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FRAME-BASED GAUSSIAN BEAM SUMMATION AND SEISMIC HEAD WAVES

ROBERT L. NOWACK∗

Abstract. In this paper, a two-parameter discrete Gaussian beam summation is described and then applied
to SH seismic waves in a layer over a half space. For this case the exact solution for the wide-angle reflection and
head wave is known by the summation of plane waves or from the modified-Cagniard method. Using Gaussian
beam summations over a single angle parameter, the wide-angle reflection and head wave can be generated by using
wide beam widths. By using single-parameter beam summations with less wide beams, stable solutions of the wide-
angle reflection can be obtained, but not the head wave solution which requires more spectral content. Here we
show that both the wide-angle reflection and the head wave can be obtained when using finite beam widths by an
over-determined, frame-based Gaussian beam summation over both position and wavenumber.

1. Introduction. Summations of Gaussian beams over either initial take-off angle or position
along an initial surface have been applied for the computation of high frequency seismic wavefields in
smoothly varying inhomogeneous media (see for example, Popov, 1982; Cerveny et al. 1982; Nowack
and Aki, 1984). Reviews of Gaussian beam summation have been given by Cerveny (1985a,b),
Babich and Popov (1989), and more recently by Popov (2002), Nowack (2003), Cerveny et al.
(2007) and Bleistein (2007). An advantage of summations using Gaussian beams to construct more
general wavefields is that the individual Gaussian beams have no singularities along their paths,
no two-point ray tracing is required and triplicated arrivals are naturally incorporated into either
forward or inverse modeling.

An early criticism of the single-parameter implementations of Gaussian beam summations was
given by White et al. (1987) in terms of completeness and accuracy of the summations. However,
more recently over-complete frame-based Gaussian beam summations have been developed based
on window and wavelet transforms to address some of the issues related to completeness of beam
summations (Lugara et al., 2003). In an over-complete frame based approach, the wavefield is de-
composed into beam fields that are localized both in position and direction (Figure 1). In these
decompositions, position plays the role of time and wavenumber plays the role of frequency in a
time-frequency type of decomposition. Gabor originally suggested a decomposition using modu-
lated and translated Gaussian windows. Although an orthonormal basis cannot be formed using a
Gabor frame, an over-complete frame expansion can be constructed which has the added benefit of
providing redundancy in the expansion (Feichtinger and Strohmer, 1998). Hill (1990, 2000) used an
over-determined frame of Gaussian beams for the migration seismic data and gave criteria for the
sampling of the beams in position and wavenumber based on physical reasoning (see also, Nowack
et al., 2006; 2007).

For an SH line source in a layer over an halfspace, an exact solution for the wide-angle reflection
and head wave can be obtained either by a summation of plane waves or by using the modified-
Cagniard method (Aki and Richards, 1980; 2002). Nowack and Aki (1984) showed that seismic
head waves can be generated by a single-parameter Gaussian beam summation by using wide beam
widths. However, for more narrow beam widths, the spectral content is not sufficient to obtain the
head wave, although the direct wave and wide-angle reflection can be obtained. An early attempt
at generating the head wave using finite beam widths was given by Gao et al. (1990), however,
they concluded that large beam widths were still required. Here I apply a two-parameter Gaussian
beam summation using an overdetermined frame-based approach for the generation of wide-angle
reflections and head waves with finite beam widths. Although the current study for the wide-
angle response is for isotropic media, recent work by Landro and Tsvankin (2007) has investigated
anisotropic parameter estimation using wide-angle amplitude variation with offset (AVO) response.

2. Theory. A 2D wave equation for SH waves in the frequency and horizontal wavenumber
domain with for a line source can be written
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Fig. 1. An illustration of an over-determined frame-based decomposition in terms of position and wavenumber
of an initial wavefield and propagation using paraxial Gaussian beams.
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1 is the squared vertical wavenumber. Matching singularities of this equation
at the source depth results in
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eik3|x3|.

An integral expression over wavenumber for a source at x1 = xs can then be written as

(2.2) u(x1, x3,ω) =
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(Chew, 1990; Eqn. 2.2.10).

The division of unity by Gaussians can be written as, 1 ∼ ∆L√
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(Kaiser, 1994),

where ∆L ≪ 2γ and xL = L∆L . Inserting this into Eqn. (2.1) gives
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where the wavenumber integral is written in terms of horizontal slowness p1 with k1 = ωp1. Using
a discretization of the p1 integral results in a two-parameter summation evaluated over Gaussian
tapered wave components at the receiver datum level as
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where p1 = M∆p and p3 =
√

v−2 − p2
1 is the vertical slowness. For x3 = 0 , this gives the expansion

in the aperture plane as
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The term in the parentheses represents a sum of initial planar Gaussian tapered wave components
at an angle given by p1 = sinϑ/v at locations x1 = xL at the source depth x3 = 0 . The initial
Gaussian tapered wavefronts components can then be propagated to the receiver using paraxial
Gaussian beams as

(2.6) u(x1, x3,ω) =
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where in ray centered coordinates, an individual SH Gaussian beam can be written as

(2.7) ggb(x1, x3,ω) =

√

v0ρ0q0

v(s)ρ(s)q(s)
eiω(τ(s)+ 1

2
M(s)n2)

where (s, n) are the ray centered coordinates along and transverse to the ray, ρ and v are the density
and velocity, τ(s) is the travel-time along the ray and M(s) = MR(s) + iMI(s) is the complex second
derivative of the time field with respect to the transverse coordinate n. To form a beam, MI(s) > 0.
Along the horizontal coordinate at the source, the beam half-width at a reference lower frequency
ωref can be written as γ2

ref = (ωrefcos2(ϑ)MI(s0))
−1 where ϑ is the angle of the ray from the vertical

at the source. The horizontal beam widths at other frequencies are then γ2 = (ωref/ω)γ2
ref . A choice

of sampling for Eqn. (2.6) can be made as ∆L =
√

2
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(
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ref where

ωH is the highest frequency of interest (Hale, 1992; Hill, 1990). This ensures 4 times over-sampling
at the highest frequency.

In order to incorporate a reflection coefficient into the above formulas in Eqns. (2.6 and 2.7),
the term 1

p3
is replaced by R

p3
where R = (I1 − I2)/(I1 + I2) with I = ρvcosϑ for an SH wave. The

above sampling in ray parameter could need to be increased when sampling near the critical distance
and for the examples below I sample at 1/3 the above sampling in ∆p1 .

As an alternative approach, a Kirchhoff integral of boundary value data could be used. Assuming
that the field values are specified at x3 = 0 , the Kirchhoff integral can be written as (Hill, 2001;
Goodman, 1996)
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Expanding the Green’s function g into plane waves results in
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This can be written in terms of an integral of horizontal slowness as
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where k1 = ωp1 and similarly for k3 . Inserting this into the Kirchhoff integral and using the division
of unity by Gaussians, 1 ∼ ∆L√
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, with ∆L ≪ 2γ and xL = L∆L gives at x3 = 0
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The term in the parentheses is an initial Gaussian tapered wave components which can be propagated
in depth using paraxial Gaussian beams as
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where p1 = M∆p and p3 =
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where D(xL, p1,ω) is a slant stack of the wavefield on the initial surface,
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If we assume a single point source as an initial field displacement then
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and for the above expansion then
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which is an approximate expansion of the line source into plane beams in the aperture plane and
then propagated to the receiver. Aside from the frequency weighting and lack of the 1/p3 resulting
from the Kirchhoff formulation , this is similar to Eqn. (2.6).

In the approach of Hill (2001), a local slant stack is used of the form

D(xL, p1,ω, γ) =

∫
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1u(x′

1, 0,ω)e−(x′

1
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2
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′

1
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instead of Eqn. (2.11). This results from an initial expansion of the Green’s functions into Gaussian
beams. It causes an additional decay term which possibly could diminish the spectral content of
the results when using finite beam widths, in contrast to the full slant stack.
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Fig. 2. The layer over a half space geometry (from Aki and Richards, 1980).

3. Application to a Line Source in a Layer Over a Halfspace. For this example, a
homogeneous layer over a half space is used where the geometry is shown in Figure 2. The reflected
arrival for an SH line source in the post-critical range gives rise to a wide angle reflection, as well as
a head wave (Aki and Richards, 1980; 2002). This problem can be solved by direct integration of
the wave-number integral in Eqn. (2.2). Alternatively, the modified-Cagniard method can be used
to solve the problem (Aki and Richards, 1990; 2002). By using the Gaussian beam method, the
head wave can be generated by using wide beams to model for the wide-angle reflection (Nowack
and Aki, 1984, Nowack, 2003). For a layer over a gradient, Nowack and Stacy (2002) and Stacy
and Nowack (2002), investigated using Gaussian beams for the wide-angle interference head wave
and could simulate the amplitude and frequency effects with Gaussian beams. More narrow beams
were used for the diving rays and broader beams were used for the wide-angle reflection to obtain
the interference waves and head wave contributions. Recently, Thomson (2004) using the coherent
state approach of Thomson (2001) to show asymptotically that the head wave could be generated
using beam tapered solutions.

A 10 km layer over a halfspace is used with the upper velocity of 3.5 km/sec and the half-
space velocity of 4.6 km/sec and only the SH case is considered. Both the source and receiver
are located along the surface. The critical angle for the wide-angle reflection is 49.5 degrees and
the critical distance is at 23.4 km. A Gabor pulse with a center frequency of 2 Hz is used and
low reference frequency of .25 Hz and the highest frequency considered is 5 Hz. The initial beam
widths are selected so that the reflected beams at the receiver have optimally narrow beams at the
receiver (Cerveny et al., 1982). This was shown by Nowack ant Aki (1984) to result in stable beam
contributions for the wide-angle reflection but a more limited head wave contribution when using a
single-parameter beam summation over take-off angle.

Figure 3 shows a waveform comparison at a distance of 50 km between a two-parameter, frame-
based Gaussian beam summation using the optimally narrow beams at the receiver and the results
from the modified-Cagniard method. The initial beams are chosen to be planar at the source. For
this case the frame-based Gaussian beam summation generates both the wide-angle reflection and
the head wave with the finite beam widths used. The overall waveforms are similar between the two
methods.

Figure 4 shows a waveform comparison at a distance of 40 km between finite beam summations
using frame-based summations with planar wavefronts at the source and at the receiver. Cerveny
(1985a,b) recommended using planar wavefronts at the receiver locations since they can result in
more stable summations. These are compared with the summation of plane waves (Fig. 4, center).
Overall the waveforms are similar between the frame-based beam summations and the summation
of plane waves.
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Fig. 3. Comparison of waveforms for a receiver at 50 km from the source. The bottom trace is from a two
parameter Gaussian beam summation with planar beams at the source. The upper trace is from the modified-Cagniard
method.

Fig. 4. Comparison of waveforms for receiver at 40 km from the source. The bottom trace is from a two-
parameter Gaussian beam summation with planar beams at the source. The middle trace for a plane-wave summation
and the lower trace is from a two-parameter Gaussian beam summation with planar beams at the receiver.

4. Conclusions. In this paper, an over-determined frame-based decomposition is developed
based on a two parameter summation over position and wavenumber. This is used to compute the
wide-angle reflection and head wave for an SH line source in a layer over a half space for a finite
beam-widths. The use of the two-parameter, frame-based beam summation approach restores some
of the spectral content that was lost in the single-parameter beam summations when using finite
beam widths.
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