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FOCUSED GAUSSIAN BEAMS FOR SEISMIC IMAGING

ROBERT L. NOWACK∗

Abstract. The application of focused Gaussian beams is investigated for the seismic imaging of common-shot
reflection data. The focusing of Gaussian beams away from the source and receiver surface adds flexibility to beam
imaging algorithms allowing for the narrowest portions of the beams to occur at the depth of a specific target
structure. This minimizes the number of beams required to form an image at the target depth. The beam fronts at
the beam-waists are also planar leading to more stable beam summations for imaging. To match with the surface
data, a quadratic phase correction is required for the local slant-stacks of the data. Also, to use the same local slant
stacks of the data for the different imaging depths, only a single focusing depth can be specified. Imaging using
focused Gaussian beams is tested using a single shot gather for a model with 5 scatterers at different depths. The
approach is then tested for a single shot gather from the Sigsbee2A model. In all cases, the beams can be focused to
a particular target depth, but proper imaging still results for other depths as well.

1. Introduction. Seismic migration using focused Gaussian beams is applied for the inversion
of common-shot reflection data. Focused Gaussian beams provide an added level of controllability
of the individual beam solutions. It allows for the beam-waist to be placed at some depth away from
the source and receiver surface and requires fewer beams for the imaging of a target structure at
depth. In addition, beam fronts are planar at the beam-waists which provide more stable imaging.
However, using focused beams results in generally curved beam fronts along the source and receiver
aperture. In order to match initially curved beam fronts with the data, a quadratic phase correction
term is needed for the local stacks of the data. In addition, for fixed spatial windows of the data,
the windowing of the data can be related to the beam parameters of the propagated beams.

Summations of Gaussian beams over either initial take-off angle or position along an initial
surface have been applied for the computation of high frequency seismic wavefields in smoothly
varying inhomogeneous media (see for example, Popov, 1982; Cerveny et al. 1982; Nowack and
Aki, 1984). Reviews of Gaussian beam summation have been given by Cerveny (1985a,b), Babich
and Popov (1989), and more recently by Popov (2002), Nowack (2003), Cerveny et al. (2007) and
Bleistein (2007). An advantage of summations using Gaussian beams to construct more general
wavefields is that the individual Gaussian beams have no singularities along their paths, no two-
point ray tracing is required and triplicated arrivals are naturally incorporated into either forward
or inverse modeling. More recently over-complete frame-based Gaussian beam summations have
been developed based on window and wavelet transforms to address some of the issues related to
completeness of beam summations (Lugara et al., 2003). In an over-complete frame based approach,
the wavefield is decomposed into beam fields that are localized both in position and direction.
Although an orthonormal basis cannot be formed using a Gabor frame, an over-complete frame
expansion can be constructed which has the added benefit of providing redundancy in the expansion
(Feichtinger and Strohmer, 1998; Hill; 1990, 2001; Hale, 1992). Here curved initial beams are used
to decompose the data and these are then propagated into the subsurface using focused Gaussian
beams.

In order to test the focused Gaussian beam approach, a test model is constructed with 5 small
scatterers with depth in a vertically varying medium resulting in 5 diffracted arrivals each with
different move-outs with distance. The partial images of single beams with different focusing depths
are shown with narrow and planar images of the scatterers for each focusing depth. However, when
summed over angles and data windows, all the scatterers are properly imaged no matter what
specific focusing depth is used. Focused Gaussian beam migration is then tested on a portion of
the Sigsbee2a model, away from the salt body, and correct imaging occurs for all depths for the
different beam focusing parameters. The advantage of using focused beams for a target structure
at a specific depth is that fewer beams are required for that image depth.
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2. Overview of Gaussian Beam Imaging with Focusing Beams. In common-shot mi-
gration, each shot gather is migrated separately and the results are summed to give the final image.
Thus,

(2.1) δm(x) ∼
∫

dxsIs(x) ,

where the adjoint image for each shot point can be written

(2.2) Is(x) =

∫

dω

2π
K(ω)

∫

dxgg(x, xs,ω)g(x, xg,ω)us(x
g, xs,ω) ,

and

(2.3) K(ω) = ω2S̄(ω) .

From reciprocity of the Green’s function g(x, x
′

,ω) = g(x
′

, x,ω) and g indicates the complex con-
jugate of g.

In the 2-D case, the Green’s function can be written in terms of a summation of Gaussian beams
as

(2.4) g(x, x′,ω) =
−i

4π

(

ε

v0

)1/2 ∫

dγugb
γ

(x, x′,ω) =
−i

4π

(

ε

v0

)1/2 ∫

dpr
1

pr
3

ugb(x, x′, pr,ω)

where ε is the beam parameter in Eqn. (7c) (Cerveny et al., 1982), and

(2.5) ugb
γ

(x, x′,ω) =

[

v(s)

q(s)

]1/2

exp

{

iωτ(s) +
iω

2
M(s)n2

}

The coordinates (s,n) correspond to the position x in ray centered coordinates, τ(s) is the travel-
time along the central ray, v(s) is the velocity along the central ray and the horizontal component
of the ray parameter vector at the source is pr

1 = sin γ/v0.
The complex second derivative of the travel-time field with respect to the transverse coordinate

n can be written

(2.6) M(s) = MR(s) + iMI(s) = p(s)/q(s)

where MR(s) is related to the wavefront curvature K(s) of the beam by MR(s) = K(s)/v(s) . To
form a bounded beam, then MI(s) > 0. The variables p(s) and q(s) are solutions to the dynamic
ray equations and for a beam solution are also complex (Cerveny, 2000). The dynamic ray equations
in 2D have two real fundamental solutions which can be written as

(2.7) π(s) =

[

q1(s) q2(s)
p1(s) p2(s)

]

where π(s0) = I, q1(s), and p1(s) are solutions for an initial plane wave and q2(s) and p2(s) are for
an initial point source. The two real solutions of the dynamic ray equations are then blended to
form a beam. There are a number of ways to combine the solutions, but one way is (Cerveny et al.,
1982)
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(2.8) q(s) = εq1(s) + q2(s)

and

(2.9) p(s) = εp1(s) + p2(s)

where ε is the beam parameter. The variable q(s) is related to the complex geometrical spreading
along the beam. Since for the fundamental solution matrix Det(π(s)) = 1 for all points along the
ray, the complex geometric spreading can never be zero at any point along the beam if it is non-zero
at any one point. Since the beam amplitude is related to the inverse square root of the geometric
spreading, the beam amplitudes are always finite, even at caustics for the ray solution. This is one
of the useful features of beam solutions in contrast to ray solutions.

The second derivative of the time field with respect to n can be written as

(2.10) M(s) = MR(s) + iMI(s) =
εp1(s) + p2(s)

εq1(s) + q2(s)

Since at the source point π(s0) = 1 and ε = εR − iεI , then

(2.11) M(s
0) = MR(s0) + iMI(s0) =

1

ε
=

εR

ε ∗ ε
+

iεI

ε ∗ ε

where ε ∗ ε is the magnitude squared of ε. Alternatively, ε can be written in terms of M(s0) as

(2.12) ε =
MR(s0)

M(s
0
) ∗ M(s

0
)
− iMI(s0)

M(s
0
) ∗ M(s

0
)

where M(s0) ∗ M(s0) is the magnitude squared of M(s0). Thus, the complex beam parameter can
be specified either directly in terms of ε or in terms of M(s0).

The complex beam parameter can also be written

(2.13) ε = εr − iεi = v0S0 − iv0L
2
0

where v0 is an initial velocity. In a homogeneous medium, S0 is the distance of the beam waist from
the initial point of beam. The exponential term away from the central ray can be written as

(2.14) exp

{

−ω

2
MI(s)n

2

}

= exp

{

−n2

2L2(s)

}

where L(s) = (ωMI(s))
−1/2 is the beam half-width transverse to the ray. At the initial point of the

beam, L(s0) = (ωMI(s0))
−1/2 = ( ε∗ε

ωεI
)1/2 . For the case when S0 = 0, then the beam-waist is at

the initial point of the beam with MR(s0) = 0, and L(s0) = ( v0

ω
)1/2L0 is the beam half-width at the

beam-waist. In a homogeneous medium, this is the narrowest point along the beam and is also the
only point where the beam front is planar. For the case when S0 $= 0, the beam front is curved at
the initial position s = s0 and the beam-waist is shifted along the beam away from the initial point
of the beam. In a homogeneous medium, the planar beam-waist is at s = S0 − s0.

Although the planar beam-waist is often placed at the initial source point, it is also common to
put the beam-waist at the receiver location (Cerveny, 1985a,b). This reduces the number of beams
required for the summation at the receiver, and also planar beam fronts at the receiver provide more
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stable beam summations. The beam-waist can also be placed at other positions along the beam,
for example at a sub-surface scattering point. Recent true amplitude migration formulations using
Gaussian beams have used beams traced from the scattering points up to the surface with the beam-
waists specified at the scattering points (Protasov and Cheverda, 2005; 2006). However, it is more
economical to launch beams from the source and receiver positions down into the subsurface since
there are fewer source and receiver locations than subsurface scattering points, and this minimizes
the amount of beam tracing required. In order to locate the beam-waists in the subsurface when
the beams are launched from the source and receiver aperture, then generally curved beam fronts
are required along the source and receiver aperture.

For nonplanar beams at the source or receiver positions launched at some angle to the aperture
plane, the quadratic part of the initial beam with respect to the horizontal x coordinate can be
written

(2.15) exp

{

−ω

2

Kx(s0)

v0
(x − xL)2

}

exp

{

−(x − xL)2

2L2
x−ref(s)

}

where Kx(s0) is the initial horizontal beam curvature, and Lx−ref(s0) is the initial horizontal beam
half-width at the reference frequency ωref. To match this with the initial parameters of the beam
propagated into the medium, then the transverse coordinate of the beam n = cos γ(x−xL) where γ

is the angle of the beam with respect to the vertical. Given the initial values Kx(s0) and Lx−ref(s0)
along the source and receiver aperture, then the initial values for MR(s0) and MI(s0) for the beams
are

(2.16) MR(s0) =
Kx(s0)

v0cos2(γ)

and

(2.17) MI(s0) = (ωrefcos2(γ)L2
x−ref(s0))

−1

and from Eqn. (2.12), the initial beam parameter ε = εr− iεi can be obtained and used to construct
the beam solution propagated into the medium.

The 2-D resolution of unity by Gaussian functions in the aperture plane is

(2.18) 1 ∼ 1√
2π

∆L

σ

∞
∑

m=−∞

e−(x−m∆L)2/2σ
2

where

(2.19) ∆L ≪ 2σ .

Assuming a regularly spaced set of beam centers xL = m∆L along the receiver array, the source
locations of the Green’s functions at the receivers can be phase shifted to these beam center locations

with a phase adjustment of pg
1(x

g
1 − m∆L) +

Kx(s0)(x
g

1−m∆L)2

2v0
. Then,

(2.20) g(x, xg,ω) ∼ Cg

∫

dpg
1

pg
3

ugb(x, xL, pg,ω)eiω(pg

1(xg

1−m∆L)+
Kx(s0)(x

g
1−m∆L)2

2v0
) ,

where Cg is the coefficient for the receiver Green’s functions from Eqn. (2.4) and pg
1 is the horizontal

component of the ray parameter vector along the receiver aperture. Eqn. (2.2) can then be written
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(2.21) Is(x) =
∞
∑

m=−∞

∫

dω

2π
A1(ω)

∫

dxg

∫

dpg
1

pg
3
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1(xg
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2v0
)
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2
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(2.22) A1(ω) =

(

+i

2π

) (
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0

)1/2

ω2S̄(ω)
1√
2π

∆L

σ
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The source Green’s function now needs to be decomposed into Gaussian beams, but for simplicity
here will be just referred to as ḡ(x, xs,ω) , where the over-bar signifies the complex conjugate.

The common-shot imaging formula for non-planar, focused beams along the aperture plane can
then be written

(2.23) Is(x) =
∞
∑

m=−∞

∫

dω

2π

∫

dpg
1

pg
3

A1(ω)ḡ(x, xs,ω)ūgb(x, xL, pg,ω)Dp(x
L, xs, pg,ω)

where

(2.24) Dp(x
L, xs, pg,ω) =

∫

dxg
1us(x

g, xs,ω)e−(xg

1−m∆L)2/2σ
2

e−iω(pg

1(xg

1−m∆L)+
Kx(s0)(x

g
1−m∆L)2

2v0
)

This is a local slant-stack of the data with a quadratic phase correction term to match the data
with the beams launched into the medium. The standard Gaussian beam migration formulas with
the planar beam waists along the aperture plane does not include this quadratic phase correction
term (Hill, 1990; 2001; Hale, 1992). The beam centers are spaced along the receiver aperture plane
at

(2.25) xL
1 = m∆L, ∆L ≪ 2σ .

and the initial horizontal beam widths are

(2.26) σ = Lx−ref(s0)
(ωr

ω

)1/2

where Lx−ref(s0) is the horizontal half-width of an initial Gaussian function at the reference fre-
quency ωref. The spacing of the beams in horizontal position and launch angle can then be deter-
mined based either on physical reasoning (Hill, 1990; 2001; Hale, 1992), or by arguments based on
frames (Feichtinger and Strohmer, 1998).

3. Applications of Focusing Gaussian beam Migration. In order to test the focusing
beam migration formulation, two examples are given. The first application has 5 compact sources
located at depths of 8,000, 12,000, 16,000, 20,000 and 24,0000 ft at a distance of 40,000 ft from the
left side of the model. The background velocity model has two layers. The first layer has a thickness
of 6000 ft with a constant velocity of 5000 ft/sec. The second layer goes from 6000 ft to 30,000
ft in depth with a vertical velocity gradient of v(z) = v0 + k(z − zb) where v0 = 5000 ft/sec, and
k = .15. The shot position is located along the surface at a horizontal position of 40,000 ft from
the left side of the model. The receiver array is from 25,000 ft to 55,000 ft on the surface. Figure
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Fig. 1. Computed common-shot data is shown for a shot point on the surface at a position of 40,000 ft. The
receiver array is from 25,000 ft to 55,000 ft. Diffractions from 5 compact scatterers are shown each with a horizontal
position of 40,000 ft and depths of 8,000, 12,000, 16,000, 20,000 and 24,000 ft.

Fig. 2. The partial image of the common shot data in Figure 1 using a single vertical Gaussian beam at a
receiver position at 40,000 ft using a beam with a planar beam-waist at the surface.

1 shows the computed wavefield from the 5 compact scatterers. The sampling rate is .008 sec and
the peak frequency of the data is 5 Hz.

Figure 2 shows the partial image of the data from a single vertically propagated Gaussian
beam with the planar wavefront at the surface. For simplicity the source side Green’s function
is constructed separately using Gaussian beams that are planar at the source location for all the
examples given. Note on the figure that the images of the diffractors are curved and increase in width
with depth. Figure 3 shows the partial image of the common shot data in Figure 1 using a single
vertical Gaussian beam at a receiver position at 40,000 ft using a focused beam with the beam-waist
at a depth of 12,000 ft. Now the diffractor at a depth of 12,000 ft is the most focused using a single
beam with the images of the other diffractors being broader and generally curved. Figure 4 shows
the partial image of the common shot data in Figure 1 using a single vertical Gaussian beam at
a receiver position at 40,000 ft using a focused beam with the beam-waist at a depth of 16,000 ft.
Now the diffractor at a depth of 16,000 ft is the most focused using a single beam with the images
of the other diffractors being broader and curved. Figure 5 shows the partial image of the common
shot data in Figure 1 using a single vertical Gaussian beam at a receiver position at 40,000 ft with a
focused beam with the beam-waist at a depth of 20,000 ft. Now the diffractor at a depth of 20,000
ft is the most focused using a single beam with the images of the other diffractors being broader
and curved. Finally, Figure 6 shows the partial image of the common shot data in Figure 1 using
a single vertical Gaussian beam at a receiver position at 40,000 ft with a focused beam with the
beam-waist at a depth of 24,000 ft. Now the diffractor at a depth of 24,000 ft is most the focused
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Fig. 3. The partial image of the common shot data in Figure 1 using a single vertical Gaussian beam at a
receiver position at 40,000 ft using a focused beam with a beam-waist at a depth of about 12,000 ft.

Fig. 4. The partial image of the common shot data in Figure 1 using a single vertical Gaussian beam at a
receiver position at 40,000 ft using a focused beam with a beam-waist at a depth of about 16,000 ft.

using a single beam with the images of the other diffractors being broader and generally curved.

Figure 7 shows the partial image of the common shot data in Figure 1 using receiver beams
centered on 40,000 ft now launched at all angles, each with the beam-waist shifted approximately
16,000 ft. This results in spherical images of all 5 scatterers and indicates that the imaging is being
properly applied even with curved and broadened beams at the other depths. Using focusing beams
with other beam-waist locations gives similar imaging results.

Figure 8 shows the complete Gaussian beam image for the single shot gather from Figure
1 using beams from all beam center locations launched at all angles, each with the beam-waist
shifted approximately 16,000 ft. This results in focused images of all 5 scatterers and indicates that
the imaging is being properly applied even with the shifted beam-waists of the individual beam
components. Using focusing beams with other beam-waist locations gives similar imaging results.

The focusing beam migration approach is now applied to a single shot gather from the Sigs-
bee2A data set distributed by SMAART (Subsalt Multiples Attenuation and Reduction Team) and
available at http://www.delphi.tudelft.nl/SMAART/ . In order to test the focused beam approach,
a single shot gather with a shot location at 6,325 ft from the left edge of the model is used. The
receiver array starts at the shot location and has a maximum offset of 26,025 ft with a spacing of 75
ft. The background velocity model has the first layer from the surface down to the seafloor with a
velocity of 5000 ft/sec. The second layer goes from seafloor to 30,000 ft in depth with a background
velocity of v(z) = v0 + k(z − zseafloor) where v0 = 5000 ft/sec, and k = .30. A salt dome exists with
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Fig. 5. The partial image of the common shot data in Figure 1 using a single vertical Gaussian beam at a
receiver position at 40,000 ft using a focused beam with a beam-waist at a depth of about 20,000 ft.

Fig. 6. The partial image of the common shot data in Figure 1 using a single vertical Gaussian beam at a
receiver position at 40,000 ft using a focused beam with a beam-waist at a depth of about 24,000 ft.

Fig. 7. The partial image of the common shot data in Figure 1 using receiver beams centered on 40,000 ft now
launched at all angles, each with the beam-waist shifted approximately 16,000 ft. This results in spherical images
of all 5 scatterers and indicates that the imaging is being properly applied even with the shifted beam-waists of the
individual beam components.
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Fig. 8. The Gaussian beam image using the complete single shot gather is shown in Figure 1 with beams from
all beam positions launched at all angles, each with the beam-waist shifted to approximately 16,000 ft. This results
in focused images of all 5 scatterers and indicates that the imaging is being properly applied even with the shifted
beam-waists of the individual beam components.

Fig. 9. This shows the partial imaging result for a single Gaussian beam with the beam-waist at the surface
along the receiver array for a single shot gather from the Sigsbee2A dataset.

a velocity of 14,800 ft/sec in the middle and right parts of the model, but for the initial tests here
only a shot gather away from the salt dome is used.

In Figure 9, the partial imaging for a single Gaussian beam is shown with the planar beam-waist
at the receiver depth. As in the earlier examples the source side Green’s function is constructed
separately using Gaussian beams that are planar at the source location. The receiver Gaussian
beam has an initial location near the source and the partial image for a beam with a slight angle
from the vertical is shown. As in the earlier example, when the beam-waist is at the receiver
depth, then curved beam fronts result which broaden with depth over the depth range of the model
shown between 15,000 and 30,000 ft. This is typical of standard implementations of Gaussian beam
migration. However, in regions of a complicated background medium, the medium itself can cause
additional focusing of the beams. This will be investigated later, but for this study only beam
focusing resulting from the shifting of the beam-waists in the linear velocity gradient background
velocity model is investigated.

Figure 10 shows the partial imaging results for a single Gaussian beam with the beam-waist
shifted to about 20,000 ft in depth. At this depth the narrowest part of the beam image occurs and
also with a planar beam front. If the target structure were located at this depth, then fewer beams
would be required to form a complete image. Also the beam images would have planar beam fronts
at this depth leading to more stable images. However, as shown in Figure 10 at other depths the
partial image results in curved and broader beam fronts.

Figure 11 shows the complete imaging result for a single shot gather when focused Gaussian
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Fig. 10. This shows the partial imaging result for a single Gaussian beam with the beam-waist shifted to about
20,000 ft in depth for a single shot gather from the Sigsbee2A dataset.

Fig. 11. The Gaussian beam image using a complete single shot gather from the Sigsbee2A dataset with the shot
location at 6325 ft using beams from all receiver positions launched at all angles each with the beam-waist shifted
approximately 20,000 ft.

beams are used with the beam-waists shifted approximately 20,000 ft from the receiver aperture.
The shot location is at 6325 ft from the left edge of the model. Although only one of the 500 shots
available in the Sigsbee2A dataset is used, the single shot image using focused Gaussian beams
shows a number of the subsurface features for this part of the Sigsbee2A reflectivity model. Even
though the beam-waists are specified for a depth of about 20,000 ft, the focused beam formulation
still properly accounts for the variable curvature and beam widths at all depths of the image. When
using other focusing depths, or with beam-waists at the surface, the simple shot images are all very
similar to that shown in Figure 11. The advantage of using the focused beams is that for a target
structure at a specific depth, fewer beams will be required to form a stable image. The results
shown here are again for a smooth part of the Sigsbee2A background model well away from the
salt dome structure. In a more complicated part of the model, focused beams could be designed to
compensate for the focusing effects of the background model, in addition to minimizing the number
of beams required for imaging. However, this needs to be further explored in future work.

4. Conclusions. The application of focused Gaussian beams has been investigated for seismic
imaging. The shifting of the beam-waists away from the source and receiver aperture adds flexibility
to Gaussian beam algorithms allowing for the narrowest portions of the beams to occur at the depth
of a specific target structure. This minimizes the number of beams required to form an image at
this target depth. Also, at the beam-waists the beam fronts are planar leading to more stable beam
summations for imaging. To match with the surface data, a quadratic phase correction is required
for the local slant-stacks of the data. Using the same local slant stacks of the data for the different
imaging depths, only a single focusing depth can be specified. Imaging using focused Gaussian
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beams was tested using a single shot gather for a model with 5 scatterers at different depths. The
approach was then tested for a single shot gather from the Sigsbee2A model. In all cases, the beams
can be focused to a particular target depth, but proper imaging still results for other depths as well.
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