saari and Reivelt
(1997) where the simulated result is shown on the left panel and experimental results are shown on
the right panel.

One way to think about pulsed Bessel beam signals is to just consider two crossing plane waves
in 2D. Figure 9 shows an X-pulse formed from two crossing plane waves at two times moving in
the vertical direction (from Sauter and Paschke, 2001). The overall shape of the pulse moves in
the vertical x3 direction without change of shape. In an actual X-wave, this would result in pulsed
conical waves with plane waves over the entire cone of wavenumbers. The center “X” moves in the
vertical x3 direction at a speed of v

cos θ
> v (the center of the “X” moves at the phase velocity). An

analogy used for this is of a closing scissors where each metal piece of the scissors is moving slowly,
but the crossing point can move very fast. Also, since different parts of the wavefronts make up the
center of the “X” at different times and distances, the waveform has a “self-healing” property to
local perturbations along the center of the “X” of the wave. Practically, these pulsed X-waves must
be passed through an aperture and this will ultimately limit the propagation distance of the wave
before it diffuses.

Finally, a different phenomena, but a relative to a Bessel beam, is the “spot of Arago” or
sometimes call “Poisson’s spot”. In 1818, Fresnel presented his paper on the diffraction theory
of light. This was at a time when Newton’s corpuscular theory of light was the preferred model.
Attempting to invalidate Fresnel’s conclusion, Poisson, a member of the examining committee,
predicted that if you put a small obstacle in front of a source of light, a spot of light would appear
at the center of the shadow. Poisson claimed that this would violate common sense and would then
disprove Fresnel’s theory. However, the prediction was experimentally tested and verified by Arago,
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Fig. 8. Bessel X-wave for a light wave where the left panel shows the simulated results and the right panel shows
the experimental results. Here the direction of propagation is horizontal (from Saari and Reivelt, 1997)

Fig. 9. An X-pulse formed from two crossing plane waves at two times moving in the vertical direction. The
center of the “X” at different times comes from different parts of the two plane waves (from Sauter and Paschke,
2001).

another member of the examining committee, thus validating the wave theory of light (see, Harvey
and Forgham, 1984).

4. Conclusions. In this overview, Gaussian beams and Bessel beams have been described.
Both can be decomposed into plane waves. For a Gaussian beam which is localized but undergoes
diffraction, the spatial transform of Equation 2.1 for x3 = 0 is

(4.1) S(kρ,ω) = 21/2e−W 2
0 k2

ρ
/4 δ(ω − ω0)

where W0 is the initial beam width and k2
ρ = k2

1 + k2
2 at a single frequency ω0. For a Bessel beam

which is ideally non-diffracting, then

(4.2) S(kρ,ω) =
δ(kρ − ω

v sin θ)

kρ

δ(ω − ω0)

where this describes a cone in wavenumber space at a single frequency ω0. Although for a given
opening angle, a Bessel beam excludes the central angles required to form a Gaussian beam, a
cylindrically symmetric Gaussian beam can be decomposed into Bessel beams of different angles θ

in a similar fashion as spherical waves decomposed into conical waves.
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