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SEISMIC IMAGING WITH THE GENERALIZED RADON TRANSFORM:

A CURVELET TRANSFORM PERSPECTIVE∗

MAARTEN V. DE HOOP † , HART SMITH‡ , GUNTHER UHLMANN§ , AND ROBERT D.

VAN DER HILST¶

Abstract. A key challenge in the seismic imaging of reflectors using surface reflection data is the subsurface
illumination produced by a given data set and for a given complexity of the background model (of wavespeeds). The
imaging is described here by the generalized Radon transform. To address the illumination challenge and enable
(accurate) local parameter estimation, we develop a method for partial reconstruction. We make use of the curvelet
transform, the structure of the associated matrix representation of the generalized Radon transform, which needs
to be extended in the presence of caustics, and phase-linearization. We pair an image target with partial waveform
reflection data, and develop a way to solve the matrix normal equations that connect their curvelet coefficients via
diagonal approximation. Moreover, we develop an approximation, reminiscent of Gaussian beams, for the computation
of the generalized Radon transform matrix elements only making use of multiplications and convolutions, given the
underlying ray geometry; this leads to computational efficiency. Throughout, we exploit the (wavenumber) multi-
scale features of the dyadic parabolic decomposition underlying the curvelet transform and establish approximations
that are accurate for sufficiently fine scales. The analysis we develop here has its roots in and represents a unified
framework for (double) beamforming and beam-stack imaging, parsimonious pre-stack Kirchhoff migration, pre-stack
plane-wave (Kirchhoff) migration, and delayed-shot pre-stack migration.

1. Introduction.

1.1. Seismic Imaging with Arrays – Beyond Current Capabilities. Much research in
modern, quantitative seismology is motivated – on the one hand – by the need to understand
subsurface structures and processes on a wide range of length scales, and – on the other hand –
by the availability of ever growing volumes of high fidelity digital data from modern seismograph
networks and access to increasingly powerful computational facilities.

Passive-source seismic tomography, a class of imaging techniques (derived from the geodesic X-
ray transform and) adopted from medical applications in the late 1960’s, has been used to map the
smooth variations in the propagation speed of seismic P and S waves below the earth’s surface (see,
e.g., Romanowicz [40], for a review and pertinent references). To image singularities in the earth’s
medium properties one needs to resort to scattered waves or phases. Exploration seismologists have
developed and long used a range of imaging and inverse scattering techniques with scattered waves,
generated by active sources, to delineate and characterize subsurface reservoirs of fossil fuels (e.g.,
Yilmaz [54]). A large class of these imaging and inverse scattering techniques can be formulated
and analyzed in terms of a Generalized Radon Transform (GRT [3, 38, 15, 13, 36, 50, 16, 14, 48])
and its extension [48] using techniques from microlocal analysis.

Recently, while using tomographic models as a background, passive-source seismic imaging and
inverse scattering techniques have been developed for the exploration of Earth’s deep interior. For
the imaging of crustal structure and subduction processes, see Bostock et al. [4] and Rondenay
et al. [42] – here, the incident, teleseismic, waves are assumed to be “plane” waves. Wang et al.
[53] present an inverse scattering approach based upon the GRT to image selected neighborhoods
of Earth’s core-mantle boundary (CMB) using broadband wavefields including the main “topside”
reflections off the CMB and its precursors and coda (generated by scattering off interfaces above
the CMB). Through joint interpretation with data from mineral physics this method enabled the
estimation of temperatures at and near the CMB [51]. In order to increase the extent of the CMB
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region that can be imaged, Wang et al. [52] extended the method to enable GRT-like transforms of
“underside” reflections, sampling the CMB and structures above it from below. In a modification
of this use of underside reflections, Cao et al. [10] used SS precursors (see figure 1) to produce high
resolution images of the upper mantle transition zone discontinuities. Mantle discontinuities near
the CMB and in the transition zone are associated with phase transformations.

The key challenge of applying the GRT to global earth configurations remains the available
data coverage; but the challenge of subsurface illumination also exists in exploration seismology, for
example, in regions with salt tectonics. Indeed, various structures in the earth’s interior have so far
escaped resolution, or discovery, due to restrictions in illumination by (passive) sources and (arrays
of) receivers. In this paper, we assume that the data coverage cannot be improved. Given the avail-
able data coverage on the one hand and the complexity of the background model (expressed in terms
of spatial wavespeed variations) on the other hand, we address the challenge of subsurface illumina-
tion in imaging reflectors from waveform surface reflection data. We develop a method for partial
reconstruction. Our approach makes use of the frame of curvelets and curvelet transform [7, 8, 9, 5],
the associated matrix representation of the generalized Radon transform, which need be extended
in the presence of caustics, and phase-linearization. We pair an image target – focussing on specific
structures (or geodynamical processes) – with partial reflection data, and develop a way to solve
the matrix normal equations that connect their curvelet coefficients via diagonal approximation.

The analysis we develop here has its roots in (double) beamforming, double beam migration
[44, 30] and beam-stack imaging [12, 23], which pose less stringent requirements on data coverage
than the GRT. Seismic data can be sparsely represented by curvelet-like functions [2]. Therefore, the
results presented here shed new light on the concept of parsimonious pre-stack Kirchhoff migration
[27]. Our approach also retains aspects of pre-stack plane-wave (Kirchhoff) migration [1, 31], offset
plane-wave migration [35, 21], and delayed-shot pre-stack migration [55]. For example, synthesizing
“incident” plane waves from point sources has its counterpart in the curvelet transform of the data.

There exists a rich literature on the use of regional (dense) seismic arrays to detect and locate
the origin of scattered energy in the seismic wavefield. Recent reviews of such array processing
techniques are given by, for instance, Rost and Thomas [43] and Rondenay et al. [41]. In general,
these techniques involve some type of beamforming [11]; that is, they assume (or aim to detect)
the wave vector (or the horizontal slowness – related to the angle of incidence and back azimuth)
of the incoming waves, and use this information to separate the coherent from the incoherent parts
of the recorded signal. Implicitly, these methods aim to detect the wavefront set of the scattered
wavefield [39]; this detection can then be used in migration. In beam-stack imaging [23] a region
of the crust is subdivided into sub-areas. For each sub-area to be scanned, the seismograms from
an event suite are incoherently stacked after beam-correcting each trace, computing new beams for
each crustal sub-area, and migrating the results by applying appropriate time offsets, in the spirit
of time migration or geophysical diffraction tomography. Deuss et al. [17] use an imaging approach
through waveform stacking, in particular, of SS precursors: After selecting a bin of scattering (or
image) points, which implies a selection of source-receiver pairs, the authors correct for the moveout
(observed reference arrival times) of SS in the seismic records, and then stack the records at different
slownesses (dependent on the bin) for given (array specific) times relative to the SS arrival time.
(This stacking can be viewed as beamforming.) For this family of imaging techniques, see also
Flanagan and Shearer [20].

Receiver functions and the process of imaging P-to-S converted waves assuming an incident
plane P wave [37] are also related to the subject of this paper. But such analysis is essentially
restricted to imaging beneath continental regionals and isolated islands.

Migration methods have been applied to regional data sets with a weighting factor which depends
on the incident angles of the rays. To this end, the migration operators have been limited to the
Fresnel volume of the reflected ray paths [32] to reduce artifacts caused by truncated wavefield obser-
vations. In this context, the migration operator has been further subjected to slowness-backazimuth
weighting with the aid of Gaussian window functions [29]. The desired artifact reduction is implied
by the rigorous partial reconstruction proposed and developed in this paper.





96 MAARTEN V. DE HOOP ET AL.

1.2. Modelling, Scattering Operator. The propagation and scattering of seismic waves is
governed by the elastic wave equation, which is written in the form

(1.1) Pilul = fi,

where

(1.2) ul =
√

ρ(x)(displacement)l, fi =
1√
ρ(x)

(volume force density)i,

and

(1.3) Pil = δil
∂2

∂t2
+ Ail + l.o.t. , Ail = −

∂

∂xj

cijkl(x)

ρ(x)

∂

∂xk
,

where l.o.t. stands for “lower-order terms”, x ∈ R
n and the subscripts i, j, k, l ∈ {1, . . . , n}; ρ is the

density of mass while cijkl denotes the stiffnesss tensor. The system of partial differential equations
(1.1) is assumed to be of principal type. It supports different wave types (also called modes), one
“compressional” and n − 1 “shear”. We label the modes by M,N, . . .

For waves in mode M , singularities are propagated along bicharacteristics, which are determined
by Hamilton’s equations with Hamiltonian BM ; that is

(1.4)

dx

dλ
=

∂

∂ξ
BM (x, ξ) ,

dt

dλ
= 1,

dξ

dλ
= −

∂

∂x
BM (x, ξ) ,

dτ

dλ
= 0.

The BM (x, ξ) follow from the diagonalization of the principal symbol matrix of Ail(x, ξ), namely
as the (distinct) square roots of its eigenvalues. Clearly, the solution of (1.4) may be parameterized
by t (that is, λ = t). We denote the solution of (1.4) with initial values (x0, ξ0) at t = 0 by
(xM (x0, ξ0, t), ξM (x0, ξ0, t)).

To introduce the scattering of waves, the total value of the medium parameters ρ, cijkl is writ-
ten as the sum of a smooth background component, ρ(x), cijkl(x), and a singular perturbation,
δρ(x), δcijkl(x), namely ρ(x) + δρ(x), cijkl(x) + δcijkl(x). This decomposition induces a perturba-
tion of Pil (cf. (1.3)),

δPil = δil
δρ(x)

ρ(x)

∂2

∂t2
−

∂

∂xj

δcijkl(x)

ρ(x)

∂

∂xk
.

The scattered field, δul, in the single scattering approximation, satisfies

Pilδul = −δPilul.

Data are measurements of the scattered wave field, δu. When no confusion is possible, we denote
data by u, however. We assume point sources (consistent with the far field approximation) and point
receivers. Then the scattered wave field is expressible in terms of the Green’s function perturba-
tions, δGMN (x̂, x̃, t), with incident modes of propagation N generated at x̃ and scattered modes of
propagation M observed at x̂ as a function of time. Here, (x̂, x̃, t) are contained in some acquisition
manifold. This is made explicit by introducing the coordinate transformation, y #→ (x̂(y), x̃(y), t(y)),
such that y = (y′, y′′) and the acquisition manifold, Y say, is given by y′′ = 0. We assume that the
dimension of y′′ is 2 + c, where c is the codimension of the acquisition geometry. In this framework,
the data are modeled by

(1.5)

(
δρ(x)

ρ(x)
,
δcijkl(x)

ρ(x)

)
#→ δGMN (x̂(y′, 0), x̃(y′, 0), t(y′, 0)).



GENERALIZED RADON TRANSFORM AND CURVELETS 97

When no confusion is possible, we use the notation δGMN (y′).
We denote scattering points by x0; x0 ∈ X ⊂ R

n, reflecting that supp δρ ⊂ X and supp δc ⊂ X.
The bicharacteristics connecting the scattering point to a receiver (in mode M) or a source (in mode
N) can be written as solutions of (1.4),

x̂ = xM (x0, ξ̂0, t̂ ) , x̃ = xN (x0, ξ̃0, t̃ ) ,

ξ̂ = ξM (x0, ξ̂0, t̂ ) , ξ̃ = ξN (x0, ξ̃0, t̃ ) ,

with appropriately chosen “initial” ξ̂0 and ξ̃0, respectively. Then t = t̂ + t̃ represents the “two-way”
reflection time. The frequency τ satisfies τ = −BM (x0, ξ̂0). We obtain

(y(x0, ξ̂0, ξ̃0, t̂, t̃ ), η(x0, ξ̂0, ξ̃0, t̂, t̃ )) by transforming (x̂, x̃, t̂+ t̃, ξ̂, ξ̃, τ) to (y, η) coordinates. We then
invoke the following assumptions that concern scattering over π and rays grazing the acquisition
manifold:

Assumption 1. There are no elements (y′, 0, η′, η′′) with (y′, η′) ∈ T ∗Y \0 such that there is

a direct bicharacteristic from (x̂(y′, 0), ξ̂(y′, 0, η′, η′′)) to (x̃(y′, 0),−ξ̃(y′, 0, η′, η′′)) with arrival time
t(y′, 0).

Assumption 2. The matrix

(1.6)
∂y′′

∂(x0, ξ̂0, ξ̃0, t̂, t̃ )
has maximal rank.

With Assumptions 1 and 2, equation (1.5) defines a Fourier integral operator of order n−1+c
4

and canonical relation, that governs the propagation of singularities, given by

ΛMN = {(y′(x0, ξ̂0, ξ̃0, t̂, t̃ ), η′(x0, ξ̂0, ξ̃0, t̂, t̃ );x0, ξ̂0 + ξ̃0) |(1.7)

BM (x0, ξ̂0) = BN (x0, ξ̃0) = −τ, y′′(x0, ξ̂0, ξ̃0, t̂, t̃ ) = 0}

⊂ T ∗Y \0 × T ∗X\0.

The condition y′′(x0, ξ̂0, ξ̃0, t̂, t̃ ) = 0 determines the traveltimes t̂ for given (x0, ξ̂0) and t̃ for given

(x0, ξ̃0). The canonical relation admits coordinates, (y′
I , x0, η

′
J), where I ∪ J is a partition of

{1, . . . , 2n − 1 − c}, and has an associated phase function, ΦMN = ΦMN (y′, x0, η
′
J). While es-

tablishing a connection with double beamforming, we will also use the notation xs = x̃(y′, 0),
xr = x̂(y′, 0); when no confusion is possible, we use the simplified notation y′ = (xs, xr, t).

We refer to the operator above as the scattering operator. Its principal symbol can be explicitly
computed in terms of solutions of the transport equation [48]; see also the Appendix. In the further
analysis we suppress the subscripts MN , and drop the prime and write y for y′ and η for η′.

2. Generalized Radon Transform. Through an extension, the scattering operator becomes,
microlocally, an invertible Fourier integral operator, the canonical relation of which is a graph. The
inverse operator acts on seismic reflection data and describes inverse scattering by the generalized
Radon transform.

2.1. Extension. Subject to the restriction to the acquisition manifold Y , the data are a func-
tion of 2n − 1 − c variables, while the singular part of the medium parameters is a function of
n variables. Here, we discuss the extension of the scattering operator to act on distributions of
2n − 1 − c variables, equal to the number of degrees of freedom in the data acquisition. We recall
the commonly invoked

Assumption 3. (Guillemin [22]) The projection πY of Λ on T ∗Y \0 is an embedding.
This assumption is known as the Bolker condition. It admits the presence of caustics. Because

Λ is a canonical relation that projects submersively on the subsurface variables (x, ξ) (using that
the matrix operator Pil is of principal type), the projection of (1.7) on T ∗Y \0 is immersive [25,
Lemma 25.3.6 and (25.3.4)]. Indeed, only the injectivity part of the Bolker condition needs to be
verified. The image L of πY is locally a coisotropic submanifold of T ∗Y \0.
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Since the projection πX of Λ on T ∗X\0 is submersive, we can choose (x, ξ) as the first 2n local
coordinates on Λ; the remaining dim Y − n = n − 1 − c coordinates are denoted by e ∈ E, E
being a manifold itself. Moreover, ν = ‖ξ‖−1ξ is identified as the seismic migration dip. The sets
X ∋ (x, ξ) = const. are the isotropic fibers of the fibration of Hörmander [26], Theorem 21.2.6; see
also Theorem 21.2.4. The wavefront set of the data is contained in L and is a union of such fibers.
The map πXπ−1

Y : L → X is a canonical isotropic fibration, which can be associated with seismic
map migration [18].

With Assumption 3 being satisfied, we define Ω as the map (on Λ),

Ω : (x, ξ, e) #→ (y(x, ξ, e), η(x, ξ, e)) : T ∗X\0 × E → T ∗Y \0 ;

this map conserves the symplectic form of T ∗X\0. The (x, ξ, e) are “symplectic” coordinates on the
projection L of Λ on T ∗Y \0. In the following lemma, these coordinates are extended to symplectic
coordinates on an open neighborhood of L, which is a manifestation of Darboux’s theorem stating
that T ∗Y can be covered with symplectic local charts.

Lemma 2.1. Let L be an embedded coisotropic submanifold of T ∗Y \0, with symplectic coordi-
nates (x, ξ, e). Denote L ∋ (y, η) = Ω(x, ξ, e). We can find a homogeneous canonical map G from
an open part of T ∗(X ×E)\0 to an open neighborhood of L in T ∗Y \0, such that G(x, e, ξ, ε = 0) =
Ω(x, ξ, e).

Let M be the canonical relation defined as the graph of map G in this lemma, i.e.

M = {(G(x, e, ξ, ε);x, e, ξ, ε)} ⊂ T ∗Y \0 × T ∗(X × E)\0 .

One can then construct a Maslov-type phase function for M that is directly related to a phase
function for Λ. Suppose (yI , x, ηJ) are suitable coordinates for Λ. For |ε| small, the constant-ε
subset of M allows the same set of coordinates, thus we can use coordinates (yI , ηJ , x, ε) on M .
Now there is (see Theorem 4.21 in Maslov and Fedoriuk [34]) a function S(yI , x, ηJ , ε), called the
generating function, such that M is given by

(2.1)

yJ =
∂S

∂ηJ
, ηI = −

∂S

∂yI
,

ξ =
∂S

∂x
, e = −

∂S

∂ε
.

A phase function for M is hence given by

(2.2) Ψ(y, x, e, ηJ , ε) = S(yI , x, ηJ , ε) − 〈ηJ , yJ〉 + 〈ε, e〉.

A phase function for Λ is then recovered by

Ψ(y, x, ∂S
∂ε

|ε=0, ηJ , 0) = Φ(y, x0, ηJ) .

We then obtain a mapping from a reflectivity function (illustrated in figure 2) to reflection data
that extends the mapping from contrast to data (cf. (1.5)). We recall

Theorem 2.2. [48] Suppose microlocally that Assumptions 1 (no scattering over π), 2 (transver-
sality), and 3 (Bolker condition) are satisfied. Let F be the Fourier integral operator,

F : E ′(X × E) → D′(Y ) ,

with canonical relation given by the graph of the extended map G : (x, ξ, e, ε) #→ (y, η) constructed
in Lemma 2.1. Then the data can be modeled by F acting on a distribution r(x, e) of the form

(2.3) r(x, e) = R(x, Dx, e) c(x),



GENERALIZED RADON TRANSFORM AND CURVELETS 99

Fig. 2. Wavefront set of an extended image, r = r(x, e). The gray surface (singular support) corresponds with
ε = 0 and maps into the range of the scattering operator before extension. The transparent surface exemplifies the
extension to ε values away from zero.

where R stands for a smooth e-family of pseudodifferential operators and c ∈ E ′(X) with c =(
δcijkl

ρ
, δρ

ρ

)
.

The operator F is microlocally invertible. By composing with an elliptic pseudodifferential
operator we can assume without loss of generality that F is a zeroth order Fourier integral operator
associated to a (local) canonical graph. We recall that for Fourier integral operators the canonical
relations of which are locally the graphs of canonical transformations, we have the property that
their orders equal their Sobolev orders [26, Cor. 24.3.2]

Remark. The operator F extends the procedure applied in [53, 51] to image, with the adjoint
F ∗, D′′ in Earth’s lowermost mantle using core reflected ScS “phases”, their precursors and their
coda, to the generic case admitting the formation of caustics. The e dependence in r(x, e) can be
exploited in a formulation of inference of singularities in the presence of (coherent) “noise” [33].

2.2. Oscillatory Integral Representation. If we have a canonical transformation from a
neighborhood of (x0, e0, ξ0, ε0) ∈ T ∗(X ×E)\0 to a neighborhood of (y0, η0) ∈ T ∗Y \0, then one can
choose local coordinates (y, ξ, ε) on a neighborhood of (y0, η0, x0, e0, ξ0, ε0) on M [25, Prop. 25.3.3],
that is, M : (y, η, x, e, ξ, ε) → (y, ξ, ε) is a local diffeomorphism. We denote the associated

generating function by S̃ = S̃(y, ξ, ε) and obtain the phase function

(2.4) φ(x, e, y, η) = S̃(y, ξ, ε) − 〈ξ, x〉 − 〈ε, e〉

(cf. (2.2)). In fact, on M locally we can regard η and (x, e) as functions of (y, ξ, ε); then we can

take S̃(y, ξ, ε) = 〈η(y, ξ, ε), (x(y, ξ, ε), e(y, ξ, ε))〉 [26, Thm. 21.2.18].
We introduce the shorthand notation, x := (x, e), ξ := (ξ, ε), resetting n := 2n − 1, and

S(y, ξ) := S̃(y, ξ, ε) and Σ : (x, ξ) → (y, η) = (Σ1(x, ξ),Σ2(x, ξ)) corresponding with G(x, e, ξ, ε),
cf. Lemma 2.1. We identify v(x) with r(x, e), and we get, since F is a Fourier integral operator,

(2.5) (Fv)(y) =

∫
A(y, x)v(x) dx.

The kernel admits an oscillatory integral representation

(2.6) A(y, x) =

∫
a(y, ξ) exp[iφ(y, x, ξ)] dξ,



100 MAARTEN V. DE HOOP ET AL.

with non-degenerate phase function

(2.7) φ(y, x, ξ) = S(y, ξ) − 〈ξ, x〉

and amplitude a = a(y, ξ), a standard symbol of order zero, with principal part homogeneous in
ξ of order 0. With the above form of the phase function, it follows immediately that operator F
propagates singularities according to the map,

(2.8)

(
∂S

∂ξ
, ξ

)
→

(
y,

∂S

∂y

)
,

which can be identified as Σ. Substituting (2.7) into (2.5)-(2.6) yields the representation

(2.9) (Fv)(y) =

∫
a(y, ξ) exp[iS(y, ξ)] v̂(ξ) dξ,

in which S satisfies the homogeneity property S(y, cξ) = cS(y, ξ) for c > 0; v̂ denotes the Fourier
transform of v, and dξ denotes (2π)−n times Lebesgue measure.

We remark that the above representation is valid microlocally. In Section 4 we study the action
of operators of the form (2.9) to curvelets. The results for the global Fourier integral operator F
are obtained by taking a superposition of the above representations using an appropriate microlocal
partition of the unity in phase space.

3. Dyadic Parabolic Decomposition and “Curvelets”. We introduce boxes (along the
ξ1-axis, that is, ξ′ = ξ1)

Bk =

[
ξ′k −

L′
k

2
, ξ′k +

L′
k

2

]
×

[
−

L′′
k

2
,
L′′

k

2

]n−1

,

where the centers ξ′k, as well as the side lengths L′
k and L′′

k , satisfy the parabolic scaling condition

ξ′k ∼ 2k, L′
k ∼ 2k, L′′

k ∼ 2k/2, as k → ∞.

Next, for each k ≥ 1, let ν vary over a set of approximately 2k(n−1)/2 uniformly distributed unit
vectors. (We can index ν by ℓ = 0, . . . , Nk − 1, Nk ≈ ⌊2k(n−1)/2⌋: ν = ν(ℓ) while we adhere to
the convention that ν(0) = e1 aligns with the ξ1-axis.) Let Θν,k denote a choice of rotation matrix
which maps ν to e1, and

Bν,k = Θ
−1
ν,kBk.

In the (co-)frame construction, we have two sequences of smooth functions, χ̂ν,k and β̂ν,k, on R
n,

each supported in Bν,k, so that they form a co-partition of unity

(3.1) χ̂0(ξ)β̂0(ξ) +
∑

k≥1

∑

ν

χ̂ν,k(ξ)β̂ν,k(ξ) = 1,

and satisfy the estimates

|〈ν, ∂ξ〉
j ∂α

ξ χ̂ν,k(ξ)| + |〈ν, ∂ξ〉
j ∂α

ξ β̂ν,k(ξ)| ≤ Cj,α 2−k(j+|α|/2).

We then form

(3.2) ψ̂ν,k(ξ) = ρ
−1/2
k β̂ν,k(ξ) , ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ),

with ρk the volume of Bk. These functions satisfy the estimates

|ϕν,k(x)|
|ψν,k(x)|

}
≤ CN2k(n+1)/4 ( 2k|〈ν, x〉| + 2k/2‖x‖ )−N
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for all N . To obtain a (co-)frame, one introduces the integer lattice: Xj := (j1, . . . , jn), the dilation
matrix

Dk =
1

2π

(
L′

k 01×n−1

0n−1×1 L′′
kIn−1

)
, det Dk = (2π)−nρk,

and points xj = Θ
−1
ν,kD−1

k Xj . The frame elements (k ≥ 1) are then defined in the Fourier domain
as

(3.3) ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈xj , ξ〉], γ = (xj , ν, k),

and similarly for ψ̂γ(ξ). We obtain the transform pair

(3.4) vγ =

∫
v(x)ψγ(x) dx, v(x) =

∑

γ

vγϕγ(x)

with the property that
∑

γ′: k′=k, ν′=νvγ′ ϕ̂γ′(ξ) = v̂(ξ)β̂ν,k(ξ)χ̂ν,k(ξ), for each ν, k.

Remark. If we write v̂ν,k(ξ) = ρ
1/2
k v̂(ξ)β̂ν,k(ξ), the curvelet transform pair attains the form of a

quadrature applied to the convolution,

(3.5) v(x) =
∑

ν,k

vν,k ∗ ϕν,k(x) .

This observation can be exploited to obtain sparse approximations, of v, by sums of wavepackets
[2].

We introduce the notation C for the curvelet transform (analysis): vγ = (Cv)γ , and also define
C−1{cγ} =

∑
γ cγϕγ for the inverse transform (synthesis). We observe that C−1C = I on L2(Rn),

and that CC−1 ≡ Π is a (not necessarily orthogonal) projection operator of ℓ2γ onto the range of
the analysis operator C. It holds that Π2 = Π, but Π is generally not self-adjoint unless ψγ = ϕγ .
Observe that, as a matrix on ℓ2γ ,

Πγ′γ = 〈ψγ′ ,ϕγ〉 .

If A : L2(Rn) → L2(Rn), then the matrix [A] = CAC−1 preserves the range of C, since C−1Π = C−1,
and ΠC = C. In particular, [A]Π = Π[A] = [A] . Here, and when convenient, we identify operators
on ℓ2γ with matrices.

3.1. Matrix Classes and Operators. Let d denote the pseudodistance on S∗(X) introduced
in [46, Definition 2.1]

d(x, ν;x′, ν′) = |〈ν, x − x′〉| + |〈ν′, x − x′〉|

+min{‖x − x′‖, ‖x − x′‖2} + ‖ν − ν′‖2.

If γ = (x, ν, k) and γ′ = (x′, ν′, k′), let

(3.6) d(γ; γ′) = 2−min(k,k′) + d(x, ν;x′, ν′).

The weight function µδ(γ, γ′) introduced in [47] is given by

µδ(γ, γ′) = (1 + |k′ − k|2)−12−( 1
2
n+δ)|k′−k|2−(n+δ) min(k′,k)d(γ, γ′)−(n+δ).

We summarize [47, Definitions 2.6-2.8]. If χ is a mapping on S∗(Rn), the matrix M with
elements Mγ′γ belongs to the class Mr

δ(χ), if there is a constant C(δ) such that

(3.7) |Mγ′γ | ≤ C(δ) 2krµδ(γ
′,χ(γ)) (2kr ≈ ‖ξ‖r);



102 MAARTEN V. DE HOOP ET AL.

here, χ(γ) = (χ(xj , ν), k). Furthermore, Mr(χ) = ∩δ>0M
r
δ(χ). If χ is the projection of a homo-

geneous canonical transformation, then by [46, Lemma 2.2] the map χ preserves the distance d up
to a bounded constant; that is d(χ−1(γ), γ′) ≈ d(γ, χ(γ′)) . Hence, the transpose operation takes
matrices in Mr(χ) to Mr(χ−1). We note that the projection map Π = CC−1 belongs to M0(I),
see [47, Lemma 2.9].

It is also useful to introduce norms on the class of matrices determined by distance-weighted ℓ2γ
norms on columns and rows. Precisely, for α ≥ 0 and a given χ,

‖M‖2
2;α = sup

γ

∑

γ′

22|k−k′|α22 min(k,k′)αd(γ′;χ(γ))2α |Mγ′γ |
2

+sup
γ′

∑

γ

22|k−k′|α22 min(k,k′)αd(γ′;χ(γ))2α |Mγ′γ |
2 .(3.8)

We remark that any matrix bounded on ℓ2γ must have finite (2; 0) norm, since this corresponds to
rows and columns being square summable. Additionally, it follows immediately that

(3.9) ‖M‖2;α+n < ∞ ⇒ M ∈ M0
α(χ) .

Inclusion in the other direction follows from the proof of [47, Lemma 2.4]

(3.10) M ∈ M0
α(χ) ⇒ ‖M‖2;α < ∞.

The technique of (2; α) bounds has been designed for propagation and scattering problems in rough
background metrics (density normalized stiffness), but the Mr

δ conditions lead more directly to
desired mapping properties.

3.2. Pseudodifferential Operators and Diagonal Approximation. Pseudodifferential
operators, of order r, with appropriate symbols are the most important example of operators with
matrices of class Mr(I).

Let

Av(x) ≡ a(x, D)v(x) =

∫
exp[i〈x, ξ〉] a(x, ξ)û(ξ) dξ,

where the symbol satisfies, for all j, α, β,

(3.11)
∣∣〈ξ, ∂ξ〉

j∂α
ξ ∂β

xa(x, ξ)
∣∣ ≤ Cj,α,β(1 + ‖ξ‖)−

1
2
|α|+ 1

2
|β| .

We denote the class of symbols satisfying these estimates as S0
1
2
,rad

. Thus, a ∈ S0
1
2
,rad

precisely

when 〈ξ, ∂ξ〉
ja ∈ S0

1
2
, 1
2

for all j. More generally, a ∈ Sr
1
2
,rad

precisely when 〈ξ, ∂ξ〉
ja ∈ Sr

1
2
, 1
2

for all

j. Let A be a pseudodifferential operator with symbol in Sr
1
2
,rad

. A stationary phase analysis then

shows that Aϕγ = 2krfγ , where

(3.12) f̂γ(ξ) = ρ
−1/2
k ĝν,k(ξ) exp[−i〈xj , ξ〉],

in which ĝν,k satisfies the estimates

|〈ν, ∂ξ〉
j∂α

ξ ĝν,k| ≤ Cj,α,N2−k(j+ 1
2
|α|)

(
1 + 2−k|〈ν, ξ〉| + 2−k/2‖ξ − Bν,k‖

)−N

for all N , where ‖ξ − Bν,k‖ denotes the distance of ξ to the rectangle Bν,k supporting χ̂ν,k. Such
an fγ will be called a “curvelet-like function” centered at γ, cf. (3.3). In particular,

|〈ψγ′ , fγ〉| ≤ C(δ) µδ(γ
′, γ)

for all δ > 0, so that 〈ψγ′ , fγ〉 ∈ M0(I).
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If the principal symbol of A is homogeneous of order 0, a0(x, ξ) = a0(x, ξ/‖ξ‖), we have the
following diagonalization result, which is a simple variation of the phase-linearization of Seeger-
Sogge-Stein [45]

Lemma 3.1. Suppose that A is a pseudodifferential operator with homogeneous principle symbol
a0(x, ξ) of order 0. Then

(3.13) Aϕγ = a0(xj , ν) ϕγ + 2−k/2fγ ,

where fγ is a curvelet-like function centered at γ.
Proof. The precise assumption we need is that the symbol of A equals a0 plus a symbol of class

S
− 1

2
1
2
,rad

. The terms of order − 1
2 can be absorbed into fγ , while

a0(x, D)ϕγ(x) = ρ
−1/2
k

∫
exp[i〈x − xj , ξ〉]a0(x, ξ)χ̂ν,k(ξ) dξ.

For convenience we assume that ν = (1, 0, . . . , 0) lies on the ξ1 axis. By homogeneity, a0(x, ξ) =
a0(x, 1, ξ′′/ξ1), where ξ′′ = (ξ2, . . . , ξn). We take the first-order Taylor expansion on a cone about
the ξ1 axis, that is,

a0(x, 1, ξ′′/ξ1) − a0(xj , ν) = b1(x, ξ) · (x − xj) + b2(x, ξ) · ξ′′/ξ1 ,

where b1 and b2 are smooth homogeneous symbols. The term with ξ′′/ξ1 is bounded by 2−k/2 on
the support of χ̂ν,k, and preserves the derivative bounds (3.12) on χ̂ν,k with a gain of 2−k/2. The
term b1 · (x − xj) leads to a contribution

ρ
−1/2
k

∫
exp[i〈x − xj , ξ〉]Dξ

(
b1(x, ξ)χ̂ν,k(ξ)

)
dξ,

which also yields a curvelet-like function of order − 1
2 .

In (3.13) we write rγ = 2−k/2fγ . Taking inner products with ψγ′ yields

(3.14) [A]γ′γ = a0(xj , ν) Πγ′γ + 〈ψγ′ , rγ〉 .

If A is elliptic, we have uniform upper and lower bounds on the symbol a0(x, ξ), that is C−1 ≤
|a0(x, ξ)| ≤ C for some positive constant C. By (3.14) we then have

(3.15) a0(xj , ν)−1[A]γ′γ − Πγ′γ ∈ M− 1
2 (I) .

Also, by (3.14),

∣∣ a0(xj , ν) − 〈ψγ ,ϕγ〉
−1[A]γγ

∣∣ ≤ C 2−k/2 .

It follows that (3.15) holds with a0(xj , ν) replaced by the normalized diagonal

Dγ = Π
−1
γγ [A]γγ ,

after modifying [A]γγ , if necessary, by terms of size 2−k/2, to allow for the possibility that the
diagonal elements of [A] may vanish for small k.

We remark that (3.15) also holds with a0(xj , ν) replaced by a0(x
′
j , ν

′). (The latter appears from
applying the procedure of diagonal approximation to the adjoint of A.) This follows by (3.14) and
the fact that

|a0(xj , ν) − a0(x
′
j , ν

′)| ≤ C
(
|xj − x′

j | + |ν − ν′|
)
≤ C d(xj , ν;x′

j , ν
′)1/2 ,
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hence the commutator (a0(x
′
j , ν

′) − a0(xj , ν))Πγ′γ belongs to M− 1
2 (I). As above, it then follows

that

(3.16) D−1
γ′ [A]γ′γ = Πγ′γ + Rγ′γ , R ∈ M− 1

2 (I) .

While A need not be invertible, (3.16) implies that one can invert [A] on the range of C re-
stricted to k sufficiently large. Precisely, let Γ0 be a collection of indices γ. We denote by 1Γ0

the multiplication operator (diagonal) on ℓ2γ that truncates a sequence to Γ0. Then ΠΓ0 = Π 1Γ0

is an approximate projection into the range of C, with rapidly decreasing coefficients away from
Γ0. In practice, it is desirous to take 1Γ0 , at each fixed scale k, to be a smooth truncation to a
neighborhood of Γ0, such that |1Γ0

γ − 1Γ0

γ′ | ≤ C d(γ, γ′)1/2 . In this case,

(3.17)
(
1Γ0

γ − 1Γ0

γ′

)
Πγγ′ ∈ M− 1

2 ,

so that 1Γ0 preserves the range of C at any fixed scale k up to an operator of norm 2−k/2, hence
the difference between ΠΓ0 and 1Γ0 is small on the range of C for large k.

If we multiply (3.16) on the right by 1Γ0
γ , and use that R = R Π, then

D−1[A]1Γ0 = Π1Γ0 + R 1Γ0 = (I + R0)Π
Γ0 ,

where R0 is the matrix R restricted to the scales k occuring in Γ0. Hence, if Γ0 is supported by k
sufficiently large, then I + R0 can be inverted, and

(I + R0)
−1D−1[A]1Γ0 = Π

Γ0 ,

using a Neumann expansion. To leading order the inverse is diagonal. We will exploit this re-
sult in Section 5, while solving the normal equations derived from the composition F ∗F , yielding
“illumination correction” and partial reconstruction of the reflectivity function.

4. Generalized Radon Transform Matrix Approximation. We consider the action of
the generalized Radon transform operator F on a single curvelet, that is v = ϕγ in (2.9),

(4.1) (Fϕγ)(y) = ρ
−1/2
k

∫
a(y, ξ)χ̂ν,k(ξ) exp[i (S(y, ξ) − 〈ξ, xj〉)] dξ.

With the outcome, we can associate a “kernel”

(4.2) Aν,k(y, xj) = (Fϕγ)(y) .

The infinite generalized Radon transform matrix is given by

(4.3) [F ]γ′γ :=

∫
ψγ′(y)(Fϕγ)(y) dy =

∫
ψγ′(y)Aν,k(y, xj) dy .

We then have F = C−1[F ]C.

We seek an approximation of Fϕγ via expansions of the generating function S(y, ξ) and the
symbol a(y, ξ) near the microlocal support of ϕγ . The first-order Taylor expansion of S(y, ξ) along
the ν axis, following [45], yields

(4.4) S(y, ξ) − 〈ξ, xj〉 =

〈
ξ,

∂S

∂ξ
(y, ν) − xj

〉
+ h2(y, ξ) ,

where the error term h2(y, ξ) satisfies the estimates (3.11) on the ξ-support of χ̂ν,k. Consequently,
exp[ih2(y, ξ)] is a symbol of class S0

1
2
,rad

if ξ is localized to the rectangle Bν,k supporting χ̂ν,k.
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We introduce the coordinate transformation (note that ν depends on k)

y → Tν,k(y) =
∂S

∂ξ
(y, ν) .

If bν,k(x, ξ) is the order 0 symbol

bν,k(x, ξ) =
(
a(y, ξ) exp[ih2(y, ξ)]

)∣∣
y=T−1

ν,k
(x)

,

then

(Fϕγ)(y) =
[
bν,k(x,D)ϕγ

]
x=Tν,k(y)

.

This decomposition expresses the generalized Radon transform operator as a (ν, k) dependent pseu-
dodifferential operator followed by a change of coordinates, also depending on the pair (ν, k). This
decomposition can be used to show that the matrix [F ] belongs to M0(χ), where χ is the projection
of the homogeneous canonical transformation Σ (cf. (2.8)) to the co-sphere bundle; see [6]. (See also
Theorem 4.3 below.)

We use an expansion of the symbol and phase of the oscillatory integral representation to obtain
an approximation for the generalized Radon transform matrix elements up to error of size 2−k/2;
more precisely, the matrix errors will be of class M− 1

2 (χ). The principal part a0(y, ξ) of symbol
a(y, ξ) is homogeneous of order 0. Following Lemma 3.1, we may replace a0(y, ξ) by either a0(y, ν)
or a0(yj , ν), where

xj =
∂S

∂ξ
(yj , ν) = Tν,k(yj) ,

with the effect of modifying the generalized Radon transform matrix by a matrix of class M− 1
2 (χ).

The symbol h2(y, ξ) is homogeneous of order 1 and of class S0
1
2
,rad

on the support of χ̂ν,k, whence

we need account for the second-order terms in its Taylor expansion to obtain an approximation
within order − 1

2 . The relevant approximation is to Taylor expand in ξ in directions perpendicular
to ν, preserving homogeneity of order 1 in the radial direction; this is dictated by the non-isotropic
geometry of the second-dyadic (or dyadic parabolic) decomposition.

For convenience of notation, we consider the case that ν lies on the ξ1 axis. Then (compare
(4.4))

S(y, ξ1, ξ
′′) = ξ1S(y, 1, ξ′′/ξ1) = ξ ·

∂S

∂ξ
(y, ν) +

1

2

ξ′′
2

ξ1
·

∂2S

∂ξ′′2
(y, ν) + h3(y, ξ),

where h3(y, ξ) ∈ S
− 1

2
1
2
,rad

if ξ is restricted to the support of χ̂ν,k. Replacing the symbol exp[ih3(y, ξ)]

by 1 changes the matrix by terms of class M− 1
2 (χ), as in the proof of Lemma 3.1. Consequently,

up to errors of order − 1
2 , one can replace the symbol a(y, ξ) exp[ih2(y, ξ)] on Bν,k by

a(y, ν) exp[i 1
2 ξ−1

1 ξ′′
2
· ∂2

ξ′′S(y, ν)] 1Bν,k
(ξ)

with 1Bν,k
a smooth cutoff to the rectangle Bν,k supporting χ̂ν,k.

The exponent separates the variables y and ξ, and is bounded by a constant, independent of
(ν, k). Approximating the complex exponential for bounded (by C) arguments by a polynomial
function leads to a tensor-product representation of the symbol:

a(y, ν) exp[i 1
2 ξ−1

1 ξ′′
2
· ∂2

ξ′′S(y, ν)] ≈
N∑

s=1

α1
s;ν,k(y) α̂2

s;ν,k(ξ).
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To obtain an error of size 2−k/2 requires CN/N ! ≤ 2−k/2, or N ∼ k/ log k:
Theorem 4.1. With N ∼ k/ log k, one may express

(4.5) (Fϕγ)(y) =
N∑

s=1

α1
s;ν,k(y) (α2

s;ν,k ∗ ϕγ) ◦ Tν,k(y) + 2−k/2fγ ,

where fγ is a curvelet-like function centered at χ(γ).
An alternative approximation starts with replacing a(y, ξ) or a(y, ν) by a(yj , ν) with yj =

T−1
ν,k (xj) (and γ = (xj , ν, k)). Similarly, up to an error of order − 1

2 , one may replace ξ−1
1 ξ′′

2
·

∂2
ξ′′S(y, ν) by ξ−1

1 ξ′′
2
· ∂2

ξ′′S(yj , ν). Consequently, replacing bν,k(x, ξ) by the x-independent symbol

bγ(ξ) = a(yj , ν) exp[i 1
2 ξ−1

1 ξ′′
2
· ∂2

ξ′′S(yj , ν)]1Bν,k
(ξ) = α̂γ(ξ),

modifies the generalized Radon transform matrix by terms in M− 1
2 (χ). Precisely,

Theorem 4.2. One may express

(4.6) (Fϕγ)(y) = (αγ ∗ ϕγ) ◦ Tν,k(y) + 2−k/2fγ

where fγ is a curvelet-like function centered at χ(γ).
This is a generalization of the geometrical, zeroth-order approximation of the common-offset

realization – valid in the absence of caustics – of the generalized Radon transform considered in [19].

The change of variables Tν,k can also be suitably approximated by a local expansion of the
generating function about (yj , ν). This requires an approximation of the phase 〈ξ, ∂S

∂ξ
(y, ν)−xj〉 up

to an error of size 2−k/2 (cf. (4.4)), which is accomplished by taking the second-order expansion in
y about yj . Precisely, we write

∂S

∂ξ
(y, ν) − xj =

∂2S

∂ξ∂y
(yj , ν) · (y − yj) +

1

2

∂3S

∂ξ∂y2
(yj , ν) · (y − yj)

2

+h3(y, ν),(4.7)

where h3(y, ν) vanishes to third order at y = yj , and hence ξ ·h3(y, ν) leads to terms of order 2−k/2

as in Lemma 3.1. The first two terms on the right hand side of (4.7) are exactly the quadratic
expansion of Tν,k about y = yj .

In the expression ξ · ∂3S
∂ξ∂y2 (yj , ν) · (y − yj)

2 the terms in ξ perpendicular to ν are of size 2k/2 as

opposed to 2k for the component of ξ parallel to ν, hence lead to terms of size 2−k/2. This allows
one to replace the third-order derivative term by the quadratic expression

(4.8)

1

2

[
ν ·

∂3S

∂ξ∂y2
(yj , ν) · (y − yj)

2

]
ν

=
1

2

[
∂2S

∂y2
(yj , ν) · (y − yj)

2

]
ν = Qγ · (y − yj)

2

with yj = T−1
ν,k (xj) (and γ = (xj , ν, k)) as before:

Theorem 4.3. One may express

(4.9) (Fϕγ)(y) = (αγ ∗ ϕν,k) ◦ [DTγ · (y − yj) + Qγ · (y − yj)
2] + 2−k/2fγ ,

where fγ is a curvelet-like function centered at (χ(γ), k).

Here, the affine map DTγ =
∂Tν,k

∂y (yj) = ∂2S
∂ξ∂y (yj , ν) can be decomposed into a rigid motion and

a shear. The shear factor acts in a bounded manner on the curvelet, in that it preserves position
and direction; see also [19].
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The contribution Qγ ·(y−yj)
2 captures the curvature of the underlying canonical transformation

applied to the infinitesimal plane wave attached to ϕγ . As with the shear term it acts in a bounded
manner on a curvelet, and can be neglected in a zeroth-order approximation. This is the case in [47],
where rigid approximations to Tν,k were taken. Both shear and curvature terms must be accounted
for to obtain an approximation up to errors of size 2−k/2.

The expansion in Theorem 4.3 is analogous to the Gaussian beam expansion for isotropic wave
packets evolving under the wave equation, that is, if F were the forward parametrix of the wave
equation. A Gaussian beam is frequency localized to a ball of diameter 2k/2 in ξ, and in the
Gaussian beam expansion one considers quadratic expansions in ξ about the center ξ0 of the packet.
For curvelets, the support is of dimension 2k in radial directions, and the approximations to the
phase must preserve homogeneity in the radial variable.

Remark. The matrix [F ∗], essentially, provides the means to perform generalized Radon trans-
form imaging entirely in the curvelet domain (that is, “after double beamforming”). In this con-
text, “beam stack migration” can be understood as “scanning” the magnitude of 〈F δx0

, u〉 =∑
γ〈δx0

, F ∗ϕγ〉uγ =
∑

γ F ∗ϕγ(x0) uγ as a function of x0.

5. Partial Reconstruction. In applications, the image will admit a sparse decomposition
into curvelets. Suppose the goal is to reconstruct the image contribution composed of a small set
of curvelets (a “target”). The aim is to reconstruct this contribution by the available acquisition of
data with the least “artifacts” (hence curvelets).

Let v denote a model of reflectivity, as before, and w its image, interrelated through w = F ∗Fv.
We write

N = F ∗F,

so that [N ] = [F ∗] [F ]. The operator N is a pseudodifferential operator with polyhomogeneous
symbol of order 0; in particular N has homogeneous principal symbol of order 0, and the results of
Section 3.2 apply to N .

We describe a target region by the set of indices Γ0. Our resolution-illumination analysis is
thus focused on the product [N ]ΠΓ0 . The acquisition of data is accounted for by ΠS = Π1S , where
S stands for the (finite) set of curvelets that can be observed given the acquisition geometry. The
resolution is thus described by the operator, and matrix,

Ñ = F ∗C−1 1SC F , [Ñ ] = [F ∗] 1S [F ] = [F ∗]ΠS [F ] ,

and the normal equation to be solved, yielding the partial reconstruction, is given by [Ñ ] Cv =
[F ∗]ΠSCu where ΠSCu represents the observed data. The set S is assumed to contain a suitable
neighborhood of χ(Γ0), in that d(γ, χ(γ0)) ≫ 2−k for γ ∈ Sc and γ0 ∈ Γ0 at scale k. (Otherwise,

Γ0, or S, need to be adjusted.) The matrix [Ñ ] then approximates the matrix [N ] near Γ0 in the
following sense:

Lemma 5.1. Let

∆Γ0
= inf

γ∈Sc,γ0∈Γ0

2|k0−k|2min(k0,k)d(γ;χ(γ0)).

Then for all α, and m arbitrarily large, there exists a constant Cα,m such that

‖([N ] − [Ñ ])ΠΓ0‖2;α ≤ Cα,m∆−m
Γ0

.

Proof. Since [F ∗]Π = [F ∗] and [F ]Π = [F ], the matrix [N ]ΠΓ0 − [Ñ ]ΠΓ0 takes the form

∑

γ′′

[F ∗]γγ′′ 1Sc

γ′′ [F ]γ′′γ′ 1Γ0

γ′ .
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The sum is dominated by

Cδ,m

∑

γ′′

µδ(χ(γ), γ′′) 1Sc

γ′′ µδ+m(γ′′,χ(γ′)) 1Γ0

γ′ .

We use the bound µδ+m(γ′′,χ(γ′)) ≤ ∆
−m
Γ0

µδ(γ
′′,χ(γ′)) and [47, Lemma 2.5], together with invari-

ance of the distance under χ, to bound the sum by Cδ,m∆
−m
Γ0

µδ(γ, γ′). The result follows, since
‖µδ(., .)‖2,α ! 1 if δ ≥ α.

Finally, we explore the invertibility of [Ñ ] on the range of ΠΓ0 . To this end, we introduce an
intermediate index set Γ1 with Γ0 ⊂ Γ1 ⊂ χ−1(S), for which ∆Γ1

≈ ∆Γ0
, and with

(5.1) ‖ΠΓ1Π
Γ0 − Π

Γ0‖2;α ! ∆−m
Γ0

for m arbitrarily large. For γ in a set containing Γ1, then
∣∣[Ñ ]γγ − [N ]γγ

∣∣ ≪ 1. We introduce the
inverse diagonal,

D̃−1
γ = Πγγ [Ñ ]−1

γγ

for γ near Γ1, and smoothly truncate D̃−1
γ to 0 away from Γ1. Then

D̃−1[Ñ ]ΠΓ1 = Π
Γ1 + R ,

where ‖R‖2,α ≪ 1 if ∆Γ0
is sufficiently large, depending on the given α.

If ΠΓ1 were a true projection then we would have R = R ΠΓ1 , and applying (I + R)−1 would

yield the desired inverse of [Ñ ] on the range of ΠΓ1 . In the case of the approximate projections ΠΓ0 ,
ΠΓ1 , one can obtain an approximate inverse against ΠΓ0 . We write

(I + R)−1D̃−1[Ñ ]ΠΓ1Π
Γ0 = Π

Γ0 + (I + R)−1(ΠΓ1Π
Γ0 − Π

Γ0) .

By (5.1) this yields

(I + R)−1D̃−1[Ñ ]ΠΓ0 = Π
Γ0 + R̃ ,

where ‖R̃‖2,α ≪ 1, provided ∆Γ0
is sufficiently large, depending on the given α. Thus, by applying

(I + R)−1D̃−1 to [F ∗]ΠSCu, we obtain the desired, approximate, partial reconstruction of the
reflectivity function, where C has replaced the notion of double beamforming, and [F ] and [F ∗] can
now be replaced by their approximations developed in the previous section.

Remark. In practical applications, R and R̃ are neglected. In general, with limited illumination,
the diagonal elements [Ñ ]γγ have to be estimated numerically through “demigration” followed by
“remigration” against ΠΓ0 . In the case of full illumination, the diagonal elements can be directly
approximated using (3.14). For an optimization approach to solving the normal equation, in this
context, see Symes [49] and Herrmann et al. [24].

Remark. The image of a single data curvelet is naturally given by w = F ∗ϕγ =
∑

γ′ [F ∗]γ′γϕγ′

whence wγ′ = [F ∗]γ′γ . From the fact that the matrix [F ∗] belongs to M0(χ−1), it is immediate
that for α arbitrarily large (cf. (3.8))

∑

γ

22|k−k′|α22 min(k,k′)αd(γ′;χ−1(γ))2α |[F ∗]γ′γ |
2 ≤ C

illustrating that the curvelet decomposition of the data eliminates the “isochrone smear” associated
with imaging individual data samples.



GENERALIZED RADON TRANSFORM AND CURVELETS 109

6. Conclusion. The results presented in this paper essentially provide a novel approach to
imaging, based on the generalized Radon transform, replacing the notions of “plane-wave migra-
tion” and “beam-stack imaging” by matrix approximations using curvelets on the one hand, and
addressing the problem of partial reconstruction on the other hand. However, the results presented
in Section 3.2 apply to general, elliptic, pseudodifferential operators, while the results presented in
Section 4 pertain to all Fourier integral operators (of order zero) the canonical relation of which is
(locally) a canonical graph.

Acknowledgment. The authors would like to thank A. Deuss for stimulating discussions on
beamforming.

Appendix A. Amplitudes, Reflecting Interfaces.

We introduce τ = 1
2 (τ̂ + τ̃) and τ̄ = τ̂ − τ̃ ; it is immediate that

(A.1) (x0, ξ̂0, ξ̃0, t̂, t̃ ) #→ (x0, y
′
I , y

′′, η′
J , τ̄)

is (locally) bijective. Thus, for y′′ = 0 and τ̄ = 0 we can express (ξ̂0, ξ̃0) as functions of (y′
I , x0, η

′
J).

The amplitude associated with ΛMN , to leading order, can be written in the form

|bMN (y′
I , x0, η

′
J)|(A.2)

= (2π)−
n+1+c

4

∣∣∣∣det
∂(x̂, x̃, t)

∂(y′, y′′)

∣∣∣∣
−1/2 ∣∣∣∣det

∂(x0, ξ̂0, ξ̃0, t̂, t̃ )

∂(x0, y′
I , y

′′, η′
J , τ̄)

∣∣∣∣
1/2

y′′=0,τ̄=0

1

4τ2
.

With Assumptions 1 and 2, equation (1.5) defines a Fourier integral operator with canonical
relation ΛMN , and of order n−1+c

4 ; we have

δGMN (y′) = (2π)−
|J|
2

−
3n−1−c

4

∫ ∫
bMN (y′

I , x0, η
′
J)

[
wMN ;0(y

′
I , x, η′

J)
δρ(x)

ρ(x)
+ wMN ;ijkl(y

′
I , x, η′

J)
δcijkl(x)

ρ(x)

]

exp[iΦMN (y′, x0, η
′
J)] dxdη′

J ,(A.3)

in which w stands for the contrast-source radiation patterns derived from the pseudodifferential
operators that diagonalize the elastodynamic system of equations (1.1).

We assume that
(

δρ
ρ

,
δcijkl

ρ

)
are described by conormal distributions. We consider here the case

of a single interface, and a discontinuity in (δρ, δcijkl) across this interface. (The interface can be
viewed as an edge or boundary layer with a certain regularity.) Let κ : R

n → R
n, x #→ z be a

coordinate transformation such that the interface is given by zn = 0. The corresponding cotangent
vector is denoted by ζ, and transforms according to ζi(x, ξ) = ((∂κ

∂x )−1)t
ijξj ; the z form coordinates

on the manifold X and we write z = (z′, zn). We introduce the distributions (δ̃ρ, δ̃cijkl) by pull
back with κ:

(A.4) δ̃ρ(κ(x)) = δρ(x) , δ̃cijkl(κ(x)) = δcijkl(x) .

Then

∂

∂x
δ̃ρ =

∂zn

∂x
ρ′ + l.o.t., with ρ′ =

∂

∂zn
δ̃ρ ,

and similarly for
∂δ̃cijkl

∂x . We substitute (A.4) into (A.3), and insert the identity

1

i (ν̄ · ∂xΦMN )
(ν̄ · ∂x) exp[iΦMN ] = exp[iΦMN ],
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for an appropriately chosen ν̄ ∈ Sn−1. Integration by parts then leads to replacing δρ(x) in (A.3)
by

(−)

i (ν̄ · ∂xΦMN )

(
ν̄ ·

∂zn

∂x

)
ρ′ =

(−)

i (νz · ∂xΦMN )

∥∥∥∥
∂zn

∂x

∥∥∥∥ ρ′,

with ν̄ = νz =

∥∥∥∥
∂zn

∂x

∥∥∥∥
−1

∂zn

∂x
,(A.5)

to leading order, and similarly for δcijkl(x). If ρ′ is associated with a jump discontinuity, it contains
a factor δ(zn(x)). We note that then

∫
(· · · )

∥∥∂zn

∂x

∥∥ δ(zn(x))dx =
∫

zn=0
(· · · )

∣∣det ∂x
∂z

∣∣ ∥∥∂zn

∂x

∥∥ dz′

becomes the Euclidean surface integral over the surface or manifold zn = 0. The expression between
brackets in (A.3) becomes

i

(νz · ∂xΦMN (y′, x, η′
J))

1

ρ(x)
[

wMN ;0(y
′
I , x, η′

J) ρ′ + wMN ;ijkl(y
′
I , x, η′

J) c′ijkl

] ∥∥∥∥
∂zn

∂x

∥∥∥∥ ;

in the case of a jump discontinuity, this expression can be written in the form
2iτ(η′

J)RMN (y′
I , x, η′

J)δ(zn(x))
∥∥∂zn

∂x

∥∥ matching the Kirchhoff approximation (we note that in fact
∂xΦMN = (∂xΦMN )(y′

I , x, η′
J)).

Remark. The discontinuities in Earth’s mantle (transition zone and D′′) are associated with phase
transformations, whence conormal distributions representing contrasts appear naturally [53, 51, 10].

For the Born approximation the function r(x, e) in Theorem 2.2 is given by a pseudodifferential
operator R with principal symbol

(2iτ(x, ξ, e))−1(wMN ;0(x, ξ, e), wMN ;ijkl(x, ξ, e)), acting on the distribution c given by
(

δcijkl

ρ
, δρ

ρ

)
,

so to highest order

r(x, e) = (2iτ(x, Dx, e))−1(A.6) [
wMN ;0(x,Dx, e)

δρ(x)

ρ(x)
+ wMN ;ijkl(x,Dx, e)

δcijkl(x)

ρ(x)

]
.

Moreover, one can introduce an amplitude b(yI , x, ηJ , ε) on canonical relation M such that b(yI , x, ηJ , ε =
0) coincides with the amplitude in (A.2). To leading order,

∂

∂ε
b = 0

because the coordinates εi are in involution. The amplitude of F , to leading order, is then given by

(2π)n/22iτ(ηJ)b(yI , x, ηJ , ε)

expressible in terms of the coordinates (x, e, ξ, ε).



GENERALIZED RADON TRANSFORM AND CURVELETS 111

REFERENCES

[1] F. Akbar, M. Sen, and P. Stoffa, Pre-stack plane-wave kirchhoff migration in laterally varying media,
Geophysics, 61 (1996), pp. 1068–1079.

[2] F. Andersson, M. Carlsson, and M.V. De Hoop, Dyadic parabolic decomposition and approximation of
functions by sums of wave packets, Applied and Computational Harmonic Analysis, submitted (2008).

[3] G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized
radon transform, J. Math. Phys., 26 (1985), pp. 99–108.

[4] M.G. Bostock, S. Rondenay, and J. Shragge, Multi-parameter two-dimensional inversion of scattered tele-
seismic body waves, 1, Theory for oblique incidence, J. Geophys. Res., 106 (2001), pp. 30,771–30,782.

[5] E.J. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, SIAM Multiscale
Model. Simul., 5-3 (2006), pp. 861–899.

[6] E.J. Candès, L. Demanet, and L. Ying, Fast computation of Fourier integral operators, SIAM J. Sci. Comput.,
29 (2007), pp. 2464–2493.

[7] E.J. Candès and D. Donoho, New tight frames of curvelets abd optimal representations of objects with
piecewise-C2 singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219–266.

[8] , Continuous curvelet transform: I. Resolution of the wavefront set, Applied and Computational Har-
monic Analysis, 19 (2005), pp. 162–197.

[9] , Continuous curvelet transform: II. Discretization and frames, Applied and Computational Harmonic
Analysis, 19 (2005), pp. 198–222.

[10] Q. Cao, P. Wang, M.V. De Hoop, R.D. Van der Hilst, and R. Lamm, High-resolution imaging of upper
mantle discontinuities with SS precursors, Physics of Earth and Planetary Interiors, submitted (2008).

[11] J. Capon, Investigation of long-period noise at the large aperture seismic array, J. Geophys. Res., 74 (1969),
pp. 3182–3194.

[12] D. Davies, E.J. Kelly, and J.R. Filson, Vespa process for analysis of seismic signals, Nature Phys. Sci., 232
(1971), pp. 8–13.

[13] M.V. De Hoop and N. Bleistein, Generalized Radon transform inversions for reflectivity in anisotropic elastic
media, Inverse Problems, 13 (1997), pp. 669–690.

[14] M.V. De Hoop and S. Brandsberg-Dahl, Maslov asymptotic extension of generalized Radon transform in-
version in anisotropic elastic media: A least-squares approach, Inverse Problems, 16 (2000), pp. 519–562.

[15] M.V. De Hoop, R. Burridge, C. Spencer, and D. Miller, Generalized Radon Transform/amplitude versus
angle (GRT/AVA) migration/inversion in anisotropic media, in Mathematical Methods in Geophysical
Imaging II, Proceedings of SPIE – Volume 2301, 1994, pp. 15–27.

[16] M.V. De Hoop, C. Spencer, and R. Burridge, The resolving power of seismic amplitude data: An anisotropic
inversion/migration approach, Geoph., 64 (1999), pp. 852–873.

[17] A. Deuss, S.A.T. Redfern, K. Chambers, and J.H. Woodhouse, The nature of the 660-kilometer discontinu-
ity in Earth’s mantle from global seismic observations of PP precursors, Science, 311 (2006), pp. 198–201.

[18] H. Douma and M.V. De Hoop, Explicit expressions for pre-stack map time-migration in isotropic and VTI
media and the applicability of map depth-migration in heterogeneous anisotropic media, Geophysics, 71
(2006), pp. S13–S28.

[19] , Leading-order seismic imaging using curvelets, Geophysics, 72 (2007), pp. S231–S248.
[20] M.P. Flanagan and P.M. Shearer, Global mapping of topography on transition zone velocity discontinuities

by stacking SS precursors, J. Geophys. Res., 103 (1998), pp. 2673–2692.
[21] D.J. Foster, C.C. Mosher, and S. Jin, Offset plane wave migration, in Expanded Abstracts, Eur. Assoc.

Expl. Geophys., 2002, pp. B–14.
[22] V. Guillemin, On some results of Gel’fand in integral geometry, in Pseudodifferential Operators and Applica-

tions, Providence, RI, 1985, AMS, pp. 149–155.
[23] M.A.H. Hedlin, J.B. Minster, and J.A. Orcutt, Beam-stack imaging using a small aperture array, Geophys.

Res. Lett., 18 (1991), pp. 1771–1774.
[24] F.J. Herrmann, P.P. Moghaddam, and C.C. Stolk, Sparsity- and continuity-promoting seismic image re-

covery with curvelet frames, Applied and Computational Harmonic Analysis, in print (2007).
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