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IMAGING AND ILLUMINATION WITH INTERNAL MULTIPLES

ALISON E. MALCOLM∗, BJøRN URSIN†, AND MAARTEN V. DE HOOP‡

Abstract. If singly scattered seismic waves illuminate the entirety of a subsurface structure of interest, standard methods can be
applied to image it. It is generally the case, however, that with a combination of restricted acquisition geometry and imperfect velocity
models, it is not possible to illuminate all structures with only singly scattered waves. We present an approach to use multiply scattered
waves to illuminate structures not sensed by singly scattered waves. It can be viewed as a refinement of past work in which a method to
predict artifacts in imaging with multiply scattered waves was developed. We propose an algorithm and carry out numerical experiments,
representative of imaging of the bottom and flanks of salt, demonstrating the effectiveness of our approach.
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1. Introduction. In this paper, we introduce a method of including multiply scattered waves in one-way

wave equation based migration. The method has the potential to improve, in particular, images of the base

of salt and of near-vertical structures such as salt flanks or faults. Our approach extends the work of [17] by

including illumination in a series representation that models the data as a superposition of different phases.

By explicitly including illumination in the series we identify those multiples which carry information about

regions of the subsurface not illuminated by singly scattered waves.

Imaging with the one-way wave equation, based on multiply scattered waves, requires a “multi-pass”

approach reminiscent of the generalized Bremmer series [10]. Turning waves can, in principle, also be

accounted for in such an approach [30, 31]; see also Hale et al. [12]. In the multi-pass approach, starting

at the surface (or top), waves are first propagated downwards and then stored at each depth; in the second

“pass”, starting at the bottom, reflection operators derived from the image are applied to the stored fields and

the results are propagated, accumulatively, back upwards. To image steep reflectors, the (stored) downgoing

wavefields are cross correlated in time with these upgoing fields, at each depth. Turning waves, however, can

be incorporated in the one-way wave equation more naturally by introducing proper curvilinear coordinates

(and associated Riemannian metric [26]).

The approach proposed in this paper integrates elements of Jin et al. [14], who developed a way to image

near-vertical structures with doubly scattered waves, with Malcolm & De Hoop [17], who developed the

inverse generalized Bremmer coupling series. Here, we modify this series to incorporate illumination effects

to arrive at a method to generate partial images with different orders of multiply scattered waves. The final

image is then assimilated from these partial images (cf. Figure 1). The inverse generalized Bremmer coupling

series combines aspects of the Lippmann-Schwinger equation driven inverse scattering series developed by

Weglein et al. [28, 27] with the generalization of the Bremmer series [5] developed by De Hoop [10].

Standard migration techniques typically take into account only the first term of these respective series, which

is the single scattering assumption ubiquitous in seismic imaging. We confirm the reasoning behind our

approach with numerical experiments. Our main interest, here, is imaging with “underside” reflections, but

we generally consider internal multiples.

A method for imaging with surface-related multiples (primarily triply scattered waves) has been pro-

posed by Berkhout & Verschuur [2]. They transform surface-related multiples into primaries with the

“sources” at the surface reflection points. Elastic-wave surface reflections were also used by Bostock et

al. [4] but then in the setting of teleseismic waves and passive sources. Doubly scattered waves have also

been considered, for the purpose of imaging near-vertical structures. These have been referred to as “du-

plex”, or “prismatic” waves, and were first discussed by Bell [1], directly followed by Hawkins [13], who

discussed their influence on dip moveout (DMO) algorithms. Prismatic reflections have been exploited in a

ray-theoretical framework, also in the context of travel time tomography, by several authors [1, 6, 18, 7, 8].

Bell [1] describes a method by which the location of a vertical reflector is optimized by reducing the travel
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FIG. 1. Assimilation of partial images. Examples of “topside” reflection (singly scattered waves, left), “underside” reflection

(triply scattered waves, left) and “prismatic” reflections (doubly scattered waves, right) considered in this paper. The bottom reflector

will be assumed to appear in the image of the first pass.

time of the doubly scattered waves to an equivalent primary reflection. Marmalyevskyy [18] uses a Kirchoff

method to carry out the imaging in which a near-horizontal reflector is picked and the reflection off this inter-

face is included in the Green’s function used in Kirchoff migration. A mathematical analysis of imaging with

doubly scattered waves, related to the approach of Marmalyevskyy, has been carried out by Nolan et al. [20].

(Including certain reflectors in the velocity model in reverse-time migration to incorporate multiple scattering

has been considered by Mittet [19].) In [6, 7, 8] the authors use the picked travel times of doubly scattered

waves as part of a traveltime tomography procedure. The goal of their work is to provide an inversion frame-

work that accounts for regions where the forward map for (modelling of) a particular event is “undefined”.

They choose the exploitation of doubly scattered waves as these waves are often recorded at only a subset

of the receivers. In this case, primaries and doubly scattered waves are used in a joint inversion for both the

velocity model and reflector locations; the doubly scattered waves are included by first identifying them as

doubly scattered waves and then minimizing a travel time misfit between the computed (via raytracing) and

true traveltimes.

Our approach requires neither the explicit identification of multiply scattered waves nor the manual

location of near-horizontal reflectors. However, to avoid excessive computations, we introduce particular

pseudodifferential cutoffs tied to the imaging conditions associated with doubly, triply, .. scattered waves,

to implement our approach. These are reminiscent of the imaging condition used in reverse-time migration

[3, 29], derived from directional wavefield decomposition.

The paper is organized as follows. We first review the basic structure of multiple scattering operators in

the context of inverse scattering. We then introduce the notion of illumination decomposition. In Section 3

we discuss the formation of images with multiply scattered waves, making use of the illumination decom-

position, and propose a corresponding algorithm. We carry out numerical experiments demonstrating the

effectiveness of our approach in Section 4.

2. Multiple scattering: Image artifacts and illumination.

2.1. Directional decomposition. We consider acoustic wave propagation, governed by the system of

equations

(2.1) ∂z

(
u

∂zu

)
=

(
0 1

−A 0

) (
u

∂zu

)
+

(
0
−f

)
,

where

(2.2) A = A(z, x, ∂x, ∂t) = ∂
2
x − c(z, x)−2

∂
2
t ,

u is the particle displacement, and f is the source density of injection rate; x denotes the “horizontal”

coordinates, t is time, and z is the “depth” coordinate. The velocity c is assumed to be a smooth function.

In n-dimensional seismics, x = (x1, . . . , xn−1), n = 2, 3. To facilitate the decomposition of the wavefield

into constituents that have been scattered a specific number of times, we split the wavefield into up- and

down-going components, as in the development of the Bremmer series decomposition [10]. The analysis can
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be found in [25]. One introduces a z-family of decomposition operators, Q(z), with

(2.3) U :=

(
u+

u−

)
= Q(z)

(
u

∂zu

)
,

(
f+

f−

)
= Q(z)

(
0
−f

)
,

that diagonalize system (2.1) according to

(2.4) Q(z)

(
0 1

−A 0

)
Q−1(z) =

(
iB+ 0
0 iB−

)
.

The operators B± are pseudodifferential operators (but not globally), and are often referred to as the single-

square-root operators; for “true-amplitude” applications, their sub-principal symbols have to be taken into

account. (For an introduction to the notion of wavefront sets and the calculus of pseudodifferential operators,

see [24].) There are several different choices possible for the “normalization” of Q(z). We choose the

vertical power flux normalization. Then the operators B± are self-adjoint, and the diagonal entries of the

coupling operator, Q(z)∂zQ(z)−1, are of lower order and can be neglected in leading-order “true-amplitude”

applications. In this normalization, the decomposition operators attain the form

(2.5) Q(z) = 1
2

(
Q∗

+(z)−1 −HQ+(z)
Q∗

−
(z)−1 HQ−(z)

)
,

where the Q±(z) are pseudodifferential operators, and H is the Hilbert transform in time. System (2.1)

transforms, upon suppressing the down-up coupling, into a system of one-way wave equations,

(2.6) ∂z

(
u+

u−

)
=

(
iB+ 0
0 iB−

) (
u+

u−

)
+

(
f+

f−

)
,

for the downgoing field, u+, and the upgoing field, u−. From (2.3) we find that u(z, .) = Q∗

+(z)u+(z, .) +
Q∗

−
(z)u−(z, .), while f±(z, .) = ± 1

2HQ±(z)f(z, .). We introduce the Green’s functions, G±, for the one-

way wave equations; we denote the corresponding solution operators, that is, one-way propagators, by the

same symbols. Here, the evolution coordinate has become z. We then form the matrix

(2.7) G =

(
G+ 0
0 G−

)
,

which is the down/up solution operator for the diagonal system (2.6).

To develop the scattering equations and formulate the inverse scattering problem, we decompose the

velocity model into a background model c0(z, x), which is smooth and assumed to be known, and a contrast,

δc(z, x), which is to be determined. The contrast defines the perturbation,

(2.8) δA = 2c−3
0 δc ∂

2
t

of A in (2.2). With c0 playing the role of c in the directional decomposition above, this naturally leads to the

introduction of

(2.9) V (z) = Q(z)

(
0 0

−δA(z, .) 0

)
Q(z)−1,

cf. (2.4). We then introduce V̂ according to V = V̂ ∂2
t . While neglecting the down-up coupling in the back-

ground model, the directional decomposition will facilitate the identification of different orders of multiply

scattered waves. The total scattered field is written in the form

(2.10)

(
δu

∂zδu

)
= Q(z)−1

(
δu+

δu−

)
, δU =

(
δu+

δu−

)
,

cf. (2.3). The equation for δU then reads [17, (41)],

(2.11) (I − ∂
2
t GV̂ ) δU = ∂

2
t G(V̂ U),

which has the form of a Lippmann-Schwinger equation [16, 15], or

(2.12) (I − ∂
2
t GV̂ ) (U + δU) = U.
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2.2. Recursions: Forward and inverse scattering. Starting from (2.11) we can now set up a recursion

to generate multiple scattered waves:

(2.13) δU1 = ∂
2
t G(V̂ U), δUm = ∂

2
t G(V̂ δUm−1), m = 2, . . . ,M

so that
∑M

m=1 δUm generates δU . (As compared with the generalized Bremmer coupling series, G(V̂ ∂2
t . )

can be identified with K . in [10]; the second-order time derivative, however, requires additional care in

the analysis though.) Clearly, m counts the order of scattering; here, we consider M = 3. In a surface

seismic experiment, ignoring free-surface effects, we can set f− = 0 (at z = 0), while one observes the

upcoming wave constituent, Q∗

−
(0) δu−(0, ., ., .); we model data, d, upon subjecting this constituent further

to a restriction to the acquisition geometry.

To develop a framework for inverse scattering, we rewrite (2.12) according to [17, (49)-(50)] as

∂
2
t GV̂ (U + δU) = δU.

The reconstruction of the contrast is initiated by expanding V̂ into the sum V̂ =
∑M

m=1 V̂m. In the actual

process, the equation above, and the recursion below, need to be subjected to a restriction to z = 0 after

applying Q∗

−
(z). The reconstruction is usually driven by the single scattering operator derived from δU1 in

(2.13) using all the data; that is,

δU = ∂
2
t G(V̂1U),(2.14)

−∂
4
t G(V̂1G(V̂1U)) = ∂

2
t G(V̂2U),(2.15)

−∂
6
t G(V̂1G(V̂1G(V̂1U))) − ∂

4
t G(V̂1G(V̂2U)) − ∂

4
t G(V̂2G(V̂1U)) = ∂

2
t G(V̂3U), · · ·(2.16)

In this procedure, V̂2, V̂3, .. contain artifacts that correct the initial reconstruction, V̂1. Here, we assume

full illumination through the single scattering operator appearing on the right-hand sides of equations (2.14)-

(2.16). If the data acquisition only results in partial illumination, we can complement this illumination by

higher-order terms appearing on the left-hand sides of (2.15)-(2.16). For example, the illumination of V̂2

is the same as of V̂1; locally, where V̂1 has not been illuminated through (2.14), one can fill in “holes” by

moving the corresponding contribution from the left-hand side in equation (2.15) to the right-hand side of

equation (2.14). Indeed, the left-most terms in (2.15)-(2.16) can generate contributions that are effectively of

first (or second) order, the next two terms on the left-hand side of (2.16) can generate contributions that are

effectively of second order, etc. This approach is elaborated in the following subsection.

2.3. Illumination decomposition. In many configurations, there are regions where V̂ cannot reached

by singly scattered waves. Multiple scattered waves may form a remedy for illumination. To analyze this,

we introduce the illumination decomposition,

(2.17) V̂1 = V̂ ′

1 + V̂ ′′

1 + V̂ ′′′

1 + . . . ,

where V̂ ′

1 is the part of the model that has been illuminated by the recorded singly scattered data, V̂ ′′

1 is

the part of the model that is first illuminated by the doubly scattered data, V̂ ′′′

1 is the part of the model first

illuminated by triply scattered data, and so on. In the further analysis, we assume that the wavefront sets

of V̂ ′

1 , V̂ ′′

1 , V̂ ′′′

1 , . . . have no points in common. We proceed with a construction to image regions where

singly scattered waves do not illuminate the structure of interest; such a construction was carried out for

surface-related multiples in [2].

Substituting (2.17) into the expansion for V̂ yields

(2.18) V̂ = V̂ ′

1 + V̂ ′′

1 + V̂ ′′′

1 + · · · +
M∑

m=2

V̂m.

We note that the illumination decomposition pertains to the higher order terms, V̂2, V̂3, . . . , associated with

the artifacts, as well. Indeed, the artifact prediction is complicated by this decomposition.
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(a) (b)

(c)

(d) (e)

FIG. 2. Example contributions corresponding with triple scattered illumination; (a) and (b) are admitted, while (c), (d) and (e)

are omitted in the construction here, cf. (2.19).

We adapt the recursion in (2.14)-(2.16), by accounting for illuminating the contrast with multiple scat-

tered waves. With the aid of (2.18), equation (2.14) becomes

(2.19) δU = ∂
2
t G(V̂ ′

1U) + ∂
4
t

[
G(V̂ ′

1G(V̂ ′′

1 U)) + G(V̂ ′′

1 G(V̂ ′

1U))
]

+ ∂
6
t

[
G(V̂ ′

1G(V̂ ′′′

1 G(V̂ ′

1U))) + G(V̂ ′

1G(V̂ ′

1G(V̂ ′′′

1 U))) + G(V̂ ′′′

1 G(V̂ ′

1G(V̂ ′

1U)))

+ G(V̂ ′′

1 G(V̂ ′′′

1 G(V̂ ′

1U))) + G(V̂ ′

1G(V̂ ′′

1 G(V̂ ′′′

1 U))) + G(V̂ ′′′

1 G(V̂ ′

1G(V̂ ′′

1 U)))

+ G(V̂ ′

1G(V̂ ′′′

1 G(V̂ ′′

1 U))) + G(V̂ ′′

1 G(V̂ ′

1G(V̂ ′′′

1 U))) + G(V̂ ′′′

1 G(V̂ ′′

1 G(V̂ ′

1U)))

+G(V̂ ′′

1 G(V̂ ′′′

1 G(V̂ ′′

1 U))) + G(V̂ ′′

1 G(V̂ ′′

1 G(V̂ ′′′

1 U))) + G(V̂ ′′′

1 G(V̂ ′′

1 G(V̂ ′′

1 U)))
]

+ . . .

which is then subjected to the restriction to the acquisition geometry in the plane z = 0. Naturally, equations

(2.15)-(2.16) are affected by this refinement, and more intricate artifact contributions occur.

Down-up reduction. We simplify (2.19) following a seismic experiment. Considering typical scattering

ray geometries in combination with a realistic acquisition geometry, we omit contributions that arise in

the reconstruction of V̂ ′′′

1 using V̂ ′′

1 (see Figure 2 (c), (d)) – these are less likely to appear in the data.

Contributions described by Figure 2 (e) are likely to violate our assumptions concerning V̂ ′

1 and V̂ ′′′

1 . Out

of the remaining contributions involving V̂ ′′′

1 , the first term is most likely to play a role in practice (see

Figure 2 (a) and (b)). We write

(2.20) V̂ =

(
V̂++ V̂+−

V̂−+ V̂−−

)
.
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further restriction to the acquisition geometry in our notation. The acquisition geometry consists of a set

of sources, s, each with an associated set, Σs, of receivers. The terms in this equation can be identified in

Figure 3. The second and third terms on the right-hand side are reciprocal to one another. We will make use

of equation (2.21) in imaging by a bootstrapping argument. We note that the second and third terms on the

right-hand side account for “prismatic” reflections. The focus of this paper is image assimilation based on

the first and fourth terms on the right-hand side, thus making use of “underside” reflections. However, we

will also briefly address the second and third terms in the discussion.

3. Imaging with multiply scattered waves.

3.1. Projections. We start with the data equation (2.21). Our imaging strategy is as follows. We

“project” d onto d1 in the range of the single scattering operator,

(3.1) d1 = RQ∗

−
∂

2
t G−((V̂ ′

1)−+(G+f+)),

by minimizing ‖d − d1‖. In the process we reconstruct (V̂ ′

1)−+. We then select a part, (
˙̂
V 1)−+, of the

reconstruction of (V̂ ′

1)−+ to become a scatterer in the background model; this scatterer can be regularized

and enhanced with the aid of a curvelet-like transform and methods of ℓ1 optimization. Using (
˙̂
V 1)−+, we

form a “double” scattering operator by replacing G− on the right-hand side of (3.1) by

(3.2) G̃−+ . = ∂
2
t G−((

˙̂
V 1)−+(G+ . )).

We proceed with “projecting” d − d1 onto d2 in the range of the “double” scattering operator,

(3.3) d2 = RQ∗

−
∂

2
t G̃−+((V̂ ′′

1 )++(G+f+)),

by minimizing ‖(d− d1)− d2‖. We reconstruct (V̂ ′′

1 )++, and then repeat this step with the reciprocal form,

(3.4) d2 = RQ∗

−
∂

2
t G−((V̂ ′′

1 )−−(G̃−+f+)),

and reconstruct (V̂ ′′

1 )−−. However, in the vertical acoustic power flux normalization, V̂−− = V̂++, whence

we take half the sum of the two double scattering reconstructions. Using (
˙̂
V 1)−+, we form a “triple” operator

by replacing both G− and G+ on the right-hand side of (3.1) by G̃−+. We proceed with “projecting”

d − d1 − d2 onto d3 in the range of the “triple” scattering scattering operator,

(3.5) d3 = RQ∗

−
∂

2
t G̃−+((V̂ ′′′

1 )+−(G̃−+f+)),

by minimizing ‖(d − d1 − d2) − d3‖. We obtain a reconstruction of (V̂ ′′′

1 )+−.

A natural concern is the separation of the ranges of the different scattering operators. Indeed, an estimate

of (V̂ ′

1)−+ made by approximating d with d1 will differ from the true V̂ , by not only the illumination foot-

print of the acquisition geometry but also by artifacts from higher-order scattering (internal multiples). An

approach to attenuate these artifacts is discussed in [17], which can be refined to account for the illumination

decomposition introduced here. Moreover, the subtraction of data sets, d−d1, (d−d1)−d2, and so on, with

equations (3.1-3.5) is problematic as the resolution of d1, d2, .. will differ from one another.

The approach developed in this paper assumes that singly scattered waves illuminate structures only from

above. Where strong vertical gradients exist, however, this assumption can be violated as waves will turn

allowing the illumination of near-vertical reflectors (this is exploited in [22, 30, 31]) and, in extreme cases,

even illuminating reflectors from below. In principle, we can accommodate these situations by introducing

curvilinear coordinates.

3.2. Imaging condition. We revisit the imaging condition from a reverse-time migration perspective,

allowing Green’s functions in general background models. For each source, the incident field can be written

in the form

(3.6) us(z, x̄,ω) = G+(z, x̄,ω, 0, s)



172 ALISON E. MALCOLM, BJØRN URSIN, AND MAARTEN V. DE HOOP

assuming that f+(x,ω) = −δ(x − s). The backpropagated data are given by

(3.7) uΣs
(z, x,ω) =

∫

Σs

G−(0, r,ω, z, x)Q−,r(0)d(r, ω, s) dr;

the subscript r in Q−,r signifies that the operator acts in the r, and not the s, variables. We note that the

matrix elements of operator V̂ = V̂ (z) = V̂ (z, x,Dx, Dt), such as

(3.8) V̂−+(z) . = HQ−(z) (−c−3
0 δc(z, .) (Q∗

+(z) . )),

containing the contrast −c−3
0 δc, can be written in terms of their kernels, V̂ (z, x, x̄,ω). We will denote the

image of V̂−+(z, x, x̄,ω) by I(z, x̄, x, ω). The imaging operator follows from the mapping d(r, t, s) #→
I(z, x̄, x), where I(z, x̄, x) is given by

(3.9) I(z, x̄, x) =
1

2π

∫
I(z, x̄, x, ω) dω =

1

2π

∫ ∫
us(z, x̄, ω) uΣs

(z, x,ω) ds ω
2dω

ω→−ω

=
1

2π

∫ ∫
us(z, x̄, ω) uΣs

(z, x,ω) ds ω
2dω.

The second representation is obtained by time reversal. Using that Q+,x̄(z)∗G+(z, x̄, ω, 0, s) can be identi-

fied with G−(0, s, ω, z, x̄)Q−,x̄(z), that is, reciprocity, the first representation attains the form used to image

in the downward-continuation approach. With the modelling equation (cf. (3.1))

(3.10) d(r, ω, s) = Q−,r(0)∗ω2

∫ ∫ ∫
G−(0, r,ω, z, x)V̂−+(z, x, x̄, ω) G+(z, x̄, ω, 0, s) dx̄dx dz,

we can then form the normal equations and solve the inverse scattering problem by methods of least squares.

A standard calculation shows that an image of −c−3
0 δc is obtained by setting, in (3.9), x̄ = x after

replacing us(z, x̄, ω) by Q+,x̄(z)∗us(z, x̄,ω) and replacing uΣs
(z, x,ω) by −HQ−,x(z)∗uΣs

(z, x,ω). We

obtain a form resembling a two-way wave imaging procedure, but us does not propagate any − constituents

while uΣs
does not propagate any + constituents. If one were to use a two-way wave propagation procedure,

one would filter out the respective constituents by methods of directional decomposition prior to applying

the imaging condition to be consistent with the imaging procedure outlined above [11, 29].

One typically modifies the imaging operator derived from I(z, x, x), in accordance with the common-

source based normalization with the incoming wave amplitude [9],

(3.11) I(z, x) :=

∫
Is(z, x) ds, I(1)

s (z, x) =
1

2π

∫
1

|us(z, x,ω)|2
us(z, x,ω) uΣs

(z, x,ω) dω.

This modification can be refined in accordance with a common-source (asymptotic) true-amplitude imaging

condition:

(3.12) I(2)
s (z, x) =

1

2π

∫
1

|us(z, x,ω)|2

n∑

j=0

(Aj(z, x, ∂x,ω)us)(z, x,ω) (Aj(z, x, ∂x,ω)uΣs
)(z, x,ω) (−iω)−1S(ω)dω,

where A0(z, x, ∂x,ω) = iωc0(z, x)−1, A1(z, x, ∂z, ∂x,ω) = ∂z , and Aj+1(z, x, ∂z, ∂x,ω) = ∂xj
, j =

1, . . . , n−1; S(ω) = ω−2 if n = 2. This imaging condition also annihilates wave constituents that propagate

from the source at (0, s) towards (z, x), which follows upon substituting asymptotic ray representations for

the Green’s functions.

Following the common-source least-squares formulation, leads to the modification

(3.13) I(3)
s (z, x) =

[ ∫
|us(z, x,ω)|2ω4dω

]
−1

1

2π

∫
us(z, x,ω) uΣs

(z, x,ω) ω
2dω;
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essentially the gradient (image) is scaled with (an estimate of) the diagonal of the Hessian [21]; see also [23].

This approach can be extended to a least-squares formulation for all sources and receivers combined.

So far, we have consider the imaging and (least-squares) reconstruction of (V̂ ′

1)−+ according to (3.1).

We can immediately generalize the procedure to the other reconstructions. For example, to reconstruct

(V̂ ′′′

1 )+−, one replaces G− and G+ both by G̃−+. We note that the computation of the latter operator makes

use of the prior reconstruction of (V̂ ′

1)−+.

3.3. Algorithm summary. The proposed algorithm can be summarized as follows:

1. we downward/forward propagate the “source” wavefield, us, and downward/backward propagate

the “receivers” wavefield, uΣs
;

2. we store both us and uΣs
at each depth;

3. we apply imaging condition (3.13) to obtain an estimate for −c−3
0 δc throughout the model;

4. with the estimate of −c−3
0 δc we form operators V̂−+, cf. (3.8), and apply these to us and uΣs

at

each depth;

5. we, accumulatively, propagate the outcomes of the previous step upward to form ũs (forward) and

ũΣs
(backward); ũs is obtained from us upon replacing G+ by G̃−+, and ũΣs

is obtained from uΣs

upon replacing G− by G̃−+;

6. we apply the imaging condition, using ũΣs
and us to estimate −c−3

0 δc in accordance with (3.3), and

using ũΣs
and ũs to estimate −c−3

0 δc in accordance with (3.5).

All computations are carried out in the frequency domain. In the above, we have omitted the subtraction,

d − d1 for the imaging with doubly scattered waves, and d − d1 − d2 for the imaging with triply scattered

waves. This is motivated by computational efficiency. The idea is to apply pseudodifferential cutoffs to the

downward continued fields, chosen in accordance with the reliable part of the background velocity model,

prior to applying the imaging condition to mimic the subtraction. One such a cutoff is illustrated in Figure 4

in the case of double scattering. The representative model consists of a vertical reflecting segment, and a

deep, extended horizontal reflector. In (b) the backpropagated field uΣs
is shown at a certain depth (300 m,

here); clearly d1 (reflection off the bottom reflector) and d2 (“prismatic” reflection) components are present.

By applying a left-right separating “dip” filter (in (c)), the two components separate sufficiently to prevent

constructive correlation with ũs, which is illustrated in (e) and is subjected to left-right separating “dip”

filtering as well (in (f)). For comparison, we show the outcome of the subtraction procedure proper in (i). We

note that the images obtained with filtering (in (h)) and with subtraction (in (i)) are very close to one another.

The effect of ignoring the subtraction alltogether is illustrated in the image in (g).

The cutoff used to mimic the subtraction d− d1 − d2 in the case of a typical triple scattering situation is

illustrated in Figures 5-6. The representative model consists of a shallow horizontal reflecting segment, and

a deep, extended horizontal reflector. Small offsets can be used to generate, locally,
˙̂
V 1, while large offsets

are used in the imaging with underside reflections that have not passed through the region right above the

horizontal segment.

To replace the subtraction with d1, a straightforward windowing procedure is applied as illustrated in

Figure 5. The windowing is carried out while the data are downward continued, by removing a window of

time before times where energy from multiples is expected. Figures 5 (b)-(e) show the data (uΣs
) at the

depth of the upper reflector (segment); it is here that applying the imaging condition should result in the

imaging (from below) of this reflector. In Figure 5 (b) the data are shown without the windowing procedure,

so that the primary from the lower reflector is still visible, resulting in an artifact in the associated image

(in Figure 6 (a)). In Figure 5 (c) the results of applying the windowing procedure are shown; despite the

simplicity of this procedure, we note that the artifacts are attenuated in image shown in Figure 6 (b) (for

short offsets only; in Figure 6 (b’) for long offsets only). For comparison, in Figure 6 (c), we show the image

obtained with the subtraction procedure. In Figure 5 (e) we illustrate ũs at the depth of the upper reflector –

no windowing needs to be applied.

For the examples shown in the next section, the window (cutoff) was slightly modified in as much as

that the length of the time window was a linear function of the source-receiver offset.
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